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Symmetric algebra

Symmetric forms,

Γ(⊙•T ∗) :=
⊕
k∈Z

Γ(⊙kT ∗);

⊙ : ×2Γ(⊙•T ∗) → Γ(⊙•T ∗),

σ ⊙ τ :=
|σ|!|τ |!

(|σ|+ |τ |)!
Sym(σ ⊗ τ);

(Γ(⊙•T ∗),⊙) is graded,
unital,
associative,
commutative.

Exterior algebra

Exterior forms,

Γ(∧•T ∗) := Γ(
⊕
k∈Z

∧kT ∗);

∧ : ×2Γ(∧•T ∗) → Γ(∧•T ∗),

φ∧ψ :=
|φ|!|ψ|!

(|φ|+ |ψ|)!
Skew(φ⊗ ψ);

(Γ(∧•T ∗),∧) is graded,
unital,
associative,
graded-commutative.

graded-commutative:

φ ∧ ψ = (−1)
|φ||ψ|

ψ ∧ φ



Motivation

Cartan calculus deals with the operators ιX , d, £X , [ , ]Lie and their relation to the
exterior algebra.

A very natural question is:

Is there a “Cartan calculus” on the symmetric algebra?

The second natural question is:

If so, is it geometrically meaningful?

[HBP] A. Heydari; N. Boroojerdian; E. Peyghan. A description of derivations of the algebra of symmetric tensors. Archivum

Mathematicum, 42:175–184, 2006.



Graded algebra derivations

An r-degree endomorphism of a graded algebra (A :=
⊕

k∈Z Ak, ·) is a vector space
endomorphism D ∈ End(A) s.t.

D(Ak) ⊆ Ak+r.

The integer r is called the degree of D and is denoted by |D| := r.

Such D is called a derivation if D(v · w) = Dv · w + v ·Dw;

a graded derivation if D(v · w) = Dv · w + (−1)|v||D| v ·Dw.

The space of derivations of a graded algebra Der(A) forms a graded Lie algebra w.r.t.
the commutator,

[D1, D2] := D1 ◦D2 −D2 ◦D1.

The space of graded derivations of a graded algebra gDer(A) forms a graded Lie
superalgebra w.r.t. the graded commutator,

[D1, D2]g := D1 ◦D2 − (−1)|D1||D2|D2 ◦D1.

graded Lie superalgebra:

[D1, D2]g = −(−1)
|D1||D2|

[D2, D1]g,

(−1)
|D1||D3|

[D1, [D2, D3]g]g + (−1)
|D2||D1|

[D2, [D3, D1]g]g + (−1)
|D3||D2|

[D3, [D1, D2]g]g = 0



Interior multiplication

The interior multiplication ιX is a −1-degree endomorphism of Γ(⊗•T ∗) defined by

(ιXA)(X1, . . . , Xk−1) := A(X,X1, . . . , Xk), ιXf := 0.

When specified to Γ(⊙•T ∗):

ιX(Γ(⊙kT ∗)) ⊆ Γ(⊙k−1T ∗),

ιX(σ ⊙ τ) = (ιXσ)⊙ τ + σ ⊙ (ιXτ).

⇓

ιX is a derivation of degree −1.

Interior multiplication on Γ(∧•T ∗)

ιX(Γ(∧kT ∗)) ⊆ Γ(∧k−1T ∗),

ιX(φ∧ψ) = (ιXφ)∧ψ+(−1)|φ| φ∧(ιXψ).

⇓

ιX is a graded derivation of degree −1.



Symmetric derivative

An endomorphism D ∈ End(Γ(⊗•T ∗)) is called geometric if it is of degree 1 and

(Df)(X) = Xf.

Exterior derivative

There is a unique geometric graded derivation d ∈ gDer(Γ(∧•T ∗)) s.t. d ◦ d = 0.
It is called the exterior derivative.

Def. The symmetric derivative corresponding to a connection ∇,

∇s :=
⊕
k∈Z

(k + 1) · Sym ◦∇,

Prop. Every symmetric derivative is a geometric derivation of Γ(⊙•T ∗).

Prop. Every geometric derivation of Γ(⊙•T ∗) is of the form ∇s for some ∇.

Prop. Geometric derivations of Γ(⊙•T ∗) are in one-to-one correspondence with torsion-
free connections.

Prop. There is no geometric derivation D ∈ Der(Γ(⊙•T ∗)) s.t. D ◦D = 0.

The covariant gradient ∇ : Γ(⊗•T∗) → Γ(⊗•T∗):

∇(Γ(⊗kT∗
)) ⊆ Γ(⊗k+1

T
∗
), (∇A)(X,X1, . . . , Xk) := (∇XA)(X1, . . . , Xk).



Symmetric derivative – applications

A Killing tensor w.r.t. ∇s is a symmetric form K ∈ Γ(⊙•T ∗) s.t.

∇sK = 0.

The concept of Killing tensors is a generalization of Killing vector fields of a metric
G, these are vector fields satisfying

£XG = 0.

A Killing tensor K w.r.t. ∇s, induces the function fK ∈ C∞(TM)

fK(v) := Kp(v, . . . , v) for all p ∈M and v ∈ TpM,

that is constant along every geodesic of ∇.

Killing tensors are used in general relativity (Carter tensor in Kerr-Newman spacetime),
integrable systems (separability of Hamilton-Jacobi eq.),
cosmology (FLRW spacetimes),
. . .



Symmetric derivative – applications

A conformal Killing tensor w.r.t. a metric G is a symmetric form C ∈ Γ(⊙•T ∗) s.t.

G∇sC = σ ⊙G

for some σ ∈ Γ(⊙•T ∗).

If G is indefinite, the function fC ∈ C∞(TM), defined by fC(v) := Cp(v, . . . , v), is
constant along every null geodesic of G∇.

A statistical manifold – a fundamental notion in information geometry – is a triple
(M,G,∇) consisting of a smooth manifold M , a Riemannian metric G, and a
torsion-free connection ∇, s.t.

∇sG = 3∇G.



Symmetric Lie derivative

Lie derivative

The Lie derivative w.r.t. X ∈ Γ(T ):

£X := [ιX , d]g = ιX ◦ d+d ◦ ιX .

Def. The symmetric Lie derivative corresponding to ∇s w.r.t. X ∈ Γ(T ):

£∇s
X := [ιX ,∇s] = ιX ◦ ∇s −∇s ◦ ιX .

Thm. (£∇s
X σ)p = lim

t→0

1

t

((
P γ2t,0 ◦

(
ΨX−t

)∗
ΨX

2t(p)

)
σ
ΨX
t

(p)
− σp

)
.

Prop. Let ∇ be a torsion-free connection. Then

∇X =
1

2
(£X +£∇s

X ).



Symmetric Lie derivative

(£∇s
X σ)p = lim

t→0

1

t

((
P γ2t,0 ◦

(
ΨX−t

)∗
ΨX

2t(p)

)
σ
ΨX
t

(p)
− σp

)

(£Xφ)p = lim
t→0

1

t

((
ΨXt

)∗
p
φ
ΨX
t

(p)
− φp

)

Prop. Let ∇ be a torsion-free connection. Then

∇X =
1

2
(£X +£∇s

X ).



Symmetric Lie derivative

(£∇s
X σ)p = lim

t→0

1

t

((
P γ2t,0 ◦

(
ΨX−t

)∗
ΨX

2t(p)

)
σ
ΨX
t

(p)
− σp

)

Prop. Let ∇ be a torsion-free connection. Then

∇X =
1

2
(£X +£∇s

X ).



Symmetric bracket

Lie bracket of vector fields

The Lie bracket of vector fields is an R-bilinear map [ , ]Lie : ×2Γ(T ) → Γ(T )

given by
ι[X,Y ]Lie

:= [£X , ιY ]g = £X ◦ ιY−ιY ◦£X .

Explicitly: [X,Y ]Lie = X ◦ Y − Y ◦X.

[X,Y ]Lie|p = (£XY )p = lim
t→0

1

t

((
ΨX−t

)
∗ΨX

t (p)
Y
ΨX
t

(p)
− Yp

)
.

Def. The symmetric bracket corresponding to ∇s is the R-bilinear map
⟨ : ⟩∇s : ×2Γ(T ) → Γ(T ) given by

ι⟨X:Y ⟩∇s := [£∇s
X , ιY ] = £∇s

X ◦ ιY − ιY ◦£∇s
X .

Explicitly: ⟨X : Y ⟩∇s = ∇XY +∇YX.

Prop. ⟨X : Y ⟩∇s |p = (£∇s
X Y )p = lim

t→0

1

t

((
P γ2t,0 ◦

(
ΨXt

)
∗ΨX

t (p)

)
Y
ΨX
t

(p)
− Yp

)
.



Explicit formulas for ∇s and £∇s
X

Explicit formulas for d and £X

(dφ)(X1, . . . , X|φ|+1)

=

|φ|+1∑
j=1

(−1)j+1Xjφ(X1, . . . , X|φ|+1)−
|φ|+1∑
j,i=1,
j<i

(−1)j+iφ([Xj , Xi]Lie, X1, . . . , X|φ|+1),

(£Xφ)(X1, . . . , X|φ|) = Xφ(X1, . . . , X|φ|)−
|φ|∑
j=1

(−1)j+1φ([X,Xj ]Lie, X1, . . . , X|φ|).

Explicit formulas for ∇s and £∇s
X :

(∇sσ)(X1, . . . , X|σ|+1) =

|σ|+1∑
j=1

Xjσ(X1, . . . , X|σ|+1)−
|σ|+1∑
j,i=1,
j<i

σ(⟨Xj : Xi⟩∇s , X1, . . . , X|σ|+1),

(£∇s
X σ)(X1, . . . , X|σ|) = Xσ(X1, . . . , X|σ|)−

|σ|∑
j=1

σ(⟨X : Xj⟩∇s , X1, . . . , X|σ|).



Symmetric bracket and distributions

Let ∇ be a connection. A distribution ∆ ⊆ T is called ∇-geodesically invariant if
every geodesic γ : I →M has the property:

∃ t0 ∈ I, γ̇(t0) ∈ ∆γ(t0) ⇒ γ̇(t) ∈ ∆γ(t) for all t ∈ I.

If a ∇-geodesically invariant distribution is, in addition, integrable, every geodesic is
completely contained in a leaf of the associated foliation.

Frobenius theorem

A distribution ∆ ⊆ T is integrable if and only if

[Γ(∆),Γ(∆)]Lie ⊆ Γ(∆).

Thm. [Lewis] A distribution ∆ ⊆ T is ∇-geodesically invariant if and only if

⟨Γ(∆) : Γ(∆)⟩∇s ⊆ Γ(∆).



Symmetric Cartan calculus and diffeomorphisms

Cartan calculus and diffeomorphisms

Every diffeomorphism ϕ ∈ Diff(M) satisfies the following equivalent properties:

(a) d ◦ ϕ∗ = ϕ∗ ◦ d;

(b) ϕ∗ ◦£X = £
ϕ
−1
∗ X

◦ ϕ∗;

(c) ϕ∗[X,Y ]Lie = [ϕ∗X,ϕ∗Y ]Lie.

Prop. Let ∇ be a torsion-free connection and ϕ ∈ Diff(M). The following five claims are
equivalent:

(1) ϕ ∈ Aff(∇), i.e. ϕ∗ commutes with the parallel transport;

(2) ϕ∗∇XY = ∇ϕ∗Xϕ∗Y ;

(a’) ∇s ◦ ϕ∗ = ϕ∗ ◦ ∇s;

(b’) ϕ∗ ◦£∇s
X = £∇s

ϕ
−1
∗ X

◦ ϕ∗;

(c’) ϕ∗⟨X : Y ⟩∇s = ⟨ϕ∗X : ϕ∗Y ⟩∇s .



Symmetric Poisson geometry



Poisson geometry

Given a bivector field π ∈ Γ(∧2T ), consider the R-multilinear maps:

{ , }: ×2C∞(M) → C∞(M), Ham: C∞(M) → Γ(T ).

(f, g) 7−→ π(df, dg) f 7−→ ιdfπ = {f, }

We have the following series of equivalences

[π, π]Sc = 0 ⇔ Jac{ , } = 0 ⇔ Ham{f, g} = [Ham f,Ham g]Lie.

A Poisson structure is π ∈ Γ(∧2T ) s.t. [π, π]Sc = 0.

Equivalently a Poisson structure is an R-bilinear map { , } : ×2C∞(M) → C∞(M) s.t.

{f, g} = −{g, f}, {f, gh} = g{f, h}+ {f, g}h, Jac{ , } = 0.



Poisson and symplectic structures

If π is non-degenerate, ω := π−1∈ Γ(∧2T ∗), then

[π, π]Sc = 0 ⇔ dω = 0.

A symplectic structure is a non-degenerate ω ∈ Γ(∧2T ∗) s.t. dω = 0.



Symmetric Poisson geometry – ∇s-Schouten bracket

Given a symmetric bivector field ϑ ∈ Γ(⊙2T ), consider the R-multilinear maps:

{ , } : ×2C∞(M) → C∞(M), grad : C∞(M) → Γ(T ).

(f, g) 7−→ ϑ(df, dg) f 7−→ ιdfϑ = {f, }

Neither the Jacobi identity nor grad{f, g} = [grad f, grad g]Lie work well.

Schouten bracket

The Schouten bracket is a unique R-bilinear map [ , ]Sc:×2Γ(∧•T ) → Γ(∧•T ) s.t.

1. [Γ(∧kT ),Γ(∧lT )]Sc ⊆ Γ(∧k+l−1T ), 2. [X ,Y]Sc = −(−1)(|X|−1)(|Y|−1)[Y,X ]Sc,

3. [X ,Y ∧ Z]Sc = [X ,Y]Sc ∧ Z + (−1)(|X|−1)|Y|Y ∧ [X ,Z]Sc, 4. [X, ]Sc = £X .

Thm. Let ∇s be a symmetric derivative. There is a unique R-bilinear map
[ , ] : ×2Γ(⊙•T ) → Γ(⊙•T ) s.t.

1. [Γ(⊙kT ),Γ(⊙lT )] ⊆ Γ(⊙k+l−1T ), 2. [X ,Y] = [Y,X ],

3. [X ,Y ⊙ Z] = [X ,Y]⊙Z + Y ⊙ [X ,Z], 4. [X, ] = £∇s
X .

We call it the ∇s-Schouten bracket and denote it by [ , ]∇s -Sc.



Symmetric Poisson structures

Prop. Let ∇s be a symmetric derivative and ϑ ∈ Γ(⊙2T ). Then

[ϑ, ϑ]∇s -Sc = 0 ⇔ Jac{ , }(f, g, h) = ⟨grad f : grad g⟩∇sh+ cyclic(f, g, h).

Def. A symmetric Poisson structure is a pair (∇, ϑ) consisting of a torsion-free
connection ∇ and ϑ ∈ Γ(⊙2T ) s.t. [ϑ, ϑ]∇s -Sc = 0.

Equivalently, a symmetric Poisson structure is a pair (∇, { , }) consisting of a
torsion-free connection ∇ and an R-bilinear map { , } : ×2C∞(M) → C∞(M) s.t.

{f, g} = {g, f}, {f, gh} = g{f, h}+ {f, g}h,

Jac{ , }(f, g, h) = ⟨grad f : grad g⟩∇sh+ cyclic(f, g, h).

Def. A Killing structure is a pair (∇, G) consisting of a torsion-free connection ∇ and
a non-degenerate G ∈ Γ(⊙2T ∗) s.t. ∇sG = 0.

Prop. Let ∇s be a symmetric derivative and ϑ ∈ Γ(⊙2T ) be non-degenerate,
G := ϑ−1∈ Γ(⊙2T ∗). Then

[ϑ, ϑ]∇s -Sc = 0 ⇔ ∇sG = 0.



Strong symmetric Poisson structures

What about the condition grad{f, g} = ⟨grad f : grad g⟩∇s?

Prop. Let ∇ be a torsion-free connection and ϑ ∈ Γ(⊙2T ). Then

[ϑ, ϑ]∇s -Sc = 0 ⇐
⇏

grad{f, g} = ⟨grad f : grad g⟩∇s ⇔ ∇grad f ϑ = 0.

Def. A strong symmetric Poisson structure is a pair (∇, ϑ) consisting of a
torsion-free connection ∇ and ϑ ∈ Γ(⊙2T ) s.t. ∇grad f ϑ = 0.

Equivalently, a strong symmetric Poisson structure is a pair (∇, { , }) consisting of a
torsion-free connection ∇ and an R-bilinear map { , } : ×2C∞(M) → C∞(M) s.t.

{f, g} = {g, f}, {f, gh} = g{f, h}+ {f, g}h, grad{f, g} = ⟨grad f : grad g⟩∇s .

Prop. Let ∇ be a torsion-free connection and ϑ ∈ Γ(⊙2T ) be non-degenerate,
G := ϑ−1∈ Γ(⊙2T ∗). Then

∇grad f ϑ = 0 ⇔ ∇ϑ = 0 ⇔ ∇G = 0 ⇔ ∇ is the Levi-Civita connection of G.



(Strong) symmetric Poisson, Killing, and (pseudo-)Riemannian, structures



Comparison of symmetric Poisson and Poisson geometry



Cn-generalized geometry



Standard generalized geometry

Generalized geometry is a novel approach to geometrical structures. It has many
applications in both mathematics and physics, so far, in symplectic and complex
geometry, mechanics, string theory (supergravity, mirror symmetry), global analysis.

The basic idea: T ⇝ (T ⊕ T ∗, ⟨ , ⟩+), where

⟨X + α, Y + β⟩+ :=
1

2
(α(Y ) + β(X));

The associated Clifford algebra Cl(⟨ , ⟩+) has the natural representation on Γ(∧•T ∗):

(X + α) ·φ := ιXφ+ α∧φ.

An R-bilinear map ×2Γ(T ⊕ T ∗) → Γ(T ⊕ T ∗) can be derived:

[[(X + α)·, d]g, (Y + β)·]g φ = ([X,Y ]Lie +£Xβ − ιY dα) · φ.

It is called the Dorfman bracket: [X + α, Y + β]D := [X,Y ]Lie +£Xβ − ιY dα.

Mathematically, standard generalized geometry is the study of (T ⊕ T ∗, ⟨ , ⟩+, [ , ]D).

The Clifford algebra of a vector space V endowed with a symmetric pairing η ∈ ⊙2V ∗:

Cl(η) :=
⊗•V

⟨{v ⊗ v − η(v, v) | v ∈ V }⟩
.



Cn-generalized geometry

The basic idea of Cn-generalized geometry is to replace ⟨ , ⟩+ with the canonical
skew-symmetric pairing ⟨ , ⟩−:

⟨X + α, Y + β⟩− :=
1

2
(α(Y )− β(X));

The Dorfman bracket is not natural here and, in fact, does not work well.

The associated Weyl algebra W(⟨ , ⟩−) has the natural representation on Γ(⊙•T ∗):

(X + α) · σ := ιXσ + α⊙ σ.

An R-bilinear map ×2Γ(T ⊕ T ∗) → Γ(T ⊕ T ∗) can be derived:

[[(X + α)·,∇s], (Y + β)·]σ = (⟨X : Y ⟩∇s +£∇s
X β + ιY∇sα) · σ.

It is called the ∇s-Dorfman bracket: [X + α, Y + β]∇s := ⟨X : Y ⟩∇s +£∇s
X β + ιY∇sα.

Cn-generalized geometry is the study of (T ⊕ T ∗, ⟨ , ⟩−, [ , ]∇s ).

Analogues of Dirac structures, generalized complex structures, generalized metrics,
Courant algebroids, quadratic Lie algebras, etc. arise.

The Weyl algebra of a vector space V endowed with a skew-symmetric pairing ε ∈ ∧2V ∗:

W(ε) :=
⊗•V

⟨{v ⊗ w − w ⊗ v + 2ε(v, w) | v, w ∈ V }⟩
.



Summary

symmetric algebra exterior algebra

commutative graded-commutative

derivations, [ , ] graded derivations, [ , ]g

depending on choice of ∇ canonical

∇s, £∇s
X , ⟨ : ⟩∇s d, £X , [ , ]Lie

Killing tensors closed forms

geodesically invariant distributions integrable distributions

affine transformations diffeomorphisms

gradients Hamiltonian vector fields

(strong) symmetric Poisson Poisson

Killing ((pseudo-)Riemannian). symplectic

(T ⊕ T ∗, ⟨ , ⟩−, [ , ]∇s ) (T ⊕ T ∗, ⟨ , ⟩+, [ , ]D)



Thank you for your attention!Thank you for your attention!

This research has been supported by the Spanish State Research Agency under the
grant PID2022-137667NA-I00.


