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Abstract: In this paper, we study the class of indecomposable involutive solutions of the Yang–

Baxter equation of finite primitive level, recently introduced by Cedó and Okniński in [13]. We give

a group-theoretic characterization of these solutions by means of displacement groups, and we apply
this result to compute and enumerate those having small size. For some classes of indecomposable

involutive solutions recently studied in the literature, we compute the exact value of the primitive
level. Some relationships with other families of solutions are also discussed. Finally, following [13,

Question 3.2], we provide a complete description of those having primitive level 2 by left braces.
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Introduction

The quantum Yang–Baxter equation has been of interest ever since a paper of
Yang [34], where it appears for the first time. Given a vector space V , a map R : V ⊗
V → V ⊗ V is said to be a solution of the quantum Yang–Baxter equation if

R12R13R23 = R23R13R12,

where Rij : V ⊗V ⊗V → V ⊗V ⊗V is the map acting as R on the (i, j) tensor factor
and as the identity on the remaining factor. Finding all the solutions of the quantum
Yang–Baxter equation seems to be very hard, and it is still an open problem. In
that regard, Drinfeld ([17]) suggested the study of an easier case, i.e., the solutions
of the quantum Yang–Baxter equation that are induced by the linear extension of a
map R : X×X → X×X, where X is a basis for V . A function R of this type is called
a set-theoretic solution of the quantum Yang–Baxter equation. In recent years, several
authors have studied these solutions using an equivalent formulation. Specifically, a
map r : X × X → X × X is said to be a set-theoretic solution of the Yang–Baxter
equation if

r1r2r1 = r2r1r2,

where r1 := r × idX and r2 := idX ×r. It is easy to see that if τ : X ×X → X ×X
is the twist map, then a function R : X ×X → X ×X is a set-theoretic solution of
the quantum Yang–Baxter equation if and only if the map r := τR is a set-theoretic
solution of the Yang–Baxter equation. Now, let λx : X → X and ρy : X → X be
maps such that r(x, y) = (λx(y), ρy(x)) for all x, y ∈ X. A set-theoretic solution of
the Yang–Baxter equation (X, r), which we will simply call solution, is said to be
a left (right) non-degenerate if λx ∈ Sym(X) (ρx ∈ Sym(X)) for every x ∈ X and
non-degenerate if it is left and right non-degenerate. By seminal papers of Etingof,
Schedler, and Soloviev [19] and Gateva-Ivanova and Van den Bergh [20], involutive
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solutions, i.e., those such that r2 = idX , have received a lot of attention. In this con-
text, various methods to construct new involutive set-theoretic solutions have been
provided (see for example [26, 32]). A first attempt, made in [19], is based on the
notion of a retraction: starting from a solution (X, r), it allows one to construct a new
involutive solution, indicated by Ret(X, r), identifying two elements x, y whenever
λx = λy. If the retraction of an involutive solution (X, r) does not provide a new
solution, i.e., if (X, r) = Ret(X, r), then (X, r) is called irretractable; while if the
retraction process of (X, r) stabilizes to a singleton, then the solution is called multi-
permutation, and the number of retractions-iterations is called the multipermutation
level. Roughly speaking, the multipermutation level measures how far a solution is
from being trivial, i.e., a solution for which λx = λy for all x, y ∈ X. Particular
attention has been devoted to the class of indecomposable involutive solutions, since
every indecomposable involutive solution can be constructed by dynamical extension
of a simple solution (see [7, Proposition 2]), and moreover, these solutions carry in-
formation on every involutive solution that is not necessarily indecomposable, as all
the involutive solutions are constructed from the indecomposable ones (see [19, Sec-
tion 2]). A successful strategy consists of studying these solutions by associating to
them various algebraic structures, such as cycle sets, biracks, structure monoids and
groups (see, for example, [16, 22, 28]). In that regard, in 2007 Rump ([26]) intro-
duced an algebraic structure called the left brace. Recall that a left brace is a set A
with two operations + and ◦ such that (A,+) is an abelian group, (A, ◦) is a group,
and

a ◦ (b+ c) + a = a ◦ b+ a ◦ c
for every a, b, c ∈ A. As shown in [26, Section 1], left braces provide involutive so-
lutions. Conversely, every involutive solution can be constructed from a left brace
(see [2] for more details) for which the multiplicative group coincides with a standard
permutation group called the associated permutation group. In particular, an arbi-
trary indecomposable solution (X, r) can be recovered using a suitable left brace B
and a core-free subgroup H of (B, ◦), identifying X with the left cosets B/H.

In recent years, left braces have been used systematically to give structural results
on indecomposable multipermutation solutions, as done for example in [12, 23, 29].
Much less is known about indecomposable solutions that are not multipermutation;
the only notable results were recently given in [6, 13, 14] for the family of the simple
ones. Moreover, up to now, no analogue of the multipermutation level has existed
to measure in some way the complexity of an indecomposable solution that is not a
multipermutation solution. To partially make up for these discrepancies, in this paper
we change our point of view, studying the notion of an indecomposable solution of
finite primitive level. It was introduced for the first time in [13], after the main result
of [12] in which it was shown that, apart from the finite indecomposable involutive
solutions of prime size, all the indecomposable involutive solutions have an imprim-
itive associated permutation group. This implicitly suggested a new perspective to
study finite indecomposable solutions, focusing on imprimitive block systems. Actu-
ally, the family of indecomposable involutive solutions of finite primitive level is an
unexplored topic, except for a recent paper of the author [9], where a generalization
on the non-involutive case is also given. The first main result of the paper provides a
group-theoretic characterization of indecomposable solutions of finite primitive level
by means of a standard subgroup of the associated permutation group called the dis-
placement group, already considered in [21] to study multipermutation solutions and
in [5] to study latin solutions. We note that this result, even if it is proved by means
of left braces and cycle sets, allows us to detect all the indecomposable involutive
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solutions of finite primitive level simply by focusing on the action of the displace-
ment groups. As an application of this fact, we find all the indecomposable involutive
solutions of finite primitive level among those having size ≤ 9: we summarize the
computation in Section 3. Here, we also exhibit several examples of indecomposable
involutive solutions of finite primitive level, and we compute the value of the primi-
tive level for some families of solutions. In this context, the links with other classes of
solutions, such as latin solutions and soluble solutions, are also discussed. Moreover,
we consider the cycle decomposition of the maps λx of these solutions, and we take
advantage of our result to give a partial answer to [24, Question 3.16], providing a
decomposability criterion for multipermutation solutions. Similarly to the approach
used for multipermutation solutions, for which several authors have provided a nice
description of those having low multipermutation level (see for example [10, 22]),
in the last part of the paper we focus on indecomposable solutions having primitive
level 2. In particular, following [13, Question 3.2], we provide a left brace-theoretic
description of these solutions, and we illustrate it by an example.

1. Basic definitions and results

In this section, we give the preliminaries involving cycle sets and braces used
throughout the paper.

1.1. Solutions of the Yang–Baxter equation and cycle sets. In [25] Rump
found a one-to-one correspondence between solutions and an algebraic structure with
a single binary operation, which he called non-degenerate cycle sets. To illustrate this
correspondence, let us firstly recall the following definition.

Definition 1 ([25, p. 45]). A pair (X, ·) is said to be a cycle set if each left multi-
plication σx : X → X, y 7→ x · y, is bijective and

(x · y) · (x · z) = (y · x) · (y · z)
holds for all x, y, z ∈ X. Moreover, a cycle set (X, ·) is called non-degenerate if the
squaring map q : X → X, x 7→ x · x, is bijective.

Example 2. The simplest example of a cycle set is that given by X := Z/nZ and
x· y := α(y), for an arbitrary number n and a permutation α of Sym(X). We will call
these cycle sets trivial.

Cycle sets are useful to construct new solutions of the Yang–Baxter equation.

Proposition 3 ([25, Propositions 1-2]). Let (X, ·) be a cycle set. Then the pair (X, r),
where r(x, y) := (σ−1x (y), σ−1x (y) · x), for all x, y ∈ X, is an involutive left non-
degenerate solution of the Yang–Baxter equation, which we call the associated solution
to (X, ·). Moreover, this correspondence is one-to-one.

Convention. From now on, every cycle set will be non-degenerate. All the results
will be given in the language of cycle sets, but they can be translated by Proposition 3.

A useful tool to construct new cycle sets from a given one, introduced in [19],
is the so-called retract relation. Specifically, in [25] Rump showed that the binary
relation ∼σ on X given by

x ∼σ y : ⇐⇒ σx = σy

for all x, y ∈ X is a congruence of (X, ·), i.e., an equivalence relation for which x ∼σ y
and x′ ∼σ y′ imply x·x′ ∼σ y· y′, for all x, x′, y, y′ ∈ X. In [19] (and independently
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in [25]) it was shown that the quotient X/ ∼σ, which we denote by Ret(X), is a cycle
set, that we will call a retraction of (X, ·). An important class of cycle sets is given
by those having finite multipermutation level.

Definition 4. A cycle set X is said to be of multipermutation level n if n is the
minimal non-negative integer such that |Retn(X)| = 1, where Retn(X) is the cycle
set defined inductively by Ret0(X) = X and Retn(X) = Ret(Retn−1(X)), for all
positive integers n.

We can define the notion of a cycle set homomorphism in a classical way.

Definition 5. Let X, Y be cycle sets. A map p : X → Y is said to be a homo-
morphism between X and Y if p(x· y) = p(x)· p(y) for all x, y ∈ X. A surjective
homomorphism is called an epimorphism, while a bijective homomorphism is said to
be an isomorphism.

Two standard permutation groups related to a cycle set X are the one generated
by the set {σx | x ∈ X}, called the associated permutation group of X and indicated
by G(X), and the one generated by the set {σxσ−1y | x, y ∈ X}, called the displacement
group of X and indicated by Dis(X).

In this context, our attention will be focused on indecomposable cycle sets.

Definition 6. A cycle set (X, ·) is said to be indecomposable if the permutation
group G(X) acts transitively on X.

Following the paper by Vendramin [32], if X is a cycle set, S a set, and α : X ×
X × S → Sym(S), α(x, y, s) 7→ α(x,y)(s,−), a function such that

α(x·y,x·z)(α(x,y)(r, s), α(x,z)(r, t)) = α(y·x,y·z)(α(y,x)(s, r), α(y,z)(s, t)),

for all x, y, z ∈ X and r, s, t ∈ S, then α is said to be a dynamical cocycle and the
operation · given by

(x, s) · (y, t) := (x · y, α(x,y)(s, t))

for all x, y ∈ X and s, t ∈ S makes X ×S into a cycle set which we denote by X ×α S
and we call a dynamical extension of X by α. A dynamical extension X×αS is called
indecomposable if X ×α S is an indecomposable cycle set: by [7, Theorem 7], this
happens if and only if X is an indecomposable cycle set and the subgroup of G(X×S)
generated by {h | ∀ s ∈ S, h(y, s) ∈ {y} × S} acts transitively on {y} × S, for
some y∈X. By results contained in [7, 32], the following corollary, which is of crucial
importance for this paper, follows.

Corollary 7 (Theorem 7 of [7] and Theorem 2.12 of [32]). Let X be an indecom-
posable cycle set, Y a cycle set, and p : X → Y a cycle set epimorphism. Then, there
exist a set S and a dynamical cocycle α such that X is isomorphic to Y ×α S.

1.2. Indecomposable cycle sets and left braces. First we introduce the follow-
ing definition that, as observed in [11], is equivalent to the original introduced by
Rump in [26].

Definition 8 ([11, Definition 1]). A set B endowed with two operations + and ◦ is
said to be a left brace if (B,+) is an abelian group, (B, ◦) a group, and

a ◦ (b+ c) + a = a ◦ b+ a ◦ c

holds for all a, b, c ∈ B.
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Examples 9. (1) If X is a cycle set, then one can show that the free abelian
group ZX gives rise to a left brace (ZX ,+, ◦), where (ZX , ◦) is the group having
X as a generating set and x ◦ y = σ−1x (y) ◦ (σ−1x (y)·x), where x, y ∈ X, as
relations.

(2) If X is a cycle set, the associated permutation group G(X) gives rise to a left
brace (G(X),+, ◦), where ◦ is the usual composition in G(X) (see, for example,
[3, Section 2] for more details). From now on, we will refer to (G(X),+, ◦) as
the permutation left brace.

(3) If (B,+) is an abelian group, then the operation ◦ given by a ◦ b := a + b give
rise to a left brace which we will call trivial.

If (B1,+, ◦) and (B2,+
′, ◦′) are left braces, a homomorphism ψ between B1 and B2

is a function from B1 to B2 such that ψ(a+b) = ψ(a)+′ψ(b) and ψ(a◦b) = ψ(a)◦′ψ(b),
for all a, b ∈ B1.

Given a left brace B and a ∈ B, let us denote by λa : B → B the map from B into
itself defined by

λa(b) := −a+ a ◦ b,
for all b ∈ B. As shown in [26, Proposition 2] and [11, Lemma 1], these maps have
special properties. We recall them in the following proposition.

Proposition 10. Let B be a left brace. Then, the following are satisfied:

(1) λa ∈ Aut(B,+), for every a ∈ B;

(2) the map λ : B → Aut(B,+), a 7→ λa, is a group homomorphism from (B, ◦)
into Aut(B,+).

For the following definition, we refer the reader to [26, p. 160] and [11, Definition 3].

Definition 11. Let B be a left brace. A subset I of B is said to be a left ideal if it
is a subgroup of the multiplicative group and λa(I) ⊆ I, for every a ∈ B. Moreover,
a left ideal is an ideal if it is a normal subgroup of the multiplicative group.

As one can expect, if I is an ideal of a left brace B, then the structure B/I is a
left brace called the quotient left brace of B modulo I. Moreover, the ideal {0} will be
called the trivial ideal, and a non-zero left brace B which contains no ideals different
from {0} and B will be called a simple left brace.

A standard ideal of a left brace B, given in [26, corollary of Proposition 6] and
indicated by B2, is that given by the additive subgroup generated by the set {a ∗ b |
a, b ∈ B}, where a ∗ b := −a+ a ◦ b− b for all a, b ∈ B.

Other ideals can be obtained by left brace homomorphisms. Indeed, if B1 and B2

are left braces and ψ a homomorphism from B1 to B2, the kernel of ψ is an ideal
of B1, where the kernel, which we indicate by Ker(ψ), is the set given by Ker(ψ) :=
{b ∈ B1 | ψ(b) = 0}.

In [26], Rump also introduced another ideal that, in the terms of [11, Section 4],
is the following.

Definition 12. Let B be a left brace. Then, the set

Soc(B) := {a ∈ A | ∀ b ∈ B, a+ b = a ◦ b}
is named the socle of B.

Clearly, Soc(B) = {a ∈ B | λa = idB}. Moreover, we have that Soc(B) is an
ideal of B. The two left braces given in Examples 9 are related by the socle. Indeed,
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given a cycle set X, one can show that the map θ : X → G(X) given by x 7→ σ−1x
can be extended to a surjective left brace homomorphism θ̄ : ZX → G(X) such that
Ker(θ̄) = Soc(ZX).

Left brace homomorphisms are strongly related to cycle set homomorphisms. In-
deed, every cycle set epimorphism p :X→Y induces a left brace epimorphism p′ :ZX→
ZY by x 7→ p(x), for all x ∈ X and p̄ : G(X)→ G(Y ) by σx 7→ σp(x), for all x ∈ X.

Definition 13. A cycle set epimorphism p : X → Y is said to be a covering if it
induces a left brace isomorphism p̄ : G(X)→ G(Y ).

In the last part of the section, we recall the theory mainly developed in [31, 28],
that allows us to detect more information on indecomposable cycle sets (and their
epimorphic images) by left braces.

Proposition 14 ([28, Theorem 3]). Let (B,+, ◦) be a left brace, Y ⊂ B a transitive
cycle base, a1 ∈ Y , and K a core-free subgroup of (B, ◦), contained in the stabi-
lizer Ba1 of a1 (with respect to the action λ). Then, the pair (X, · ) given by X :=
B/K and σx◦K(y ◦K) := λx(a1)− ◦ y ◦K gives rise to an indecomposable cycle set
with G(X) ∼= B.

Conversely, every indecomposable cycle set (X, · ) with G(X) ∼= B (as left braces)
can be obtained in this way.

Convention. From now on, a cycle set obtained as in Proposition 14 will be indicated
by CB,K,a1 .

Proposition 15. Let p : X → Y be a covering of indecomposable cycle sets, G :=
G(X), and x ∈ X. Then, there exist two core-free subgroups K and H contained
in Gσx

with K ≤ H such that X can be identified with CG,K,σx
, Y can be identified

with CG,H,σx , and p can be identified with the epimorphism from CG,K,σx to CG,H,σx

which sends an element z ◦K to z ◦H.
Conversely, up to isomorphisms, any covering of indecomposable cycle sets arises

in this way.

Proof: It follows by [28, Theorem 3 and Corollary 2].

Proposition 16 ([31, Section 3]). Let X, Y be indecomposable cycle sets and p : X →
Y an epimorphism from X to Y . Then, the set I := {g | g ∈ G(X), p(g(x)) = p(x)
∀x ∈ X} is an ideal of G(X).

Conversely, if X is an indecomposable cycle set and I an ideal of G(X), the I-orbits
of X induce a cycle set structure, which we indicate by X/I, that gives rise to a
canonical cycle set epimorphism p : X → X/I.

From now on, if X, Y are indecomposable cycle sets and p : X → Y an epimorphism
from X to Y , the ideal induced by p as in the previous result will be indicated by I(p).
If X is an indecomposable cycle set and I an ideal of G(X), the induced epimorphism
from X to X/I will be indicated by pI .

Proposition 17 ([31, Theorem 1]). Let X, Y be indecomposable cycle sets and
p : X → Y an epimorphism from X to Y . Up to isomorphism, there exists a unique
factorization p = qpI for a suitable ideal I of G(X), where q is a covering of cycle
sets. In particular, Y is an epimorphic image of X/I.
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2. Cycle sets of finite primitive level

After introducing the class of cycle sets of finite primitive level, in this section we
give a characterization of cycle sets of finite primitive level by its associated permu-
tation group.

We start with the definition of cycle sets of finite primitive level, given for the first
time in [13] in terms of solutions.

Definition 18. A cycle set X is said to be primitive if G(X) acts primitively on X.
Moreover, we say that a finite indecomposable cycle set X has primitive level k, and
we will write fpl(X) = k, if k is the biggest positive integer such that

(1) there exist cycle sets X1 = X,X2, . . . , Xk, with |Xi| > |Xi+1| > 1, for every
1 ≤ i ≤ k − 1;

(2) there exists an epimorphism of cycle sets pi+1 : Xi → Xi+1, for every 1 ≤ i ≤
k − 1;

(3) Xk is primitive.

Clearly, every indecomposable cycle set having prime size is primitive, and by the
main theorem of [12], there are no other finite primitive cycle sets such that |X| > 1.

Remark 19. As observed in [9, Corollary 5.5], if X is an indecomposable cycle set of
finite primitive level and x an arbitrary element of X, then σx cannot have a fixed
point y, i.e., an element y ∈ X such that x· y = y. However, this condition is not
sufficient (see comment after [9, Corollary 5.7]).

The following lemma is a simple but useful result to state when an indecomposable
cycle set has finite primitive level.

Lemma 20. Let X be a finite indecomposable cycle set. Then X has finite primitive
level if and only if there exist a trivial indecomposable cycle set Y with |Y | > 1 and
an epimorphism p : X → Y .

Proof: Straightforward.

Before giving the main result of this section, we give a preliminary lemma. This
result is essentially a mixture between [13, Proposition 4.3] and the results contained
in [30, Section 1].

Lemma 21. Let X be an indecomposable cycle set. Then, the ideal G(X)2 of the left
brace G(X) is equal to Dis(X). Moreover, the factor group G(X)/Dis(X), regarded
as a left brace, is a trivial left brace with a cyclic multiplicative (and hence additive)
group.

Now we are able to show the main result of the section.

Theorem 22. Let X be a finite indecomposable cycle set. Then, X has finite primi-
tive level if and only if Dis(X) does not act transitively on X.

Proof: Suppose that X has finite primitive level. Then by Corollary 7 X is isomorphic
to a dynamical extension I×αS, where I is an indecomposable cycle set having prime
size p. Moreover, by [19, Theorem 2.13], I is a trivial cycle set. These facts imply
that Dis(X) fixes the subsets {i}×S, for every i ∈ I, hence it cannot act transitively
on X.

Conversely, suppose that Dis(X) does not act transitively on X, and let ∆ :=
{∆1, . . . ,∆m} the set of its orbits. Since by Lemma 21 Dis(X) is a normal sub-
group of G(X), it follows that G(X) acts on ∆. Moreover, we have that σx Dis(X) =
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σy Dis(X) for every x, y ∈ X, therefore by Lemma 21 G(X)/Dis(X) is a cyclic group
generated by an element σx Dis(X). Now, since G(X) acts transitively on X, we have
that every σx acts on ∆ as a cycle δ of length m. Therefore, the map r : X → ∆,
x 7→ ∆x, where ∆x is such that x ∈ ∆x, is an epimorphism from X to the trivial cycle
set (∆, · ) given by ∆i·∆j := δ(∆j) for every ∆i,∆j ∈ ∆, hence the thesis follows by
Lemma 20.

As a corollary, we provide a necessary condition to test the simplicity of a cycle
set. Recall that an indecomposable cycle set X is said to be simple if |X| > 1 and it
has no epimorphic images different from itself and the singleton.

Corollary 23. Let X be a finite indecomposable simple cycle set such that |X| is not
a prime number. Then, Dis(X) acts transitively on X.

Proof: It follows directly by Theorem 22.

In the particular case of cycle sets having prime-squared size, the condition of the
previous result is also sufficient.

Corollary 24. Let X be an indecomposable cycle set having size p2, for a prime
number p. Then, X is a simple cycle set if and only if Dis(X) acts transitively on X.

Proof: Since |X| = p2 for a prime number p, then by [7, Lemma 1] and [19, Theo-
rem 2.13] X is simple if and only if it does not have finite primitive level, hence the
thesis follows by Theorem 22.

3. Examples and applications

In this section, we exhibit several examples and non-examples of cycle sets having
finite primitive level, computing the exact primitive level in some cases. As an appli-
cation of the main result of the previous section, we enumerate the indecomposable
cycle sets of finite primitive level having small size. Moreover, we study some relations
between these cycle sets and other classes recently considered in other papers.

Many examples of indecomposable cycle sets having finite primitive level appear
in the literature. Below, we exhibit some of them.

Examples 25. (1) If X is an indecomposable cycle set with G(X) abelian and
|X| = pα1

1 . . . pαn
n , where p1, . . . , pn are distinct prime numbers, then fpl(X) =

α1 + · · ·+αn (see [8, Theorem 4.4] for more details). These cycle sets have been
explicitly classified if mpl(X) = 2 (see [22]) and if G(X) is cyclic (see [23]).

(2) Every finite indecomposable cycle set X having finite multipermutation level
is a cycle set of finite primitive level (see [8, Corollary 4.5]) and mpl(X) ≤
fpl(X) (several concrete examples of indecomposable cycle sets belonging to the
multipermutation ones are contained, for example, in [21] and [15]).

(3) Let k be an odd number and (S, · ) be the trivial cycle set given by S := Z/kZ
and x· y := y+1 for all x, y ∈ S and (I, ?) the cycle set given by I := {1, 2, 3, 4},
σ1 := (1 4), σ2 := (1 3 4 2), σ3 := (2 3), and σ4 := (1 2 4 3).
Then, the direct product S × I is a cycle set of finite primitive level, since the
projection on the first component S × I → S, (s, i) 7→ s, gives rise to a cycle
set epimorphism. This family of cycle sets appears in [7, Example 9]. Note that
these cycle sets are not of finite multipermutation level since Ret(S × I) ∼= I.
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(4) Let G = Z/6Z× Z/6Z and · the binary operation on G given by

(i, j)· (k, l) := (k − j, l + tk−i),

where tx = 1 if x = 0 and tx = 3 otherwise. Then, (G, · ) is the indecompos-
able cycle set constructed in [13, Remark 4.10]. By a standard calculation, one
can show that (G, · ) has the indecomposable trivial cycle set of size 2 as an
epimorphic image.

As a generalization of (3) of Examples 25, one can easily show that the class of
finite indecomposable cycle sets of finite primitive level is closed by indecomposable
dynamical extensions.

Proposition 26. Let I be an indecomposable cycle set of finite primitive level and
let I ×α S be a finite indecomposable dynamical extension. Then, I ×α S is an inde-
composable cycle set of finite primitive level.

Proof: Straightforward.

By the previous proposition, examples of indecomposable cycle sets of finite prim-
itive level occur in abundance (see [7, Section 5] for several concrete examples).

In (1) of Examples 25, we exhibit a family of cycle sets for which the primitive
level assumes the maximum possible value. In the next results, we show that this also
happens for indecomposable cycle sets of square-free size and for those having a cyclic
permutation left brace.

Theorem 27. Let X be an indecomposable cycle set having size p1 . . . pn, where n is
a positive integer and p1, . . . , pn are distinct prime numbers. Then, fpl(X) = n.

Proof: We show the thesis by induction on n. If n = 1, the thesis directly follows
by [19, Theorem 2.13]. Now, suppose that X is an indecomposable cycle set having
size p1 . . . pn, where n is a positive integer and p1, . . . , pn are distinct prime numbers.
By [15, Theorem 4.1], we have that G(X) = P1 ◦ · · · ◦ Pn, where Pi is the pi-Sylow
of (G(X),+), and without loss of generality we can suppose that P1 ◦ · · · ◦ Pi is an
ideal of G(X) for all i ∈ {1, . . . , n}. In particular, P1 is an ideal of G(X) and hence a
normal subgroup. Therefore, the orbits of P1 form an imprimitive block system of X,
hence necessarily every orbit of P1 must have size p1. By Proposition 16, P1 induces
a cycle set structure X/P1 of size p2 . . . pn and the natural map from X to X/P1 is
a cycle set epimorphism. By inductive hypothesis, it follows that fpl(X/P1) = n− 1,
and since X/P1 is an epimorphic image of X the thesis follows.

Theorem 28. Let X be an indecomposable cycle set having size pα1
1 . . . pαn

n , where
n is a positive integer and p1, . . . , pn are distinct prime numbers. Moreover, suppose
that G(X) is a permutation left brace with a cyclic additive group. Then, fpl(X) =
α1 + · · ·+ αn.

Proof: We show the thesis by induction on α1+· · ·+αn. If α1+· · ·+αn = 1, necessarily
we have n = 1 and α1 = 1, therefore the thesis follows by [19, Theorem 2.13]. Now,
suppose that α1 + · · · + αn > 1. Then by [27, corollary of Proposition 14], since
G(X) has a cyclic additive group, we have that |Soc(G(X))| > 1, therefore there
exists a normal subgroup (I,+) of (Soc(G(X)),+) having prime size. Without loss
of generality, we can suppose that |I| = p1. Since I is a characteristic subgroup
of (Soc(G(X)),+), it follows that I is an ideal of G(X). Moreover, every orbit of X
with respect to the action of I must have size p1 and hence it induces a cycle set X/I of
size pα1−1

1 . . . pαn
n . By inductive hypothesis, we have that fpl(X/I) = α1−1+ · · ·+αn

and hence fpl(X) ≥ fpl(X/I) + 1 = α1 + · · ·+ αn, therefore the thesis follows.
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In addition to Remark 19, in the following result we give a further information
involving the cycle decomposition of the left multiplications. From now on, a k-cy-
cle (x1 . . . xk) will be called trivial if k = 1.

Proposition 29. Let X be an indecomposable cycle set of finite primitive level, and
let {α1, . . . , αn} be the set of all the cycles (possibly trivial) belonging to at least one
left multiplication σx. Then, there exists a prime divisor p of |X| that divides the
length of αi, for all i ∈ {1, . . . , n}.

Proof: SinceX has finite primitive level, by Corollary 7 there exists a prime number p1
such that X is isomorphic to a dynamical extension I×αS and I is an indecomposable
cycle set of size p1, which by [19, Theorem 2.13] can be identified with that given
by I := Z/p1Z and x· y := y + 1 for all x, y ∈ I. Now, let (i, s) and (j, t) be elements
of I×S. If (j, t) belongs to a z-cycle of σ(i,s) (by [9, Corollary 5.5] we must have z > 1),
then (j, t) = σz(i,s)(j, t) = (j + z, t), therefore p1 must divide z. Since (i, s) and (j, t)

are arbitrary elements of X, p1 is the desired prime number.

In [24], Ramı́rez and Vendramin posed the following question.

Question 30. Let X be a cycle set. Is it true that if some σx contains a non-trivial
cycle of length coprime with |X|, then X is decomposable?

As an application of Proposition 29, we give a positive answer when X has finite
multipermutation level.

Corollary 31. Let X be a finite multipermutation cycle set. Suppose that some
σx contains a cycle of length coprime with |X|. Then, X is decomposable.

Proof: If we suppose X to be indecomposable, then it has finite primitive level. Then,
by Proposition 29 every cycle contained in an arbitrary σx does not have coprime
length with |X|, a contradiction.

Actually, we are not able to state if the hypothesis on the multipermutation level
can be dropped in Corollary 31. In this context, note that a possible counterexam-
ple X to Question 30 would imply that G(X) is a singular left brace, where a left
brace B is said to be singular if there exist an indecomposable cycle set X such that
B ∼= G(X) and a prime number p that divides the order of B but not the order
of X (for this reason, these cycle sets also will be called singular). These left braces
were recently characterized in [31]. Singular cycle sets seem to be very difficult to
construct: indeed, only a counterexample of size 8, given in [31], is known in the
literature. In the same paper, it was also shown that if X is a singular cycle set, then
so is its retraction, therefore the research of these cycle sets can be reduced in some
respects with the irretractable ones.

Below, we recall Rump’s singular cycle set and we use Theorem 22 to show that it
has finite primitive level. Moreover, we use this cycle set to construct, by dynamical
extensions obtained in [7, Section 5], a family of irretractable singular cycle sets.

Example 32. Let X := {0, 1, 2, 3, 4, 5, 6, 7} be the indecomposable cycle set given by

σ0 = (07)(13)(25)(46), σ1 = (0264)(1375),

σ2 = (01)(25)(34)(67), σ4 = (0462)(1573),

σ3 = (02)(16)(34)(57), σ5 = (0451)(2673),

σ7 = (07)(16)(23)(45), σ6 = (0154)(2376).
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Then, the left brace G(X), which has size 24, is singular since 3 divides |G(X)|
but not |X|. By a standard calculation, one can show that G(X)2 splits X into
the orbits {0, 3, 5, 6} and {1, 2, 4, 7}, hence by Theorem 22 X has finite primitive
level. Now, let S := Z/kZ, with k an arbitrary number coprime with 3, A be the
set given by A := S × S, and α be the function from X × X × A to Sym(A),
α(x, y, (a, b)) 7→ α(x,y)((a, b),−), given by

α(x,y)((a, b), (c, d)) :=


(c, d+ 1) if x = y and a 6= c,

(c, d) if x = y and a = c,

(c− b− 1, d) if x 6= y

for all (x, y, (a, b)) ∈ X ×X × A. By a standard calculation, one can show that the
dynamical extension X×αA is an indecomposable cycle set and by [7, Proposition 10]
is irretractable. Since G(X) ∼= G(X ×α A)/I for a suitable ideal I, we have that
3 divides |G(X ×α A)|; on the other hand, 3 does not divide |X × A|. Moreover, by
Proposition 26, the cycle set X ×α A is of finite primitive level.

In this context, an intriguing challenge is the construction of further singular cycle
sets that are in some way different from the previous ones. For example, one could
ask whether there exist singular cycle sets which do not have finite primitive level.

For a positive integer n, let c(n) be the number of indecomposable cycle sets
of size n, m(n) be the number of indecomposable cycle sets of size n having finite
multipermutation level, and fp(n) be the number of indecomposable cycle sets of
size n having finite primitive level. As an application of Theorem 22, by means of
the GAP package [33], we computed, employing a small GAP code, the first values
of fp(n). We summarize our calculations in the following table.

n c(n) m(n) fp(n)

2 1 1 1

3 1 1 1

4 5 3 3

5 1 1 1

6 10 10 10

7 1 1 1

8 100 39 70

9 16 13 13

Remark 33. For every n ∈ {2, . . . , 9}, we have m(n) ≤ fp(n), and if n is a prime
number, we obtain m(n) = fp(n) = 1: these facts agree with (2) of Examples 25
and [19, Theorem 2.13]. If n = 6, we have c(n) = m(n) = fp(n): this is consistent
with [15, Theorem 4.5] and Theorem 27.

In the last part of this section, we focus on some classes of cycle sets present in
the literature that provide examples of indecomposable cycle sets which do not have
finite primitive level.

Examples 34. (1) No non-trivial simple cycle set has a finite primitive level be-
cause the only epimorphic images are the whole cycle set and the cycle set of
size 1 (see [6, 13, 14] for several concrete examples).
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(2) Let X := {1, 2, 3, 4, 5, 6, 7, 8} and · the binary operation given by

σ1 = σ2 := (3 5 4 7),

σ3 = σ4 := (1 6 2 8),

σ5 = σ7 := (1 5 6 4 2 7 8 3),

σ6 = σ8 := (1 3 6 5 2 4 8 7).

Then, 2 is a fixed point of σ1; hence, by Remark 19, X cannot have finite
primitive level. This cycle set was given in [1, Example 3.8]. Inspecting [1,
Tables 3.2 and 3.3] and by means of Remark 19, one can find further examples
of indecomposable cycle sets that are not of finite primitive level.

A large family of indecomposable cycle sets that are not of finite primitive level is
given by the so-called latin cycle sets, where a cycle set is said to be latin if the right
multiplication δx : X → X, y 7→ y·x, is bijective, for every x ∈ X (see [5] for more
details and concrete examples). Clearly, these cycle sets are always indecomposable.

Corollary 35. Let X be a latin cycle set, with |X| > 1. Then, X does not have finite
primitive level.

Proof: If x, y, and z are elements of X, there exists t ∈ X such that y = t· (σ−1z (x)) =
σt(σ

−1
z (x)), hence Dis(X) acts transitively on X. Therefore the thesis follows by

Theorem 22.

In [4] the notion of a soluble (not necessarily involutive) solution was recently
introduced. Here, we recall such a notion, restricting to an involutive setting and
using the language of cycle sets, and we close the section showing that this class of
cycle sets has empty intersection with that of the cycle sets of finite primitive level.
First we recall that, if X, Y are cycle sets, every epimorphism f from X to Y induces
a congruence ∼f on X, i.e., an equivalence relation in which x ∼f y and x′ ∼f y′
implies x·x′ ∼f y· y′, by x ∼f y : ⇐⇒ f(x) = f(y), for all x, y ∈ X. The quotient
of X by the equivalence relation ∼f will be indicated by X/Kerf .

Definition 36. Let X be a cycle set. Assume that there exists a sequence of sub-
sets Xt ⊆ · · · ⊆ X1 ⊆ X0 = X with Xt = {xt} such that, for every 1 ≤ i ≤ t, there
exist a cycle set Yi and a cycle set epimorphism fi : X → Yi satisfying

(1) Xi ∈ X/Kerfi for all 1 ≤ i ≤ t;
(2) fi(Xi−1) is a trivial subcycle set of Yi given by x· y = y for every x, y ∈ fi(Xi−1),

for all 1 ≤ i ≤ t.

Then, X is said to be soluble at xt.

Proposition 37. Let X be an indecomposable cycle set having finite primitive level.
Then, X is not a soluble cycle set.

Proof: Suppose that X is soluble and let X0, . . . , Xt and f1, . . . , ft be as in Defini-
tion 36. Then, we have that Xt ∈ X/Kerft , and by [7, Lemma 1] we have that ft is
bijective, therefore X ∼= Yt. By (2) of Definition 36, there exist x, y ∈ Yt such that
x· y = y, but this contradicts Remark 19.
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4. Cycle sets of primitive level 2

In this section, we focus on cycle sets having primitive level 2. In particular, fol-
lowing [13, Question 3.2], we provide a description of all the indecomposable cycle
sets having primitive level 2 by means of their permutation left braces.

We start with an easy case, considering cycle sets with a trivial permutation left
brace.

Proposition 38. Let X be an indecomposable cycle set with trivial permutation left
brace G(X). Then, fpl(X) = 2 if and only if X has size pq, where p and q are two
prime numbers, not necessarily distinct.

Proof: Since G(X) is a trivial left brace, it follows that X is a trivial cycle set and
any epimorphic image of X is a trivial cycle set. Then, the thesis follows by the fact
that if Y is a trivial indecomposable cycle set and the size of Y divides the size of X,
then Y is an epimorphic image of X.

By the previous proposition, we can focus on indecomposable cycle sets of primitive
level 2 provided by non-trivial left braces. We start with some preliminary results.

Proposition 39. Let X be a finite indecomposable cycle set and p : X → Y an
epimorphism from X to a trivial indecomposable cycle set. Then, the size of Y di-
vides X/G(X)2.

Proof: By Corollary 7, X is isomorphic to a dynamical extension Y ×α S. Moreover,
G(X)2 fixes every set {y}×S, for all y ∈ Y , and by a standard calculation we have that
x1 and x2 are in the same orbit with respect to G(X)2 if and only if g(x1) and g(x2) are
in the same orbit with respect to G(X)2, for all x1, x2 ∈ X and g ∈ G(X). Therefore,
there exists a positive integer r such that G(X)2 splits every set {y}×S into r orbits.
Hence, it follows that |X/G(X)2| = r· |Y |.

Corollary 40. Let X be a non-trivial indecomposable cycle set having primitive
level 2. Then, the action of G(X)2 on X splits X into p orbits, for a prime num-
ber p, and if r : X → Y is an epimorphism with |Y | a prime number, then |Y | = p.

Proof: Since X has primitive level 2, necessarily the action of G(X)2 on X splits X
into p orbits, for a prime number p. Since |Y | is a prime number, the thesis follows
by the previous corollary.

Now we are ready for the desired description.

Theorem 41. Let (B,+, ◦) be a non-trivial left brace, Y ⊂ B a transitive cycle base,
a1 ∈ Y , and K a core-free subgroup contained in the stabilizer Ba1 of a1 with respect
to the action λ. Moreover, let x ◦K be an arbitrary left coset of B/K and Bx◦K be
the stabilizer of x ◦K in B with respect to the left multiplication in (B, ◦). Then, the
cycle set CB,K,a1 has primitive level 2 if and only if the following conditions hold:

(1) the index of the subgroup B2 ◦Bx◦K of B is a prime number p;

(2) the action of B2 on the left coset B/H by left multiplication is transitive, for
every core-free subgroup H with K < H ≤ Ba1 ;

(3) if J is an ideal such that its action on the left coset B/K by left multiplication
has oJ orbits, with oJ > p, then B2 acts transitively (by the induced action) on
the J-orbits of B/K.

Moreover, every non-trivial indecomposable cycle set X having primitive level 2 can
be constructed as CB,K,a1 for suitable B, K, and a1 satisfying the previous conditions.
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Proof: Suppose that CB,K,a1 has primitive level 2. Then, CB,K,a1/B
2 is a non-trivial

quotient of CB,K,a1 and the size of CB,K,a1/B
2 is a prime number p. Since the action

of B2 on the cycle set CB,K,a1 is just the action by left multiplication on B/K, by [18,
Exercise 9 on p. 117] we have that condition (1) follows. If (2) does not hold, there
exist a core-free subgroup H, with K < H, that gives rise to a covering p1 : CB,K,a1 →
CB,H,a1 and an epimorphism p1 : CB,H,a1 → CB,H,a1/B

2 with |B/H| < |B/K| and
|CB,H,a1/B2| > 1, therefore by Theorem 22 CB,H,a1 has finite primitive level and
hence CB,K,a1 has primitive level greater than 2, a contradiction. If (3) does not hold
for a suitable ideal J , we obtain an epimorphism p1 : CB,K,a1 → CB,K,a1/J and, if
J ′ is such that G(CB,K,a1/J) ∼= B/J ′, we have that (B/J ′)2 does not act transitively
on CB,K,a1/J . Therefore, by Theorem 22 CB,K,a1/J has finite primitive level and
hence CB,K,a1 has primitive level greater than 2, a contradiction.

Conversely, suppose that (1), (2), and (3) hold. By condition (1) and [18, Exercise 9
on p. 117], the indecomposable cycle set Z := CB,K,a1/B

2 has prime size p. Moreover,
there is a natural epimorphism r from CB,K,a1 to Z. By Proposition 39 and [19,
Theorem 2.13], p and Z are completely determined by condition (1), and there are
no other trivial indecomposable cycle sets that are epimorphic images of CB,K,a1 .
Therefore, to demonstrate the thesis, it is sufficient to prove that there is no non-
trivial indecomposable cycle set T , different from CB,K,a1 and Z, such that T is an
epimorphic image of CB,K,a1 and Z is an epimorphic image of T . Suppose T is such a
cycle set and r1 : CB,H,a1 → T and r2 : T → Z are epimorphisms. If r1 is a covering, by
Proposition 15 T = B/H for some subgroup H with K < H ≤ Ba1 , and since T has
finite primitive level, B2 does not act transitively on the left cosets B/H, against
condition (2). Then, by Proposition 17, without loss of generality we can suppose
that T is an epimorphic image of the form CB,H,a1/J , for some non-trivial ideal J .
Therefore CB,H,a1/J is a non-trivial indecomposable cycle set of finite primitive level,
with |CB,H,a1/J | = oj > p, and this implies that B2 does not act transitively on the
J-orbits of B/K, but this contradicts (3).

Finally, by Proposition 14 every non-trivial indecomposable cycle set X having
primitive level 2 can be constructed as CB,K,a1 for suitable B, K, and a1 satisfying
conditions (1), (2), and (3).

We conclude the section applying Theorem 41 to construct a family of indecom-
posable cycle sets having primitive level 2.

Example 42. LetB1 be the left braceB8,27 of [33] andB2 the trivial left brace having
p elements, for a prime number p different from 2, and set B the direct product of
the left braces B1 and B2. Then, B has a transitive cycle base Y = Y1 × {y}, where
Y1 is a transitive cycle base of B1, which has size 4, and y is a non-zero element
of B2. Moreover, every element a of Y1 is stabilized by a core-free subgroup K ′a
of (B1, ◦) having size 2. Therefore, if we set a1 ∈ Y and K := K ′a1 × {0}, we obtain
that CB,K,a1 is an indecomposable cycle set having size 4p. Now we show that it is
of primitive level 2. If x ◦ K is a left coset of B/K, we obtain that B2 ◦ Bx◦K is
equal to B1×{0}, which is a subgroup of (B, ◦) of index p, therefore condition (1) of
Theorem 41 is satisfied. Since (B1, ◦) is the dihedral group of size 8 and (B2, ◦) is cyclic
of prime order p 6= 2, condition (2) of Theorem 41 automatically follows. Finally, the
ideals of B different from {0} and B are: B1×{0}, {0}×B2, B2

1×{0}, B2
1×B2. We do

not need to consider B2
1×B2, since it acts transitively on CB,K,a1 . The ideals B1×{0}

and B2
1 × {0} split CB,K,a1 in the same way into p orbits, hence the remaining case

is the ideal {0} × B2. It splits CB,K,a1 into four orbits, and B2 = B2
1 × {0} acts

transitively on these orbits, therefore condition (3) of Theorem 41 also follows and
hence CB,K,a1 has primitive level 2.
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