
Publ. Mat. 69 (2025), 415–428

DOI: 10.5565/PUBLMAT6922508

A NON-TRIVIAL VARIANT OF HILBERT’S INEQUALITY, AND

AN APPLICATION TO THE NORM OF THE HILBERT MATRIX

ON THE HARDY–LITTLEWOOD SPACES
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Abstract: Hilbert’s inequality for non-negative sequences states that
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where 1 < p, q <∞, 1
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+ 1
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= 1. This implies that the norm of the Hilbert matrix as an operator on

the sequence space `p equals π
sin π
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In this article we prove the non-trivial variant
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of Hilbert’s inequality, and we use it to prove that the norm of the Hilbert matrix as an operator on

the Hardy–Littlewood space Kp equals π
sin π

p
, where Kp consists of all functions f(z) =

∞∑
m=0

amzm

analytic in the unit disk with ‖f‖pKp =
∞∑
m=0

(m+1)p−2|am|p <∞. We also see that π
sin π

p
is the norm

of the Hilbert matrix on the space `pp−2 of sequences (am) with ‖(am)‖p
`
p
p−2

=
∞∑
m=1

mp−2|am|p <∞.
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1. Preliminaries

The Hilbert matrix is the infinite matrix whose entries are

1

m+ n− 1
, n,m = 1, 2 . . .

The well known Hilbert’s inequality ([8, Theorem 323]; see also [8, Theorem 315]
for a weaker inequality) states that if (am), (bn) are sequences of non-negative terms
such that (am) ∈ `p, (bn) ∈ `q, then
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,
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where 1 < p, q <∞, 1
p + 1

q = 1, and the constant π
sin π

p
is the smallest possible for this

inequality. This implies that the Hilbert matrix induces a bounded operator H ,

H : (am) 7−→H (am) =

∞∑
m=1

am
m+ n− 1

on the spaces `p, 1 < p <∞, with norm

‖H ‖`p→`p =
π

sin π
p

.

The operator H can also be considered as an operator on spaces of analytic func-
tions by its action on the sequence of Taylor coefficients of any such function.

Let D = {z ∈ C : |z| < 1} be the unit disk and H(D) be the space of analytic
functions on D.

The Hardy space Hp, 0 < p <∞, consists of all f ∈ H(D) for which

‖f‖Hp = sup
0≤r<1

Mp(r, f) <∞,

where Mp
p (r, f) are the integral means

Mp
p (r, f) =

1

2π

∫ 2π

0

|f(reiθ)|p dθ.

If p ≥ 1, then Hp is a Banach space under the norm ‖ · ‖Hp . If 0 < p < 1, then Hp is
a complete metric space.

For f(z) =
∞∑
m=0

amz
m ∈ H1, Hardy’s inequality ([6, p. 48])

∞∑
m=0

|am|
m+ 1

≤ π‖f‖H1

implies that the power series

H (f)(z) =

∞∑
n=0

( ∞∑
m=0

am
m+ n+ 1

)
zn

has bounded coefficients. Therefore H (f) is an analytic function of the unit disk for
any f ∈ H1 and hence for any f ∈ Hp, p ≥ 1.

The Bergman space Ap, 0 < p <∞, consists of all f ∈ H(D) for which

‖f‖pAp =

∫
D
|f(z)|p dA(z) <∞,

where dA(z) is the normalized Lebesgue area measure on D. If p ≥ 1, then Ap is a
Banach space under the norm ‖ · ‖Ap .

If f(z) =
∞∑
m=0

amz
m ∈ Ap and p > 2, then by [10, Lemma 4.1] we have

∞∑
m=0

|am|
m+ 1

<∞.

Thus H (f) is an analytic function in D for each function f ∈ Ap, p > 2.
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E. Diamantopoulos and A. G. Siskakis initiated the study of the Hilbert matrix as
an operator on Hardy and Bergman spaces in [3, 4] and showed that H (f) has the
following integral representation:

H (f)(z) =

∫ 1

0

f(t)

1− tz
dt, z ∈ D.

Then, considering H as an average of weighted composition operators, they showed
that it is a bounded operator on Hp, p > 1, and on Ap, p > 2, and they estimated its
norm. Their study was further extended by M. Dostanić, M. Jevtić, and D. Vukotić
in [5] and by V. Božin and B. Karapetrović in [1] (see also [9]). Summarizing their
results, we now know that

‖H ‖Hp→Hp = ‖H ‖A2p→A2p =
π

sin π
p

, 1 < p <∞.

The Hardy–Littlewood space Kp, 0 < p <∞, is defined as the space of all f(z) =
∞∑
m=0

amz
m ∈ H(D) such that

‖f‖pKp =

∞∑
m=0

(m+ 1)p−2|am|p <∞.

If p ≥ 1, then Kp is a Banach space under the norm ‖ · ‖Kp .

According to the classical Hardy–Littlewood inequalities, [7, Theorems 5 and 6],

[6, Theorems 6.2 and 6.3], if f(z) =
∞∑
m=0

amz
m ∈ Hp, 0 < p ≤ 2, then

∞∑
m=0

(m+ 1)p−2|am|p ≤ cp‖f‖pHp

and hence f ∈ Kp. Also, if 2 ≤ p <∞ and f(z) =
∞∑
m=0

amz
m ∈ Kp, then

‖f‖pHp ≤ cp
∞∑
m=0

(m+ 1)p−2|am|p

and hence f ∈ Hp. In both cases cp is a constant independent of f .
If p ≥ 1, and in the special case where the sequence (am) is real and decreasing

to zero, then for f(z) =
∞∑
m=0

amz
m we have that f ∈ Hp if and only if f ∈ Kp [11,

Theorems A and 1.1].
Now it is clear that the proper domain of definition of the operator H acting on

analytic functions in the unit disk is the space K1. Indeed, if f(z) =
∞∑
m=0

amz
m ∈ K1,

then
∞∑
m=0

|am|
m+ 1

<∞

and hence H (f) ∈ H(D).
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Moreover, when 1 < p < ∞ and f ∈ Kp, we consider q so that 1
p + 1

q = 1 and we

apply Hölder’s inequality to find
∞∑
m=0

|am|
m+ 1

=

∞∑
m=0

(m+ 1)
2
p−2(m+ 1)1−

2
p |am|

≤

( ∞∑
m=0

1

(m+ 1)2

) 1
q
( ∞∑
m=0

(m+ 1)p−2|am|p
) 1
p

<∞.

Hence Kp ⊆ K1 and so, if f ∈ Kp, then H (f) defines an analytic function in D.
Recently, in [12, Theorem 1] (see also [2]), the boundedness of the generalized

Volterra operators

Tg(f)(z) =

∫ z

0

f(w)g′(w) dw, z ∈ D,

induced by symbols g ∈ H(D) with non-negative Taylor coefficients and acting from a
space X to H∞, was associated to the Kq-norm of the function H (g′). In this result
X can be Hp or Kp or the Dirichlet-type space Dp

p−1.

2. A variant of Hilbert’s inequality

Our first result is a non-trivial variant of the classical Hilbert’s inequality.
Before we state our first main result we shall mention two more variants of Hilbert’s

inequality. The first, in [13], is

∞∑
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.

In fact Yang proves a whole family of such inequalities depending on a parameter. In
all these variants, as well as in the original Hilbert’s inequality, the kernel involved in
the double sum is of the form(

k(n)

k(m)

)cp 1

(Ak(m) +Bk(n))λ

which is homogeneous of degree −λ. As a consequence, in order to prove these variants
one needs to apply the standard arguments used in the proof of the original Hilbert’s
inequality. The kernel (

n

m

) 1
q−

1
p 1

m+ n− 1

in our variant of Hilbert’s inequality, which appears in the following Theorem 1, lacks
any homegeneity and the standard arguments do not apply.

Theorem 1. Let 1 < p, q < ∞, 1
p + 1

q = 1. If (am) ∈ `p, (bn) ∈ `q are sequences of

non-negative terms, then

∞∑
m,n=1

(
n
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) 1
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1
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.

The constant π
sin π

p
is the smallest possible for this inequality.
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Proof: It is sufficient to consider the case 1 < q ≤ 2 ≤ p <∞.
We assume

α

p
+
β

q
= 1, α ≥ 0, β ≥ 0,

where α, β will be chosen appropriately later; the choice of α, β will depend on p.
By Hölder’s inequality,

∞∑
m,n=1

(
n

m

) 1
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1
p ambn
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=

∞∑
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(
n

m
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pq−

1
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1
pq ) ambn
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1
p (m+ n)

1
q

(
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)α
p
(

m+ n

m+ n− 1

) β
q

≤

( ∞∑
m=1

apm

( ∞∑
n=1

(
m

n

) 1
p 1

(m+ n)1−α(m+ n− 1)α

)) 1
p

×

( ∞∑
n=1

bqn

( ∞∑
m=1

(
n
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) 1
q 1
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)) 1
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Hence it is enough to prove

(2.1)

∞∑
n=1

(
m

n

) 1
p 1

(m+ n)1−α(m+ n− 1)α
≤ π

sin π
p

, m ≥ 1,

and

(2.2)

∞∑
m=1

(
n

m

) 1
q 1

(m+ n)1−β(m+ n− 1)β
≤ π

sin π
q

, n ≥ 1,

where, of course, sin π
p = sin π

q .

Now we observe that, for all α ≥ 0, p > 0, m ≥ 1, the positive function

f(t) = t−
1
p (m+ t)α−1(m+ t− 1)−α, t > 0,

is convex. Indeed, taking the second derivative of the logarithm of f(t), we get

f(t)f ′′(t)− f ′(t)2

f(t)2
=
t−2

p
+ (m+ t)−2 + α((m+ t− 1)−2 − (m+ t)−2) > 0,

which proves that f ′′(t) > 0. In fact, this calculation proves more: that f is logarith-
mically convex.

The convexity of f implies

f(n) ≤
∫ n+ 1

2

n− 1
2

f(t) dt, n ≥ 1.

Adding these inequalities we get for the left-hand side of (2.1) that

∞∑
n=1

(
m

n

) 1
p 1

(m+ n)1−α(m+ n− 1)α
≤
∫ ∞

1
2

(
m

t

) 1
p 1

(m+ t)1−α(m+ t− 1)α
dt

=

∫ ∞
1

2m

1

t
1
p (t+ 1)1−α(t+ 1− 1

m )α
dt

by the change of variables t 7→ mt.
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Therefore, in order to prove (2.1) it is enough to prove

(2.3)

∫ ∞
1

2m

1

t
1
p (t+ 1)1−α(t+ 1− 1

m )α
dt ≤ π

sin π
p

, m ≥ 1.

We now consider the function

F (y) =

∫ ∞
y

1

t
1
p (t+ 1)1−α(t+ 1− 2y)α

dt

=

∫ ∞
0

1

(t+ y)
1
p (t+ 1 + y)1−α(t+ 1− y)α

dt, 0 ≤ y ≤ 1

2
.

Hence in order to prove (2.3) it is enough to prove

(2.4) F (y) ≤ π

sin π
p

, 0 ≤ y ≤ 1

2
.

Now, exactly as before, we observe that, for all α ≥ 0, p > 0, t > 0, the positive
function

gt(y) = (t+ y)−
1
p (t+ 1 + y)α−1(t+ 1− y)−α, 0 ≤ y ≤ 1

2
,

is convex. Indeed, we take the second derivative of the logarithm of gt(y) and we get

gt(y)g′′t (y)− g′t(y)2

gt(y)2
=

(t+ y)−2

p
+ (t+ 1 + y)−2 +α((t+ 1− y)−2− (t+ 1 + y)−2) > 0,

which proves that g′′t (y) > 0.

Thus F (y) =
∫∞
0
gt(y) dt is also convex and, as such, it satisfies

F (y) ≤ max

{
F (0), F

(
1

2

)}
.

Since

F (0) =

∫ ∞
0

1

t
1
p (t+ 1)

dt =
π

sin π
p

,

in order to prove (2.4) it is enough to prove

F

(
1

2

)
≤ π

sin π
p

.

Since

F

(
1

2

)
=

∫ ∞
1/2

(t+ 1)α−1

t
1
p+α

dt =

∫ 2

0

(t+ 1)α

t1−
1
p (t+ 1)

dt

after the change of variables t 7→ 1
t , we conclude that in order to prove (2.1) it is

enough to prove ∫ 2

0

(t+ 1)α

t1−
1
p (t+ 1)

dt ≤ π

sin π
p

.

In exactly the same manner, we see that in order to prove (2.2) it is enough to prove∫ 2

0

(t+ 1)β

t1−
1
q (t+ 1)

dt ≤ π

sin π
q

.
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We make the change of notation

x =
1

p
, 1− x =

1

q
,

and, after α
p + β

q = 1, we write

β =
1− αx
1− x

,

where 0 ≤ αx ≤ 1. Then our last two inequalities become

(2.5)

∫ 2

0

(t+ 1)α

t1−x(t+ 1)
dt ≤ π

sinπx
=

∫ ∞
0

1

t1−x(t+ 1)
dt

and

(2.6)

∫ 2

0

(t+ 1)
1−αx
1−x

tx(t+ 1)
dt ≤ π

sinπx
=

∫ ∞
0

1

tx(t+ 1)
dt.

Now, inequality (2.5) is equivalent to∫ 2

0

(t+ 1)α − 1

t1−x(t+ 1)
dt ≤

∫ ∞
2

1

t1−x(t+ 1)
dt

or, after the change of variables t 7→ 2t, to∫ 1

0

(2t+ 1)α − 1

t1−x(2t+ 1)
dt ≤

∫ ∞
1

1

t1−x(2t+ 1)
dt,

or finally, substituting t 7→ 1
t in the left-hand integral, to the inequality

(2.7)

∫ ∞
1

(
1 + 2

t

)α − 1

tx(t+ 2)
dt ≤

∫ ∞
1

1

t1−x(2t+ 1)
dt, 0 < x ≤ 1

2
.

Similarly, inequality (2.6) is equivalent to

(2.8)

∫ ∞
1

(
1 + 2

t

) 1−αx
1−x − 1

t1−x(t+ 2)
dt ≤

∫ ∞
1

1

tx(2t+ 1)
dt, 0 < x ≤ 1

2
.

So we have come to the point where, for every x with 0 < x ≤ 1
2 , we have to prove

inequalities (2.7) and (2.8) for a proper choice of α with 0 ≤ α ≤ 1
x .

A very useful observation for what follows is that for fixed α with 0 ≤ α ≤ 1,
if (2.7) holds for some x, then it holds for all larger x. The reason is that the left-
hand side in (2.7) is a decreasing function of x and the right-hand side in (2.7) is
an increasing function of x. Similarly, if (2.8) holds for some x, then it holds for
all smaller x. It helps to see that for fixed α with 0 ≤ α ≤ 1 the function 1−αx

1−x is
increasing.

Now we split the interval 0 < x ≤ 1
2 into three subintervals in each of which we

make the corresponding choices α = 0, α = 1, and α = 1
2 .

The case 0 < x ≤ 1
3 .

Let α = 0. First of all, it is obvious that (2.7) is true for all 0 < x ≤ 1
2 . We claim

that (2.8) is valid for all 0 < x ≤ 1
3 and, as we have observed, it is enough to prove it

for x = 1
3 .
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Observe now that 0 < x ≤ 1
2 implies 0 < x

1−x ≤ 1, so by Bernoulli’s inequality we
get (

1 +
2

t

) 1
1−x

=

(
1 +

2

t

)(
1 +

2

t

) x
1−x

≤
(

1 +
2

t

)(
1 +

x

1− x
2

t

)

= 1 +
2

t
+

x

1− x
2(t+ 2)

t2
.

Hence ∫ ∞
1

(
1 + 2

t

) 1
1−x − 1

t1−x(t+ 2)
dt ≤

∫ ∞
1

2

t2−x(t+ 2)
dt+

2x

1− x

∫ ∞
1

1

t3−x
dt.

Using

(2.9)
2

t(t+ 2)
=

1

t
− 1

t+ 2

the last inequality becomes∫ ∞
1

(
1 + 2

t

) 1
1−x − 1

t1−x(t+ 2)
dt ≤

∫ ∞
1

1

t2−x
dt−

∫ ∞
1

1

t1−x(t+ 2)
dt+

2x

(1− x)(2− x)

=
2 + x

(1− x)(2− x)
−
∫ ∞
1

1

t1−x(t+ 2)
dt.

Hence in order to prove (2.8) it is enough to have

2 + x

(1− x)(2− x)
≤
∫ ∞
1

1

t1−x(t+ 2)
dt+

∫ ∞
1

1

tx(2t+ 1)
dt

=

∫ 1

0

1

tx(2t+ 1)
dt+

∫ ∞
1

1

tx(2t+ 1)
dt =

∫ ∞
0

1

tx(2t+ 1)
dt

= 2x−1
∫ ∞
0

1

tx(t+ 1)
dt = 2x−1

π

sinπx
.

For x = 1
3 this becomes 21

10 ≤
2

1
3 π√
3

, which is true and proves our claim. We proved

that when α = 0 both (2.7) and (2.8) hold for 0 < x ≤ 1
3 .

The case 2
5 ≤ x ≤

1
2 .

Let α = 1. In this case (2.7) becomes

(2.10)

∫ ∞
1

2

t1+x(t+ 2)
dt ≤

∫ ∞
1

1

t1−x(2t+ 1)
dt.

We claim that this inequality is true for 2
5 ≤ x ≤

1
2 and it suffices to prove it for x = 2

5 .

Using (2.9), the left-hand side of (2.10) becomes∫ ∞
1

2

t1+x(t+ 2)
dt =

∫ ∞
1

1

t1+x
dt−

∫ ∞
1

1

tx(t+ 2)
dt

=
1

x
−
∫ ∞
1

1

tx(t+ 2)
dt.
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Therefore, (2.10) amounts to showing the inequality

1

x
≤
∫ ∞
1

1

tx(t+ 2)
dt+

∫ ∞
1

1

t1−x(2t+ 1)
dt =

∫ ∞
0

1

tx(t+ 2)
dt

= 2−x
∫ ∞
0

1

tx(t+ 1)
dt = 2−x

π

sin(πx)

for x = 2
5 . But the inequality sinπx

πx ≤ 2−x can be easily proved for x = 2
5 using the first

three non-zero terms of the Taylor expansion of sinπx
πx and doing a few straightforward

calculations. Thus, (2.7) is valid for 2
5 ≤ x ≤

1
2 .

We now turn to (2.8), and we claim that it holds for 0 < x ≤ 1
2 and it suffices to

prove it for x = 1
2 . When α = 1, (2.8) becomes∫ ∞

1

2

t2−x(t+ 2)
dt ≤

∫ ∞
1

1

tx(2t+ 1)
dt

or, by the use of (2.9),∫ ∞
1

1

t2−x
dt−

∫ ∞
1

1

t1−x(t+ 2)
dt ≤

∫ ∞
1

1

tx(2t+ 1)
dt.

This is equivalent to

1

1− x
≤
∫ ∞
1

1

t1−x(t+ 2)
dt+

∫ ∞
1

1

tx(2t+ 1)
dt =

∫ ∞
0

1

t1−x(t+ 2)
dt = 2x−1

π

sinπx
.

When x = 1
2 this becomes 2

√
2 ≤ π and it is clearly true. We proved that when α = 1

both (2.7) and (2.8) hold for 2
5 ≤ x ≤

1
2 .

The case 1
3 ≤ x ≤

2
5 .

Let α = 1
2 . We first deal with inequality (2.7), which we shall prove for 1

3 ≤ x ≤
2
5 .

As we know, it is enough to prove it for x = 1
3 . When α = 1

2 , (2.7) becomes

∫ ∞
1

(
1 + 2

t

) 1
2 − 1

tx(t+ 2)
dt ≤

∫ ∞
1

1

t1−x(2t+ 1)
dt.

Bernoulli’s inequality gives (
1 +

2

t

) 1
2

≤ 1 +
1

2

2

t
= 1 +

1

t

and in view of (2.7) it suffices to show that∫ ∞
1

1

t1+x(t+ 2)
dt ≤

∫ ∞
1

1

t1−x(2t+ 1)
dt

for x = 1
3 . This is indeed true, since

t
2
3 (2t+ 1) ≤ t 4

3 (t+ 2), t ≥ 1,

as we easily see by raising to the third power.
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We now turn to (2.8), which for α = 1
2 becomes∫ ∞

1

(
1 + 2

t

) 1
2

2−x
1−x − 1

t1−x(t+ 2)
dt ≤

∫ ∞
1

1

tx(2t+ 1)
dt,

and we claim it holds for 1
3 ≤ x ≤

2
5 . Again it suffices to prove this inequality for x = 2

5 .
Namely, it suffices to show

(2.11)

∫ ∞
1

(
1 + 2

t

) 4
3 − 1

t
3
5 (t+ 2)

dt ≤
∫ ∞
1

1

t
2
5 (2t+ 1)

dt.

Taking into account Bernoulli’s inequality, we have(
1 +

2

t

) 4
3

=

(
1 +

2

t

)(
1 +

2

t

) 1
3

≤
(

1 +
2

t

)(
1 +

1

3

2

t

)
= 1 +

4

3t2
(2t+ 1),

so instead of (2.11), it suffices to prove

(2.12)
4

3

∫ ∞
1

2t+ 1

t2+
3
5 (t+ 2)

dt ≤
∫ ∞
1

1

t
2
5 (2t+ 1)

dt.

Observe that the left-hand side of (2.12), in view of (2.9), is equal to

4

3

∫ ∞
1

2t+ 1

t2+
3
5 (t+ 2)

dt =
2

3

∫ ∞
1

2t+ 1

t2+
3
5

dt− 2

3

∫ ∞
1

2t+ 1

t1+
3
5 (t+ 2)

dt

=
4

3

∫ ∞
1

1

t1+
3
5

dt+
2

3

∫ ∞
1

1

t2+
3
5

dt

− 4

3

∫ ∞
1

1

t
3
5 (t+ 2)

dt− 2

3

∫ ∞
1

1

t1+
3
5 (t+ 2)

dt

=
20

9
+

5

12
− 4

3

∫ ∞
1

1

t
3
5 (t+ 2)

dt

− 1

3

∫ ∞
1

1

t1+
3
5

dt+
1

3

∫ ∞
1

1

t
3
5 (t+ 2)

dt,

where we have used (2.9) for the last equality. Thus, altogether we have

4

3

∫ ∞
1

2t+ 1

t2+
3
5 (t+ 2)

dt =
25

12
−
∫ ∞
1

1

t
3
5 (t+ 2)

dt.

Therefore, (2.12) is equivalent to the inequality

25

12
≤
∫ ∞
1

1

t
3
5 (t+ 2)

dt+

∫ ∞
1

1

t
2
5 (2t+ 1)

dt =

∫ ∞
0

1

t
2
5 (2t+ 1)

dt =
2−

3
5π

sin 3π
5

.

This inequality is an easy consequence of the inequality
sin 2π

5
2π
5

< 2−
2
5 , which we proved

when we considered the case α = 1, and of the equality sin 3π
5 = sin 2π

5 .

We proved that when α = 1
2 both (2.7) and (2.8) hold for 1

3 ≤ x ≤
2
5 .

Therefore, we have proved the inequality of our theorem and now we shall show
that the constant π

sin π
p

is the best possible in this inequality. The proof follows the

lines of Hardy’s corresponding proof for the original Hilbert’s inequality [8, proof of
Theorem 317, p. 232], adapted to our weighted setting. For the sake of completeness,
we provide the details.
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We consider any ε > 0 and the sequences (am(ε)) and (bn(ε)) defined by

am(ε) = m−
1+ε
p , bn(ε) = n−

1+ε
q .

We then have

‖(am(ε))‖p`p =

∞∑
m=1

1
m1+ε .

Now, since 1
x1+ε is decreasing for x ≥ 1, we have

1

ε
=

∫ ∞
1

1

x1+ε
dx ≤

∞∑
m=1

1

m1+ε
≤ 1 +

∫ ∞
1

1

x1+ε
dx = 1 +

1

ε
.

Setting φ(ε) =
∞∑
m=1

1
m1+ε − 1

ε , we get

(2.13) ‖(am(ε))‖p`p =
1

ε
+ φ(ε), 0 ≤ φ(ε) ≤ 1.

Respectively, setting ψ(ε) =
∞∑
n=1

1
n1+ε − 1

ε , we have

(2.14) ‖(bn(ε)‖q`q =
1

ε
+ ψ(ε), 0 ≤ ψ(ε) ≤ 1.

In addition, we have that

(2.15)

∞∑
m,n=1

(
n

m

) 1
q−

1
p am(ε)bn(ε)

m+ n− 1
≥

∞∑
m,n=1

(
n

m

) 1
q−

1
p am(ε)bn(ε)

m+ n
.

Now for (x, y) in the square [m,m+ 1)× [n, n+ 1), m ≥ 1, n ≥ 1, we have(
n

m

) 1
q−

1
p am(ε)bn(ε)

m+ n
=

(
n

m

) 1
q−

1
p m−

1+ε
p n−

1+ε
q

m+ n
=
m−

1
q−

ε
pn−

1
p−

ε
q

m+ n

≥ x−
1
q−

ε
p y−

1
p−

ε
q

x+ y
=

(
y

x

) 1
q−

1
p x−

1+ε
p y−

1+ε
q

x+ y
.

Therefore

(2.16)

∞∑
m,n=1

(
n

m

) 1
q−

1
p am(ε)bn(ε)

m+ n
≥ I(ε),

where I(ε) is defined by

I(ε) =

∫ ∞
1

∫ ∞
1

(
y

x

) 1
q−

1
p x−

1+ε
p y−

1+ε
q

x+ y
dx dy =

∫ ∞
1

∫ ∞
1

x−
1
q−

ε
p y−

1
p−

ε
q

x+ y
dx dy.

Applying the change of variables y 7→ xy, we get

I(ε) =

∫ ∞
1

1

x1+ε

∫ ∞
1
x

1

y
1
p+

ε
q (1 + y)

dy dx.
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Another change of variables x 7→ 1
x gives

I(ε) =

∫ 1

0

xε−1
∫ ∞
x

1

y
1
p+

ε
q (1 + y)

dy dx

=

∫ 1

0

1

ε
(xε)′

∫ ∞
x

1

y
1
p+

ε
q (1 + y)

dy dx

=
1

ε

(∫ ∞
1

1

y
1
p+

ε
q (1 + y)

dy +

∫ 1

0

1

x
1
p−

ε
p (1 + x)

dx

)
by integration by parts. From this we notice that

εI(ε)→
∫ ∞
0

1

t
1
p (1 + t)

dt =
π

sin π
p

when ε→ 0+. This together with (2.13), (2.14), (2.15), and (2.16) implies∑∞
m,n=1

(
n
m

) 1
q−

1
p am(ε)bn(ε)

m+n−1
‖(am(ε))‖`p‖(bn(ε))‖`q

≥ εI(ε)

(1 + ε φ(ε))
1
p (1 + ε ψ(ε))

1
q

→ π

sin π
p

when ε→ 0+.

3. The norm of the Hilbert matrix on the Hardy–Littlewood spaces
and on weighted sequence spaces

Our second result is the determination of the exact value of the norm ‖H ‖Kp→Kp

for 1 < p < ∞. To that effect we shall use the variant of Hilbert’s inequality in
Theorem 1.

Theorem 2. If 1 < p < ∞, then the Hilbert matrix operator is bounded on the
Hardy–Littlewood space Kp with norm

‖H ‖Kp→Kp =
π

sin π
p

.

Proof: Let f(z) =
∞∑
m=0

amz
m ∈ Kp. Then

H (f)(z) =

∞∑
n=0

( ∞∑
m=0

am
m+ n+ 1

)
zn,

and

‖H (f)‖Kp ≤

( ∞∑
n=0

(n+ 1)p−2

( ∞∑
m=0

|am|
m+ n+ 1

)p) 1
p

=

( ∞∑
n=0

( ∞∑
m=0

(n+ 1)
p−2
p

|am|
m+ n+ 1

)p) 1
p

.

Due to the duality of `p spaces,

‖H (f)‖Kp ≤ sup
‖(bn)‖`q=1, bn≥0

∞∑
m,n=0

(n+ 1)
p−2
p
|am|bn

m+ n+ 1
,

where 1
p + 1

q = 1.
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Setting Am = |am|(m+ 1)
p−2
p , we have that ‖(Am)‖`p = ‖f‖Kp and

sup
‖f‖Kp=1

‖H (f)‖Kp ≤ sup
‖(Am)‖`p=1,

‖(bn)‖`q=1, bn≥0

∞∑
m,n=0

(
n+ 1

m+ 1

) 1
q−

1
p Ambn
m+ n+ 1

=
π

sin π
p

,

because of Theorem 1. This proves that ‖H ‖Kp→Kp ≤ π
sin π

p
.

The equality ‖H ‖Kp→Kp= π
sin π

p
follows when we consider f(z)=

∞∑
m=0

amz
m ∈Kp

with non-negative coefficients am, since then all previous inequalities become equali-
ties.

One final remark is that the proof of Theorem 2 applies unchanged and in an
obvious way to show that the Hilbert matrix H induces a bounded operator on the
weighted space lpp−2 of sequences (am) with norm defined by

‖(am)‖p
`pp−2

=

∞∑
m=1

mp−2|am|p,

and that the norm ‖H ‖lpp−2→l
p
p−2

of this operator is again equal to π
sin π

p
.
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preliminary numerical work served as a reassurance for us in order to try the actual
mathematical proof of the two inequalities. In fact, these numerical calculations seem
to imply that the smooth function α = 8x2(1−x) is also an appropriate choice in the
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