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TOPOLOGICAL DIMENSION ZERO

AND SOME RELATED PROPERTIES

Cornel Pasnicu and Mohammad Rouzbehani

Abstract: In this paper, we introduce and study the C*-algebras with property (IC) and with other

related properties. We prove that, surprisingly, residual (IC) is equivalent to topological dimension
zero (and to another property), and that in the class of C*-algebras with topological dimension

zero, pure infiniteness and strong pure infiniteness coincide, providing a partial positive answer

to a question of Kirchberg and Rørdam in [12]. We also show that these last two properties are
equivalent to weak pure infiniteness and to local pure infiniteness, in the residual (IS) case, giving a

particular affirmative answer to an open question of Blanchard and Kirchberg in [2]. We prove, in

particular, that in the class of purely infinite C*-algebras, the following properties are all equivalent:
residual (IC), topological dimension zero, the ideal property, the weak ideal property, residual (IF),

and residual (SP). We show that crossed products by finite solvable groups preserve the class of all
separable C*-algebras with topological dimension zero (resp., the weak ideal property).
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1. Introduction

One of the most important breakthroughs in the famous Elliott classification pro-
gram was the classification of simple purely infinite UCT nuclear C*-algebras, by
Kirchberg and Phillips. In order to extend this classification program beyond simple
C*-algebras, it is natural and very important to generalize pure infiniteness to non-
simple C*-algebras. This was done by Kirchberg and Rørdam: they defined strong
pure infiniteness, pure infiniteness, and weak pure infiniteness, and they asked whether
these notions are equivalent (see [11] and [12]). This was proved to be true by Kirch-
berg and Rørdam when the C*-algebra has real rank zero (see [12]), and by the first
named author of this paper and Rørdam when the C*-algebra has the ideal property
(see [24]). Also, Blanchard and Kirchberg introduced the notion of local pure infinite-
ness and they asked whether it is equivalent to weak pure infiniteness (see [2]). They
proved that these two concepts are equivalent when the C*-algebra has real rank zero
(see [2]). It is worth mentioning that these types of questions are very important not
only for the classification of C*-algebras, but also for other areas of mathematics, e.g.,
the classification of extensions.

In this paper we introduce several closely related properties, the most important
being residual (IC), and also residual (IF) and residual (IS). Residual (IC) can be seen
as a natural generalization of the ideal property (all the ideals are generated by their
projections). Indeed, let A be a C*-algebra. If A has the ideal property, then any non-
zero ideal-quotient of A (a quotient of different ideals) has a non-zero projection p,
and hence (by a general argument), the ideal generated by p in the ideal-quotient
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has compact primitive spectrum. If we request that any non-zero ideal-quotient of a
C*-algebra A contains a non-zero C*-subalgebra with compact (resp., finite) primitive
spectrum, we say that A has residual (IC) (resp., residual (IF)), and if we request that
any non-zero ideal-quotient of a C*-algebra A contains a non-zero simple ideal, we
say that A has residual (IS) (see Definitions 3.1 and 3.2, and Remark 3.9) (note that,
obviously, in the simple case, the primitive spectrum is trivial, and hence finite; also,
observe that the C*-algebras with finite primitive spectrum have residual (IS)). We
show that the class of separable C*-algebras with the weak ideal property, the class
of separable C*-algebras with topological dimension zero, and the class of separable
stable C*-algebras with residual (IF) are left invariant by crossed products by finite
solvable groups (see Theorem 4.10 and Remark 4.13).

We now describe the main results of this paper. We prove that under the hy-
pothesis of residual (IC), the notions of pure infiniteness and strong pure infiniteness
are equivalent; and under the hypothesis of residual (IS), the four notions of strong
pure infiniteness, pure infiniteness, weak pure infiniteness, and local pure infiniteness
are all equivalent (see Theorem 3.10). These results give particular affirmative an-
swers to the two above important questions raised by Kirchberg and Rørdam, and
by Blanchard and Kirchberg. We show that for separable nuclear C*-algebras with
topological dimension zero (the primitive spectrum of the C*-algebra has a basis of
compact open sets), the notion of pure infiniteness is equivalent to being O∞-stable
(see Corollary 3.14). This result extends Kirchberg’s O∞-absorption theorem for the
case of simple C*-algebras (see [25, Theorem 7.2.6(ii)]). We characterize residual (IC)
and we prove that it is equivalent to topological dimension zero, and that under the
assumption of pure infiniteness, it is also equivalent to residual (IF) and also to some
known and important properties, namely: the ideal property, the weak ideal property,
and residual (SP) (see Theorem 3.13).

The paper is organized as follows. In Section 2, we introduce some concepts and
results needed in the next sections. In Section 3, we first define the notions of resid-
ual (IC), residual (IF), and residual (IS) (see Definitions 3.1 and 3.2), and then we
prove the main results of this paper, described above (see Theorems 3.10 and 3.13,
and Corollary 3.14). In Section 4, we prove that the weak ideal property, topologi-
cal dimension zero, and residual (IF) have a good behavior with respect to crossed
products by finite solvable groups (see Theorem 4.10 and Remark 4.13), and we also
characterize the weak ideal property and topological dimension zero for crossed prod-
ucts of unital C*-algebras by finite groups (see Theorem 4.16 and Corollary 4.17).

2. Preliminaries

In this paper, by an ideal, we always mean a closed two-sided ideal, unless otherwise
specified. For an ideal I (resp., C*-subalgebra B) in a C*-algebra A, we write I E A
(resp., B ≤A). Also, for a hereditary (resp., and full) C*-subalgebra B in a C*-al-
gebra A, we write B ≤h A (resp., B ≤h,f A). For a subset S of a C*-algebra A,

ASA denotes the ideal generated by S, where we simply write AaA, when S = {a}.
An element a ∈ A is called full if A = AaA (see [1, p. 91]). Let Prim(A) be the set
of primitive ideals in a C*-algebra A. Then Prim(A) is a topological space with the
Jacobson (hull-kernel) topology [1].

Throughout this paper, the symbol ⊗ will mean the minimal tensor product of
C*-algebras, and the C*-algebra of all compact linear bounded operators on a Hilbert
space H will be denoted by K(H). When H is a separable infinite-dimensional Hilbert
space, we denote K := K(H).
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Given a, b ∈ A+, we say that a is Cuntz subequivalent to b (and write a - b), if
there is a sequence {xk}∞k=1 ⊆ A such that x∗kbxk → a, in norm. We say that a and b
are Cuntz equivalent (and write a ∼cu b), if a - b and b - a (see [11, Definition 2.1]).
A positive element a in a C*-algebra A is called infinite if there exists a non-zero
positive element b in A such that a ⊕ b - a ⊕ 0 in M2(A). If a is not infinite, then
we say that a is finite. If a is non-zero and if a⊕ a - a⊕ 0 in M2(A), then a is said
to be properly infinite (see [11, Definition 3.2]). A C*-algebra A is said to be purely
infinite if there are no characters on A, and for every pair of positive elements a, b
in A, if a ∈ AbA, then a - b (see [11, Definition 4.1]). A C*-algebra A will be said
to have property pi -n if the n-fold direct sum a ⊕ a ⊕ · · · ⊕ a = a ⊗ 1n is properly
infinite in Mn(A) for every non-zero positive element a in A. If A is pi-n for some n,
then we shall call A weakly purely infinite (see [12, Definition 4.3]). Also, A is said to
be strongly purely infinite if for every(

a x∗

x b

)
∈M2(A)+,

and every ε > 0, there are d1, d2 ∈ A such that∥∥∥∥∥
(
d∗1 0
0 d∗2

)(
a x∗

x b

)(
d1 0
0 d2

)
−
(
a 0
0 b

)∥∥∥∥∥ ≤ ε
(see [12, Definition 5.1]). A C*-algebra A is said to be locally purely infinite if, for
every primitive ideal J of A and every element b ∈ A+ with ‖b + J‖ > 0, there is a
non-zero stable C*-subalgebra D of the hereditary C*-subalgebra generated by b such
that D is not included in J (see [2, Definition 1.3]).

A C*-algebra A is of real rank zero if every self-adjoint element in A is the norm
limit of self-adjoint elements of finite spectrum (see [25, Definition 1.1.7]). A C*-alge-
bra A is said to have the ideal property if each ideal in A is generated (as an ideal) by
its projections (see [25, Definition 1.5.2]). We say that a C*-algebra A has the weak
ideal property if whenever I ⊆ J ⊆ K ⊗A are ideals in K ⊗A such that I 6= J , then
J/I contains a non-zero projection (see [21, Definition 8.1]). Also, a C*-algebra A
has the projection property if every ideal in A has an increasing approximate unit
consisting of projections [15].

A C*-algebra A has property (SP) if every non-zero hereditary C*-subalgebra of A
contains a non-zero projection, and A has residual (SP) if every quotient of A has
property (SP) (see [21, p. 959 and Definition 7.1]).

An ideal J in a C*-algebra A is called a compact ideal if whenever (Jλ)λ∈Λ is an

increasing net of ideals in A such that J =
⋃
λ∈Λ Jλ, then J = Jλ, for some λ (see [24,

Remark 2.2]). Equivalently, an ideal I in a C*-algebra A is compact if and only if
Prim(I) is a compact open (but not necessarily closed) subset of Prim(A) (see [22,
p. 1389]).

An element a∈A+ is strictly full if (a−ε)+ is full for some (and so for all sufficiently
small) ε > 0 [13, p. 46].

In the next section, we need [26, Lemma 3.12] repeatedly; and so we here state it
as a lemma.

Lemma 2.1 ([26, Lemma 3.12]). Let A be a C*-algebra. Then Prim(A) is compact
if and only if A has a strictly full element.

By the way, here is a short sketch of parts of the argument in [26, Lemma 3.12]: it is
shown there that for a C*-algebra A, if Prim(A) is compact, then A has a full positive
element h (by considering an approximate unit for A), and the lower semicontinuous
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function ȟ : Prim(A)→ R+, given by ȟ(J) = ‖h/J‖ (see [1, Proposition II.6.5.6(i)]),
attains its minimum value, and it is concluded that h is a strictly full element in A.
Conversely, ifA has a strictly full element, then by applying the definition of a compact
ideal and the Pedersen ideal, it is shown that Prim(A) is compact.

A C*-algebra A has topological dimension zero if Prim(A) has a basis consisting
of compact open sets [4]; equivalently, every ideal in A is the closure of the union
of an increasing net of compact ideals in A (see [24, Remark 2.2]). It is known that
the real rank zero property implies the ideal property, the ideal property implies the
weak ideal property, and the weak ideal property implies topological dimension zero
(see [22, Theorem 2.8]).

3. C*-algebras with property (IC)

In this section, we define and study C*-algebras with property (IC) and with other
related properties.

Definition 3.1. Let A be a C*-algebra.

(i) A is said to have property (IC) or to be ideal-compact (resp., property (IF)
or ideal-finite) if every non-zero ideal in A has a non-zero C*-subalgebra with
compact (resp., finite) primitive spectrum.

(ii) A is said to have residual (IC) (resp., residual (IF)) if every quotient of A has
property (IC) (resp., property (IF)).

Definition 3.2. Let A be a C*-algebra.

(i) A is said to have property (IS) if every non-zero ideal in A has a non-zero simple
hereditary C*-subalgebra.

(ii) A is said to have residual (IS) if every quotient of A has property (IS).

Note that the zero C*-algebra has all the properties mentioned in the two definitions
above.

Remark 3.3. We clearly have the following:

(i) property (IS) ⇒ property (IF) ⇒ property (IC).

(ii) residual (IS) ⇒ residual (IF) ⇒ residual (IC).

The following lemma is probably well known. Indeed, it is a standard well-known
fact that every C*-algebra with finitely many ideals has a finite composition series.
Thus we have the following statement:

Lemma 3.4. Let A be a non-zero C*-algebra such that Prim(A) is finite. Then A has
a non-zero simple ideal.

Using Lemma 3.4 one can easily prove the following result:

Proposition 3.5. Let A be a C*-algebra. The following are equivalent:

(i) A has property (IF) (resp., residual (IF)).

(ii) Every non-zero ideal (resp., of every quotient) of A has a non-zero simple
C*-subalgebra.

Proposition 3.6. Let A and B be separable C*-algebras such that A or B is exact,
and B is simple. Assume that A has residual (IF). Then A⊗B has residual (IF).

Proof: Let I and J be different ideals of A ⊗ B with J ⊆ I. Then, a theorem of
Kirchberg implies that there are different ideals I0 and J0 of A with J0 ⊆ I0, such
that I = I0⊗B and J = J0⊗B (see [10, Proposition 2.13]; see also [23, Theorem 1.3]
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and [2, Proposition 2.16(ii) and Proposition 2.17(2)]). Then, since A or B is exact,
we have that

I/J ∼= (I0/J0)⊗B
(see [2, Proposition 2.16(iv) and Proposition 2.17(2)]). Since A has residual (IF), it
follows that there is a non-zero C*-subalgebra C of I0/J0 with Prim(C) finite. Then,
C ⊗B is a non-zero C*-subalgebra of (I0/J0)⊗B, and

Prim(C ⊗B)(∼= Prim(C)× Prim(B) ∼= Prim(C))

is finite (we used the hypothesis, [2, Proposition 2.16(iii)], and a theorem of Dixmier
in [7] saying that if D is a separable C*-algebra, then prime(D) = Prim(D)). Hence,
A⊗B has residual (IF).

We denote by Lat(A) the set of all ideals in a C*-algebra A. Of course, it is well
known that the set of all ideals in a C*-algebra is a complete lattice under inclusion.

Lemma 3.7. Let A be a C*-algebra, 0 6= D ≤h A, and L = ADA. Then there exists
a lattice isomorphism Lat(D) ∼= Lat(L).

Proof: We denote by LatL(A) the set of all ideals of A contained in L. Then LatL(A) =
Lat(L). On the other hand, by [1, Section II.5.3.5] there is a bijection

Φ: Lat(D)→ LatL(A); K 7→ AKA,

whose inverse is
Φ−1 : LatL(A)→ Lat(D); M 7→M ∩D.

Note that both Φ and Φ−1 preserve inclusions, and hence for every two ideals K1

and K2 of D we have that

K1 ⊆ K2 ⇔ Φ(K1) ⊆ Φ(K2).

It is clear that Φ−1 is a lattice isomorphism. Thus Lat(D) ∼= Lat(L).

Proposition 3.8. Let A be a C*-algebra. The following are equivalent:

(i) A has property (IS).

(ii) Every non-zero ideal in A contains a non-zero simple ideal.

(iii) Every non-zero hereditary C*-subalgebra of A contains a non-zero simple hered-
itary C*-subalgebra.

The proof is easy and uses Lemma 3.7.

Remark 3.9. Using Proposition 3.8, it can be proved that a C*-algebra A has resid-
ual (IS) if and only if every non-zero ideal in every quotient of A contains a non-zero
simple ideal, if and only if every non-zero hereditary C*-subalgebra of every quotient
of A contains a non-zero simple hereditary C*-subalgebra.

Theorem 3.10. Let A be a C*-algebra.

(i) If A has residual (IC), then pure infiniteness and strong pure infiniteness are
equivalent for A.

(ii) If A has residual (IS), then local pure infiniteness, weak pure infiniteness, pure
infiniteness, and strong pure infiniteness are all equivalent for A.

Proof: (i) Let A be a purely infinite C*-algebra with residual (IC). According to [24,
Proposition 2.11 ((iv) ⇒ (ii))] (where separability is not necessary), we show that
every non-zero hereditary C*-subalgebra in any quotient of A contains an infinite
projection. In this case, A has the ideal property, and hence the first assertion holds,
by [24, Proposition 2.14].
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Let Q be a quotient of A, 0 6= D ≤h Q, and JD := QDQ. Since A has resid-
ual (IC), JD has a non-zero C*-subalgebra BD with compact primitive spectrum. By
Lemma 2.1, BD has a strictly full element b ∈ B+

D, and so there is ε > 0 such that
(b− ε)+ is full in BD.

According to [11, Propositions 4.3 and 4.17], pure infiniteness passes to hereditary
C*-subalgebras and quotients. Thus since JD is purely infinite, [11, Theorem 4.16]
implies that every non-zero positive element in JD is properly infinite. In particular,
b and (b − ε)+ are properly infinite in JD. Since the ideal L1 = BDbBD is equal

to L2 = BD(b− ε)+BD, we have that

JDL1JD = JDL2JD,

and so

I := JDbJD = JD(b− ε)+JD.

This implies that b ∼cu (b − ε)+ in JD, by [11, Proposition 3.5(ii)]. Now, according
to the last two paragraphs of the proof of Proposition 2.7 ((i) ⇒ (ii)) in [24], there
is a full projection p in I(EJD), and hence p 6= 0 (we also use [11, Proposition 3.3]).
But D ≤h,f JD, and JD is purely infinite. Thus every non-zero projection in JD is
equivalent to a properly infinite projection in D, by [24, Lemma 2.9]. Thus there is a
properly infinite projection q ∈ D such that p ∼ q. In particular, q is infinite, and so
D contains an infinite projection.

(ii) Let A be a locally purely infinite C*-algebra with residual (IS). If we show that
every non-zero hereditary C*-subalgebra in any quotient of A contains an infinite
projection, then A is purely infinite and has the ideal property, by [24, Proposi-
tion 2.11 ((iv) ⇒ (ii))] (where separability is not necessary). In this case, since A has
the ideal property, all three properties (weak pure infiniteness, pure infiniteness, and
strong pure infiniteness) coincide, by [24, Proposition 2.14]. Moreover, every weakly
purely infinite C*-algebra is locally purely infinite (see [2, Proposition 4.11]). Thus
the assertion holds.

Let Q be a quotient of A and 0 6= D ≤h Q. According to Remark 3.9, if A is a C*-
algebra with the residual (IS), then every non-zero hereditary C*-subalgebra of every
quotient of A contains a non-zero simple hereditary C*-subalgebra. Thus D has a non-
zero simple hereditary C*-subalgebra, say HD. Since local pure infiniteness passes to
hereditary C*-subalgebras and quotients (see [2, Proposition 4.1(iii)]), HD is locally
purely infinite. Now, according to [2, Proposition 3.1], HD is purely infinite (and
simple). This implies that HD (and so D) has an infinite projection.

In particular, every locally purely infinite C*-algebra with residual (IS) has the
ideal property.

Theorem 3.11. Let A be a C*-algebra. The following are equivalent:

(i) A has property (IC).

(ii) Every non-zero ideal in A contains a non-zero compact ideal.

(iii) Every non-zero hereditary C*-subalgebra of A contains a non-zero compact ideal.

If A is purely infinite, then the conditions (i)–(iii) above are equivalent to the
following statements:

(iv) A has property (SP).

(v) Every non-zero ideal in A contains a non-zero projection.

(vi) A has property (IF).
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Proof: (i) ⇒ (ii) Assume that A has property (IC). Let I be a non-zero ideal of A.
Then, there exists a non-zero C*-subalgebra E of I such that Prim(E) is compact.

Using Lemma 2.1, it follows that E has a strictly full element b, that is, b is a
positive element of E and there is ε > 0 such that

(1) E = E(b− ε)+E.

Let J be the ideal of I generated by E:

(2) J := IEI.

From (1) and (2) we get that

(3) J = I(b− ε)+I

or

(4) J = J(b− ε)+J.

Using (3), (4), and Lemma 2.1, we deduce that J is a non-zero ideal of I and Prim(J) is
compact.

(ii) ⇒ (iii) Let H be a non-zero hereditary C*-subalgebra of A, and I := AHA.
The hypothesis (ii) implies that I has a non-zero compact ideal I0, and we have
that I0 ∈ Lat(I) ∼= Lat(H), by Lemma 3.7. This implies that H contains a non-zero
compact ideal.

(iii) ⇒ (i) This implication is obvious.

(ii) ⇒ (iv) Let 0 6= H ≤h A, and I := AHA. Then I has a compact ideal I0, by (ii).
Since Prim(I0) is compact, I0 has a strictly full element h, by Lemma 2.1. Thus there
is ε > 0 such that

I0 = I0(h− ε)+I0

and h ∼cu (h−ε)+. Now since I0 is purely infinite, h and (h−ε)+ are properly infinite,
and hence the last two paragraphs of the proof of Proposition 2.7 ((i) ⇒ (ii)) in [24]
imply that (I0 and so) I has an infinite projection p. But we have that H ≤h,f I.
Thus [24, Lemma 2.9] implies that there is a projection q in H such that p ∼ q.

(iv) ⇒ (ii) If 0 6= I E A, then the hypothesis (iv) implies that I has a non-zero
projection p. Thus J := IpI is a non-zero compact ideal in I, by Lemma 2.1, because,
for every 0 < ε < 1, we have that

p ∼cu (p− ε)+,

and hence p is a strictly full element in J .

(iv) ⇒ (v) ⇒ (vi) ⇒ (i) These implications are clear. Note that for the implica-
tion (v) ⇒ (vi), if I is an ideal of A, and p is a non-zero projection of I, then
Cp ∼= C is a non-zero C*-subalgebra with finite primitive spectrum of I.

Lemma 3.12. Let A be a C*-algebra. If A has residual (SP), then A has the weak
ideal property, and hence A has topological dimension zero.

Proof: Assume that A has residual (SP). Let I and J be ideals of A, with I ( J . Since
J/I is a non-zero ideal of A/I, and hence a non-zero hereditary C*-subalgebra of A/I,
and since A has residual (SP), it follows that J/I contains a non-zero projection p.
Let q be a non-zero projection of K. Then p⊗ q is a non-zero projection of (J/I)⊗K.
It follows that A has the weak ideal property. Since also the weak ideal property
implies topological dimension zero (by Theorem 2.8 of [22]), the proof is over.
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Theorem 3.13. Let A be a C*-algebra. The following are equivalent:

(i) A has residual (IC).

(ii) For every two ideals I and J of A, with I ( J , there exists an ideal K of A,
with I ( K ⊆ J , such that Prim(K/I) is compact.

(iii) A has topological dimension zero.

If A is purely infinite, then the conditions (i)–(iii) are equivalent to the following
statements:

(iv) A has the ideal property.

(v) A has the weak ideal property.

(vi) A has residual (SP).

(vii) A has residual (IF).

If A is separable, purely infinite, and stable, then the conditions (i)–(vii) above are
equivalent to the following statement:

(viii) A has the projection property.

Proof: (i)⇔ (ii)⇒ (iii) We have that (i)⇔ (ii) follows from Theorem 3.11 ((i)⇔ (ii)),
and (ii) ⇒ (iii) follows from Theorem 1.11 ((2) ⇒ (1)) of [17].

(iii) ⇒ (i) This follows from the fact that topological dimension zero passes to ideals
and quotients (by [4, Proposition 2.6]), and that a C*-algebra B has topological

dimension zero if and only if every ideal J in B is equal to
⋃
α Jα for some increasing

net {Jα}α of compact ideals (see [24, p. 53] and [22, Definition 2.1]).

(i) ⇒ (iv) and (i) ⇒ (vi) Let A be a purely infinite C*-algebra with residual (IC).
The proof of Theorem 3.10(i) shows that every non-zero hereditary C*-subalgebra
in any quotient of a purely infinite C*-algebra with residual (IC) (in particular, A)
contains an infinite projection. This shows that A has residual (SP), and also [24,
Proposition 2.11 ((iv)⇒ (ii))] (where separability is not necessary) implies that A has
the ideal property.

(iv)⇒ (v)⇒ (iii) It is obvious that the ideal property implies the weak ideal property.
Moreover, in [22, Theorem 2.8] it was shown that every C*-algebra with the weak
ideal property has topological dimension zero.

(vi) ⇒ (i) This follows from Lemma 3.12 and the equivalence (i) ⇔ (iii).

(vi) ⇒ (vii) ⇒ (i) These implications are obvious.

(iv) ⇒ (viii) This implication holds, by [24, Proposition 2.13].

(viii) ⇒ (iv) This implication is obvious.

Corollary 3.14. Let A be a nuclear and separable C*-algebra with topological dimen-
sion zero. Then A is purely infinite if and only if it is O∞-stable. In this case, A is
also Z-stable and it has nuclear dimension one.

Proof: Since A is nuclear, separable, and with topological dimension zero (or resid-
ual (IC), by Theorem 3.13), then A is purely infinite if and only if A is strongly purely
infinite if and only if A is O∞-stable, where the first equivalence follows from Theo-
rem 3.10(i), and the second equivalence follows from the fact that if B is a separable
nuclear C*-algebra, then B is strongly purely infinite if and only if B is O∞-stable
(see [27, Corollary 3.2] and [12, Proposition 5.11(iii) and Theorem 8.6]).
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The second assertion also holds, because O∞ is Z-stable (see [29]), and every
separable, nuclear, and O∞-stable C*-algebra has nuclear dimension one (see [3,
Theorem A]).

Corollary 3.14 is an extension of Kirchberg’s O∞-absorption theorem for simple
separable nuclear C*-algebras (see [25, Theorem 7.2.6(ii)]).

Example 3.15. (i) Every simple projectionless C*-algebra has residual (IS) but
not the ideal property (note that every hereditary C*-subalgebra of a simple
C*-algebra is simple).

(ii) In [14, Theorem 5.1], a C*-algebra A is constructed which is the extension
of two simple C*-algebras (with real rank zero) but which does not have the
ideal property. Therefore, Prim(A) is finite (it has in fact only two elements, as
A is an extension of two simple C*-algebras), and therefore A has residual (IS).
However, A does not have the ideal property.

(iii) The C*-algebra A = C([0, 1]) does not have residual (IC), because a commuta-
tive C*-algebra A has topological dimension zero if and only if Prim(A) is totally
disconnected. Indeed, it follows from Corollary 2.4 of [16] (taking there B = C)
that a commutative C*-algebra A has the ideal property if and only if Prim(A)
is totally disconnected. On the other hand, it follows from Proposition 4 of [18]
that for a type I C*-algebra (in particular, a commutative C*-algebra), the ideal
property and topological dimension zero are equivalent.

Also, the Toeplitz algebra T does not have residual (IC). Indeed, since the
Toeplitz algebra T has a quotient isomorphic to C(T), where T is the one-
dimensional torus (i.e., the unit circle) and T is not totally disconnected (being
connected), it follows that C(T) does not have topological dimension zero, and
hence the same is true about the quotient, and therefore about T (the topological
dimension zero passes to quotients; see [4, Proposition 2.6]).

(iv) Every separable connective C*-algebra A does not have property (IC), since
Prim(A) has no non-empty compact open subsets (see [6, Proposition 2.7(i)]
and Theorem 3.11 ((1) ⇔ (2))).

4. Crossed products

In this section, which could be seen as a natural continuation of [19], we prove the
invariance of some classes of C*-algebras with residual (IF), the weak ideal property
or topological dimension zero under crossed products by finite solvable groups.

The question of the invariance of the weak ideal property and of topological di-
mension zero with respect to crossed products by finite groups has been investigated
in [19], [20], and [21]. The concept of residual (IF) is close to the above two notions,
and sometimes all three are equivalent (e.g., under the assumption of pure infiniteness;
see Theorem 3.13). Hence, it is natural to ask the following question:

Question 4.1. Is it true that crossed products by finite groups preserve the class of
all separable C*-algebras which have residual (IF)?

Theorem 4.2. Let α : G → Aut(A) be an action of a finite group G on a C*-alge-
bra A. If the fixed point algebra Aα has residual (IF), then A has residual (IF).

Proof: The proof follows immediately from [21, Lemma 8.8], since if C is the image
of a C*-algebra B with Prim(B) finite by an injective homomorphism, then B and C
are isomorphic, and hence Prim(B) and Prim(C) are homeomorphic, and therefore
Prim(C) is finite.
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Corollary 4.3. Let α : G → Aut(A) be an action of a finite abelian group G on
a C*-algebra A. If A has residual (IF), then the crossed product C∗(G,A, α) has
residual (IF).

Proof: Apply Theorem 4.2 with C∗(G,A, α) in place of A, and the dual action α̂ : Ĝ→
Aut(C∗(G,A, α)) in place of α (see [28, Section 7.1] for dual actions on crossed
products by locally compact abelian groups).

Proposition 4.4. Let α : G→ Aut(A) be an action of a finite group G on a separable
C*-algebra A, and let H be a normal subgroup of G of index n. Assume that the
answer to Question 4.1 is “yes” for G/H. If C∗(H,A, α) has residual (IF), then
C∗(G,A, α)⊗Mn has residual (IF).

Proof: The proof is similar to the proof of “⇐” of Theorem 1.25(1) of [19], and it
replaces “the weak ideal property” with “residual (IF)”, uses once Proposition 3.6 in
place of Theorem 8.5(6) of [21], and uses that the answer to Question 4.1 is “yes”
for G/H in place of Corollary 8.10 of [21].

Corollary 4.5. Let α : G→ Aut(A) be an action of a finite group G on a separable
C*-algebra A, and let H be a normal subgroup of G of index n. Assume that the
answer to Question 4.1 is “yes” for both H and G/H. If A has residual (IF), then
C∗(G,A, α) ⊗Mn has residual (IF). In particular, C∗(G,A, α) is stably isomorphic
to a separable C*-algebra which has residual (IF).

Proof: Use Proposition 4.4.

Since the answer to Question 4.1 seems to be elusive, it is natural to ask the
following related question (see Remark 4.7):

Question 4.6. Is it true that crossed products by finite groups preserve the class of
all separable stable C*-algebras which have residual (IF)?

Remark 4.7. If the answer to Question 4.1 is “yes”, then the answer to Question 4.6 is
also “yes”. This follows by using that crossed products by discrete groups of σ-unital
stable C*-algebras are stable (by [9, Corollary 4.5]).

Proposition 4.8. The answer to Question 4.6 is “yes” for all finite abelian groups.

Proof: The proof follows from Corollary 4.3 and [9, Corollary 4.5].

Theorem 4.9. Let G be a finite group and let H be a normal subgroup of G. Assume
that the answer to Question 4.6 is “yes” for both H and G/H. Then the answer to
Question 4.6 is “yes” for G.

Proof: Let α : G → Aut(A) be an action of the finite group G on a C*-algebra A.
Assume that A is separable, stable, and has residual (IF). We shall prove that
C∗(G,A, α) is separable, stable, and has residual (IF). Working essentially as in the
proof of Theorem 1.25(1) of [19], using also Proposition 3.6, and denoting by n the
index of H in G, we deduce that

(5) C∗(G,A, α)⊗Mn is separable, stable, and has residual (IF).

On the other hand, crossed products by discrete groups of σ-unital stable C*-algebras
are stable (by [9, Corollary 4.5]); hence, since A is stable and σ-unital (being separa-
ble), it follows that

(6) C∗(G,A, α) is stable.
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Combining (5) and (6), we get that C∗(G,A, α) ⊗ Mn
∼= C∗(G,A, α), and hence,

by (5), we get that C∗(G,A, α) is separable, stable, and has residual (IF). In conclu-
sion, the answer to Question 4.6 is “yes” for G.

Recall that a finite group is called solvable if there is a finite chain of subgroupsG0 =
{1} ⊂ G1 ⊂ · · · ⊂ Gn = G such that Gi is normal in Gi+1, and Gi+1/Gi is simple
and abelian, for i = 0, 1, . . . , n− 1.

Theorem 4.10. Crossed products by finite solvable groups G preserve the class of all
separable stable C*-algebras which have residual (IF). In particular, this happens if G
is a finite group whose order is either odd (by the Feit–Thompson theorem, [8]), or
of the form pαqβ, where p and q are distinct primes and α and β are non-negative
integers (by the Burnside pαqβ theorem, [5]), or less than 60.

Proof: We have to prove that the answer to Question 4.6 is “yes” for any finite solvable
group G.

Fix now an arbitrary finite solvable group G. Then, there exists a finite chain
of subgroups G0 = {1} ⊂ G1 ⊂ · · · ⊂ Gn = G such that Gi is normal in Gi+1,
and Gi+1/Gi is simple and abelian, for i = 0, 1, . . . , , n − 1. First note that since
G1 = G1/G0 is a finite abelian group, Proposition 4.8 implies that the answer to
Question 4.6 is “yes” for G1. Assume now that for some 0 ≤ i ≤ n− 1 the answer to
Question 4.6 is “yes” for Gi. Since Gi+1/Gi is a finite abelian group, Proposition 4.8
implies that the answer to Question 4.6 is “yes” for Gi+1/Gi. Then, these facts and
Theorem 4.9 imply that the answer to Question 4.6 is “yes” for Gi+1. Using now a
standard induction argument on n, we obtain that the answer to Question 4.6 is “yes”
for any finite solvable group G.

Question 4.11. Let α : G→ Aut(A) be an action of a finite group G on a separable
C*-algebra A. Assume that A has the weak ideal property. Does C∗(G,A, α) have the
weak ideal property?

Question 4.12. Let α : G→ Aut(A) be an action of a finite group G on a separable
C*-algebra A. Assume that A has topological dimension zero. Does C∗(G,A, α) have
topological dimension zero?

Remark 4.13. Working essentially as above and using also results from [20] and [21],
we can prove that the answer to Questions 4.11 and 4.12 is “yes” for any finite solvable
group G.

Observation 4.14. Let G be a fixed finite group and let H be a fixed normal subgroup
of G. Assume that the answer to Question 4.11 (resp., Question 4.12) is “yes” for
both H and G/H. Then, the answer to Question 4.11 (resp., Question 4.12) is “yes”
for G.

Proof: The proof is similar to the proof of Theorem 4.9.

Observation 4.15. The following are equivalent:

(i) The answer to Question 4.11 (resp., Question 4.12) is “yes”.

(ii) The answer to Question 4.11 (resp., Question 4.12) is “yes” for any simple non-
commutative finite group G.

Proof: The proof of (i) ⇒ (ii) is obvious. The proof of (ii) ⇒ (i) is easy and uses
mathematical induction on card(G), what was before Observation 4.14, Corollary 8.10
of [21], and Theorem 3.17 of [20].
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Theorem 4.16. Let A be a unital C*-algebra, let α : G → Aut(A) be an action of
a finite group G on A, and let I be a maximal α-invariant ideal of A. Then, the
following are equivalent:

(i) C∗(G,A, α) has the weak ideal property (resp., topological dimension zero).

(ii) C∗(G, I, α) has the weak ideal property (resp., topological dimension zero).

(iii) Whenever J is a proper α-invariant ideal of A, then C∗(G, J, α) has the weak
ideal property (resp., topological dimension zero).

Proof: We first give the proof in the case of the weak ideal property.

The proof of (i) ⇒ (iii) in the case of the weak ideal property follows from the fact
that for any proper α-invariant ideal J of A, C∗(G, J, α) is an ideal of C∗(G,A, α),
and the weak ideal property passes to ideals by Theorem 8.5(5) of [21].

The proof of (iii) ⇒ (ii) is obvious in the case of the weak ideal property.

We now prove that (ii) ⇒ (i) in the case of the weak ideal property.
Assume (ii) in the case of the weak ideal property. We have the following exact

sequence of C*-algebras:

(7) 0→ C∗(G, I, α)→ C∗(G,A, α)→ C∗(G,A/I, α)→ 0.

Note that since A/I is an α-simple C*-algebra which has a full projection (its unit)
(see Definition 1.5 of [19]), Lemma 1.12 of [19] implies that C∗(G,A/I, α) has the
ideal property, and and hence it has the weak ideal property. Since also C∗(G, I, α)
has the weak ideal property, by (ii) in the case of the weak ideal property, and since
the weak ideal property passes to extensions by Theorem 8.5(5) of [21], (7) implies
that C∗(G,A, α) has the weak ideal property. The proof of (ii) ⇒ (i) in the case of
the weak ideal property is over.

The proof of the theorem in the case of topological dimension zero is similar to the
above proof and uses Proposition 2.6 of [4] instead of Theorem 8.5(5) of [21], and
also uses the fact that every C*-algebra with the weak ideal property has topological
dimension zero (see Theorem 2.8 of [22]).

Corollary 4.17. Let α : G→ Aut(A) be an action of a finite group G on a unital C*-
algebra A. Assume that Prim(A) has two elements. Then, the following are equivalent:

(i) C∗(G,A, α) has the weak ideal property (resp., topological dimension zero).

(ii) There exists an α-invariant ideal I of A such that I 6= {0}, I 6= A, and
C∗(G, I, α) has the weak ideal property (resp., topological dimension zero).

Proof: Since card(Prim(A)) = 2, it follows that A has a unique ideal I such that
I 6= {0} and I 6= A. Therefore, I is the unique maximal α-invariant ideal of A. Now
the proof follows from Theorem 4.16.
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