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Abstract

We introduce analogues of the exterior derivative, the Lie derivative, and the Lie bracket of vector fields, on the algebra of completely symmetric covariant tensor fields. Then we discuss the basic properties and
geometrical interpretation of these objects. Using the correspondence between the Cartan calculus and its symmetric counterpart, we introduce a symmetric version of Poisson geometry and generalized geometry.

1. Symmetric algebra

Definition: Symmetric algebra
The symmetric algebra of a manifold M is the space of completely symmetric covariant tensor fields

Γ(⊙•T ∗) :=
⊕
k∈Z

Γ(⊙kT ∗)

endowed with the symmetric product, that is the C∞(M)-bilinear map ⊙ : ×2Γ(⊙•T ∗) → Γ(⊙•T ∗)

σ ⊙ τ :=
|σ|!|τ |!

(|σ| + |τ |)!
Sym(σ ⊗ τ ),

where the symmetrization map Sym : Γ(⊗•T ∗) → Γ(⊙•T ∗) is given by

(SymA)(X1, . . . , X|A|) :=
1

|A|!
∑
κ∈S|A|

A(Xκ(1), . . . , Xκ(|A|)).

The symmetric algebra (Γ(⊙•T ∗),⊙) is graded, unital, associative, and commutative.

2. Graded algebra derivations

Definition: Derivation & Graded derivation
Let (A :=

⊕
k∈ZAk, ·) be a graded algebra and let D ∈ End(A) be a vector space |D|-degree endomorphism (i.e. |D| ∈ Z

s.t. D(Ak) ⊆ Ak+|D| for all k ∈ Z). Such D is called

a derivation if
D(v · w) = (Dv) · w + v · (Dw);

a graded derivation if
D(v · w) = (Dv) · w + (−1)|v||D| v · (Dw).

The space of derivations of a graded algebra Der(A, ·)
forms a graded Lie algebra w.r.t. the endomorphism
commutator

[D1, D2] := D1 ◦D2 −D2 ◦D1.

The space of graded derivations of a graded algebra
gDer(A, ·) forms a graded Lie superalgebra w.r.t. the
endomorphism graded commutator

[D1, D2]g = D1 ◦D2 − (−1)|D1||D2|D2 ◦D1.

Example: Interior multiplication
Interior multiplication by a vector field X ∈ Γ(T ) is a (−1)-degree endomorphism ιX of the space of covariant tensor fields:

(ιXA)(X1, . . . , X|A|−1) := A(X,X1, . . . , X|A|−1), ιXf = 0.

When ιX is restricted to the symmetric algebra, it is a derivation of (Γ(⊙•T ∗),⊙).

Definition: Geometric endomorphism
An endomorphismD of the vector space of covarinat tenosr fields is called geometric if it is of degree 1 and (Df )(X) = Xf .

3. Symmetric derivative

Definition: Symmetric derivative
The symmetric derivative corresponding to a connection ∇ is the vector space endomorphism ∇s ∈ End(Γ(⊙•T ∗)):

∇s :=
⊕
k∈Z

(k + 1) Sym ◦∇.

Every symmetric derivative is a geometric derivation of (Γ(⊙•T ∗),⊙).

Proposition
Every geometric derivation of
(Γ(⊙•T ∗),⊙) is a symmetric deriva-
tive ∇s for some connection ∇.

Proposition
Geometric derivations of (Γ(⊙•T ∗),⊙)
are in one-to-one correspondence with
torsion-free connections.

Proposition
There is no geometric derivation
D ∈ Der(Γ(⊙•T ∗),⊙) s.t.

D ◦D = 0.

Definition: Killing tensor
A Killing tensor w.r.t. ∇s is an element K ∈ Γ(⊙•T ∗) s.t. ∇sK = 0.

Killing tensors induce conserved quantities along geodesics, the notion is used in integrable systems, mechanics, GR,. . .

The notion of a symmetric derivative can be used for reformulation of the definitions of Killing vector field, conformal Killing
tensor, or a statistical manifold – a fundamental notion in information geometry.

4. Symmetric Lie derivative

Definition: Symmetric Lie derivative

The symmetric Lie derivative corresponding to ∇s w.r.t. X ∈ Γ(T ) is the 0-degree derivation £∇s

X ∈ Der(Γ(⊙•T ∗),⊙):

£∇s

X := [ιX,∇s] = ιX ◦ ∇s −∇s ◦ ιX.

Theorem: Geometric interpretation of symmetric Lie derivative
Let ∇ be a torsion-free connection. Then

(£∇s

X σ)p = lim
t→0

1

t

((
P γ
2t,0 ◦

(
ΨX

−t

)∗
ΨX

2t(p)

)
σΨX

t (p)
− σp

)
, (⋆)

where ΨX is the vector field’s flow and P γ is the ∇-parallel transport along the integral curve of X starting at p.

Figure 1. Transport associated with symmetric Lie derivatives.

The formula (⋆) allows us to naturally extend the symmetric
Lie derivative from Γ(⊙•T ∗) to the entire space of tensor fields.

Proposition
Let ∇ be a torsion-free connection. Then

∇X =
1

2
(£X +£∇s

X ).

5. Symmetric bracket

Definition: Symmetric bracket

The symmetric bracket corresponding to ∇s is the R-bilinear map ⟨ : ⟩∇s : ×2Γ(T ) → Γ(T ):

ι⟨X:Y ⟩∇s := [£∇s

X , ιY ] = £∇s

X ◦ ιY − ιY ◦£∇s

X .

Explicitly: ⟨X : Y ⟩∇s = ∇XY +∇YX .

Theorem: Geometric interpretation of symmetric bracket

Let ∇ be a torsion-free connection. Then ⟨X : Y ⟩∇s|p = lim
t→0

1

t

((
P γ
2t,0 ◦

(
ΨX

t

)
∗ΨX

t (p)

)
YΨX

t (p)
− Yp

)
.

Definition: Geodesically invariant distribution
Let ∇ be a connection. A distribution ∆ ⊆ T is called ∇-geodesically invariant if every geodesic γ : I → M has the
property: ∃ t0 ∈ I, γ̇(t0) ∈ ∆γ(t0), ⇒ γ̇(t) ∈ ∆γ(t) for all t ∈ I . (i.e. geodesics tangent to ∆ stay always tangent to ∆)

Theorem: [Lewis, 1998]

A distribution ∆ ⊆ T of locally constant rank is ∇-geodesically invariant if and only if ⟨Γ(∆) : Γ(∆)⟩∇s ⊆ Γ(∆).

The notion of symmetric bracket is used in control theory, in particular, for the formulation of accessibility criteria.

Compare with standard Cartan calculus

The exterior algebra (Γ(∧•T ∗),∧) is graded, unital, associative, and graded-commutative.

When ιX is restricted to the exterior algebra, it is a graded derivation of (Γ(∧•T ∗),∧).
There is a unique geometric graded derivation d ∈ gDer(Γ(∧•T ∗),∧) s.t. d ◦ d = 0. It is called the exterior derivative.

A closed form is an element H ∈ Γ(∧•T ∗) s.t. dH = 0.

The Lie derivative w.r.t. X ∈ Γ(T ) is the 0-degree graded derivation £X ∈ gDer(Γ(∧•T ∗),∧):

£X := [ιX, d]g = ιX ◦ d + d ◦ ιX.
Geometric interpretation of the Lie derivative is apparent from the formula

(£Xφ)p = lim
t→0

1

t

((
ΨX

t

)∗
p
φΨX

t (p)
− φp

)
.

Figure 2. Transport via the vector field’s flow.

The Lie bracket of vector fields is the R-bilinear map [ , ]Lie : ×2Γ(T ) → Γ(T ):

ι[X,Y ]Lie := [£X, ιY ]g = £X ◦ ιY − ιY ◦£X.

Explicitly: [X, Y ]Lie = X ◦ Y − Y ◦X .

Frobenius theorem. A distribution ∆ ⊆ T of locally constant rank is integrable if and only if [Γ(∆),Γ(∆)]Lie ⊆ Γ(∆).

6. Symmetric Poisson geometry

Given a symmetric bivector field ϑ ∈ Γ(⊙2T ), consider the R-multilinear maps:

{ , }ϑ : ×2C∞(M) → C∞(M) : (f, g) 7→ ϑ(df, dg), grad : C∞(M) → Γ(T ) : f 7→ ιdfϑ.

Theorem: ∇s-Schouten bracket
Let ∇s be a symmetric derivative. There is a unique R-bilinear map [ , ] : ×2Γ(⊙•T ) → Γ(⊙•T ) s.t.

1. [Γ(⊙kT ),Γ(⊙lT )] ⊆ Γ(⊙k+l−1), 2. [X ,Y ] = [Y ,X ],

3. [X ,Y ⊙ Z ] = Y ⊙ [X ,Z ] + [X ,Y ]⊙Z, 4. [X, ] = £∇s

X .

It is called ∇s-Schouten bracket and it can be expressed explicitly as

[X ,Y ]∇s-Schouten =
(|X | + |Y| − 1)!

|X |!|Y|!
Sym (|X |Tr(ι⋆X ⊗∇⋆Y) + |Y|Tr(ι⋆Y ⊗∇⋆X )) .

Proposition

Let ∇s be a symmetric derivative and G ∈ Γ(⊙2T ∗) be non-degenerate. Then

∇sG = 0 ⇔ [G−1, G−1]∇s-Schouten = 0.

Proposition

Let ∇s be a symmetric derivative and ϑ ∈ Γ(⊙2T ). Then

[ϑ, ϑ]∇s-Schouten = 0 ⇔ Jac{ , }ϑ(f, g, h) = ⟨grad f : grad g⟩∇sh + cyclic(f, g, h).

Definition: Symmetric Poisson structure

A symmetric Poisson structure is a pair (∇, ϑ) consisting of a torsion-free connection ∇ and ϑ ∈ Γ(⊙2T ) s.t.

[ϑ, ϑ]∇s-Schouten = 0.

A non-degenerate symmetric Poisson structure is equivalent to a pair (∇, G) consisting of a torsion-free connection ∇ and
G ∈ Γ(⊙2T ∗) that is non-degenerate and ∇sG = 0. Such pairs (∇, G) are “symmetric analogues” of symplectic structures.

Proposition

Let ∇ be a torsion-free connection and ϑ ∈ Γ(⊙2T ). Then

[ϑ, ϑ]∇s-Schouten = 0 ⇐
⇏

grad{f, g}ϑ = ⟨grad f : grad g⟩∇s ⇔ ∇grad f ϑ = 0.

If, in addition, ϑ is non-degenerate and G := ϑ−1, then

∇grad f ϑ = 0 ⇔ ∇G = 0 ⇔ ∇ is Levi-Civita connection of G.

Definition: Strong symmetric Poisson structure

A strong symmetric Poisson structure is a pair (∇, ϑ) consisting of a torsion-free connection ∇ and ϑ ∈ Γ(⊙2T ) s.t.

∇grad f ϑ = 0.

Figure 3. Relations between symmetric Poisson, strong symmetric Poisson, and (pseudo-)Riemannian, structures.

Compare with Poisson geometry

A Poisson structure is a bivector field π ∈ Γ(∧2T ) s.t. [π, π]Schouten = 0.

Given a bivector field π ∈ Γ(∧2T ), consider the map Ham : C∞(M) → Γ(T ) : f 7→ ιdfπ. There holds

[π, π]Schouetn = 0 ⇔ Jac{ , }π = 0 ⇔ Ham{f, g}π = [Ham f,Ham g]Lie.

Let ω ∈ Γ(∧2T ∗) be non-degenerate. Then

dω = 0 ⇔ [ω−1, ω−1]Schouten = 0.

A symplectic structure is a non-degenerate ω ∈ Γ(∧2T ∗) s.t. dω = 0.

7. To be continued

Generalized geometry is a novel approach to geometrical structures. It studies the geometry of T ⊕ T ∗.

In the standard case, the focus is on the canonical
symmetric pairing ⟨ , ⟩+:

⟨X + α, Y + β⟩+ :=
1

2
(α(Y ) + β(X)).

The pairing, through its associated Clifford algebra,
determines a way to derive the so-called Dorfman bracket:

[X + α, Y + β]D := [X, Y ]Lie +£Xβ − ιY dα.

In our new theory, the focus is on the canonical
skew-symmetric pairing ⟨ , ⟩−:

⟨X + α, Y + β⟩− :=
1

2
(α(Y )− β(X)).

The pairing, through its associated Weyl algebra,
and the symmetric Cartan calculus together give rise
to a new bracket and a new generalized geometry.

Generalized geometry is nowadays a well-established field of mathematics with many applications, so far, in symplectic and
complex geometry, mechanics, string theory (supergravity, mirror symmetry,. . . ), global analysis.
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