
Symmetric Poisson geometry

Filip Moučka

(joint work with Roberto Rubio)

44th Winter School Geometry and Physics
Srńı
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Poisson geometry

Poisson geometry originates from the mathematical formulation of classical mechanics.

Given a bivector field π ∈ Γ(∧2T ), consider the maps:

{ , }: ×2C∞(M) → C∞(M), Ham: C∞(M) → Γ(T ).

(f, g) 7−→ π(df, dg) f 7−→ ιdfπ= {f, }

We have the following series of equivalences:

Jac{ , } = 0 ⇔ Ham{f, g} = [Ham f,Ham g]Lie ⇔ [π, π]Sc = 0.

The Schouten bracket on Γ(∧•T ) is the unique map [ , ]Sc : ×2Γ(∧•T ) → Γ(∧•T ) s.t.

1. [X , ]Sc is a degree-(|X | − 1)

graded derivation of Γ(∧•T ),

2. [X, ]Sc = £X ,

3. [X ,Y]Sc = −(−1)(|X|−1)(|Y|−1)[Y,X ]Sc.

A Poisson structure is π ∈ Γ(∧2T ) s.t. [π, π]Sc = 0.

Equivalently, a Poisson structure is an R-bilinear map { , } : ×2C∞(M) → C∞(M) s.t.

{f, g} = −{g, f}, {f, gh} = g{f, h}+ {f, g}h, Jac{ , } = 0.



Relation between Poisson and symplectic geometry

If π ∈ Γ(∧2T ) is non-degenerate, ω := π−1∈ Γ(∧2T ∗), then

[π, π]Sc = 0 ⇔ dω = 0.

A symplectic structure is a non-degenerate ω ∈ Γ(∧2T ∗) s.t. dω = 0.



Motivation

From a mathematical point of view, there is a very natural question:

What happens when instead of π ∈ Γ(∧2T ) one has ϑ ∈ Γ(⊙2T )?

Given a symmetric bivector field ϑ ∈ Γ(⊙2T ), consider the maps:

{ , } : ×2C∞(M) → C∞(M), grad : C∞(M) → Γ(T ).

(f, g) 7−→ ϑ(df, dg) f 7−→ ιdfϑ = {f, }

Naively, one can ask

Jac{ , } = 0 ⇔ ϑ = 0,

grad{f, g} = [grad f, grad g]Lie ⇔ ϑ = 0,

[ϑ, ϑ]Sc = 0 ⇔ ϑ is arbitrary.

The Schouten bracket on Γ(⊙•T ) is the unique map [ , ]Sc : ×2Γ(⊙•T ) → Γ(⊙•T ) s.t.

1. [X , ]Sc is a degree-(|X | − 1)

derivation of Γ(⊙•T ),

2. [X, ]Sc = £X ,

3. [X ,Y]Sc = −[Y,X ]Sc.

Non-degenerate case? The exterior derivative cannot act on the elements of Γ(⊙•T ∗).



Any way out?

Recall three ways that lead to the notion of Poisson structure:

1. [π, π]Sc = 0,

2. Ham{f, g} = [Ham f,Ham g]Lie,

3. non-degenerate case: dω = 0, where ω := π−1.

The way out is to find analogues of d, £X , and [ , ]Lie!



Symmetric derivative

There is a unique degree-1 graded derivation d of Γ(∧•T ∗) s.t.

(df)(X) = Xf, d ◦ d = 0.

It is called the exterior derivative.

Analogue on Γ(⊙•T ∗)?

Def. The symmetric derivative corresponding to a connection ∇,

∇s :=
⊕
k∈Z

(k + 1) · Sym ◦∇.

Prop. There is one-to-one correspondence between torsion-free connections and
degree-1 derivations D of Γ(⊙•T ∗) s.t.

(Df)(X) = Xf.

Prop. There is no degree-1 derivation D of Γ(⊙•T ∗) s.t.

(Df)(X) = Xf, D ◦D = 0.

The covariant gradient ∇ : Γ(⊗•T∗) → Γ(⊗•T∗):

∇(Γ(⊗k
T

∗
)) ⊆ Γ(⊗k+1

T
∗
), (∇A)(X,X1, . . . , Xk) := (∇XA)(X1, . . . , Xk).



Analogue of closed forms?

A Killing structure is a pair (∇,K) consisting of a torsion-free connection ∇ and
K ∈ Γ(⊙•T ∗) s.t.

∇sK = 0.

A Killing structure (∇,K) induces the function fK ∈ C∞(TM)

fK((p, v)) := Kp(v, . . . , v) for all (p, v) ∈ TM,

that is constant along every geodesic of ∇.

Killing tensors are used in general relativity (Carter tensor in Kerr-Newman spacetime),
integrable systems (separability of Hamilton-Jacobi eq.),
cosmology (FLRW spacetimes),
. . .



Symmetric Lie derivative

The Lie derivative w.r.t. X ∈ Γ(T ):

£X := [ιX , d]g = ιX ◦ d+d ◦ ιX .

Def. The symmetric Lie derivative corresponding to ∇s w.r.t. X ∈ Γ(T ):

£∇s

X := [ιX ,∇s] = ιX ◦ ∇s −∇s ◦ ιX .

Prop. (£∇s

X σ)p = lim
t→0

1

t

(
P γ

2t,0

(
ΨX

−t

)∗
ΨX

2t(p)
σ
ΨX

t
(p)

− σp

)
.



Symmetric Lie derivative

(£∇s

X σ)p = lim
t→0

1

t

(
P γ

2t,0

(
ΨX

−t

)∗
ΨX

2t(p)
σ
ΨX

t
(p)

− σp

)

(£Xφ)p = lim
t→0

1

t

((
ΨX

t

)∗
p
φ
ΨX

t
(p)

− φp

)



∇s-Schouten bracket

Prop. Given a symmetric derivative ∇s, there is a unique map

[ , ]∇s -Sc : ×2Γ(⊙•T ) → Γ(⊙•T )

s.t.

1. [X , ]∇s -Sc is a degree-(|X | − 1)

derivation of Γ(⊙•T ),

2. [X, ]∇s -Sc = £∇s

X ,

3. [X ,Y]∇s -Sc = [Y,X ]∇s -Sc.

We call it the ∇s-Schouten bracket.

Prop. Let G be a (pseudo-)Riemannian metric and X ∈ Γ(⊙•T ). Then

[X , G−1]G∇s -Sc
= 0 ⇔ G∇sG∗X = 0

(i.e. G∗X ∈ Γ(⊙•T ∗) is a Killing tensor of G).



Symmetric bracket

The Lie bracket of vector fields is the R-bilinear map

[ , ]Lie : ×2Γ(T ) → Γ(T )

given by
ι[X,Y ]Lie := [£X , ιY ]g = £X ◦ ιY −ιY ◦£X .

Explicitly: [X,Y ]Lie = X ◦ Y − Y ◦X.

[X,Y ]Lie|p = (£XY )p = lim
t→0

1

t

((
ΨX

−t

)
∗ΨX

t (p)
Y
ΨX

t
(p)

− Yp

)
.

Def. The symmetric bracket corresponding to ∇s is the R-bilinear map

⟨ : ⟩∇s : ×2Γ(T ) → Γ(T )

given by
ι⟨X:Y ⟩∇s := [£∇s

X , ιY ] = £∇s

X ◦ ιY − ιY ◦£∇s

X .

Explicitly: ⟨X : Y ⟩∇s = ∇XY +∇Y X.

Prop. ⟨X : Y ⟩∇s |
p
= (£∇s

X Y )p = lim
t→0

1

t

(
P γ

2t,0

(
ΨX

t

)
∗ΨX

t (p)
Y
ΨX

t
(p)

− Yp

)
.



Back to bivector fields

[π, π]Sc = 0 (£X ⇝ £∇s

X ) [ϑ, ϑ]∇s -Sc = 0,

Ham{f, g} = [Ham f,Ham g]Lie ([ , ]Lie ⇝ ⟨ , ⟩∇s ) grad{f, g} = ⟨grad f, grad g⟩∇s ,

dω = 0 (d⇝ ∇s) ∇sG = 0.

Prop. Let ∇ be a torsion-free connection and ϑ ∈ Γ(⊙2T ). Then

[ϑ, ϑ]∇s -Sc = 0 ⇔ (∇grad fϑ)(dg,dh) + cyclic(f, g, h) = 0,

⇔ Jac{ , }(f, g, h) = dh(⟨grad f : grad g⟩∇s ) + cyclic(f, g, h).

Prop. Let ∇ be a torsion-free connection and ϑ ∈ Γ(⊙2T ). Then

[ϑ, ϑ]∇s -Sc = 0 ⇐
⇏

grad{f, g} = ⟨grad f : grad g⟩∇s ⇔ ∇grad f ϑ = 0.

Def. A symmetric Poisson structure is a pair (∇, ϑ) consisting of a torsion-free
connection ∇ and ϑ ∈ Γ(⊙2T ) s.t. [ϑ, ϑ]∇s -Sc = 0.

Def. A strong symmetric Poisson structure is a pair (∇, ϑ) consisting of a
torsion-free connection ∇ and ϑ ∈ Γ(⊙2T ) s.t. ∇grad f ϑ = 0.



Non-degenerate symmetric Poisson structures

Prop. Let ∇ be a torsion-free connection and ϑ ∈ Γ(⊙2T ) be non-degenerate,
G := ϑ−1∈ Γ(⊙2T ∗). Then

∇sG = 0 ⇔ [ϑ, ϑ]∇s -Sc = 0.

non-degenerate symmetric Poisson structures

1 : 1

non-degenerate 2-Killing structures

Prop. Let ∇ be a torsion-free connection and ϑ ∈ Γ(⊙2T ) be non-degenerate,
G := ϑ−1∈ Γ(⊙2T ∗). Then

∇grad f ϑ = 0 ⇔ ∇ϑ = 0 ⇔ ∇G = 0 ⇔ ∇ is the Levi-Civita connection of G.

non-degenerate strong symmetric Poisson structures

1 : 1

(pseudo-)Riemannian structures



(Strong) symmetric Poisson, Killing, and (pseudo-)Riemannian structures



Comparison of symmetric Poisson and Poisson structures



Patterson-Walker metric

Given a torsion-free connection ∇ on M , one can construct (pseudo-)Riemannian
metric G∇ ∈ Γ(⊙2T ∗(T ∗M)), the so-called Patterson-Walker metric.

In natural coordinates, it is given by

G∇|
U

= dxj ⊙ dpj − pkΓ
k
ljdx

l ⊙ dxj .

It gives us the bracket { , }∇ : ×2C∞(T ∗M) → C∞(T ∗M),

{f, g}∇|U =
∂f

∂xj

∂g

∂pj

+
∂f

∂pj

∂g

∂xj
+ 2pkΓ

k
lj

∂f

∂pl

∂g

∂pj

.

Compare with the canonical symplectic structure ωcan ∈ Γ(∧2T ∗(T ∗M)),

ωcan|U = dxj ∧ dpj ,

and the canonical Poisson bracket { , }can : ×2C∞(T ∗M) → C∞(T ∗M),

{f, g}can|U =
∂f

∂xj

∂g

∂pj

−
∂f

∂pj

∂g

∂xj
.



How does it relate to symmetric Poisson structures?

Every X ∈ Γ(⊙kT ) induces a smooth function ΦX ∈ C∞(T ∗M),

ΦX ((p, α)) :=
1

k!
Xp(α, . . . , α) for all (p, α) ∈ T ∗M .

Prop. The map Φ : Γ(⊙•T ) → C∞(T ∗M) is a C∞(M)-module morphism and satisfies

1. ΦX⊙Y = ΦXΦY , 2. Φ[X ,Y]∇s -Sc
= {ΦX ,ΦY}∇.

Given a symmetric Poisson structure (∇, ϑ) it follows that

{Φϑ,Φϑ}∇ = Φ[ϑ,ϑ]∇s -Sc
= 0 ⇔ Φϑ is constant along integral curves of

grad∇ Φϑ = {Φϑ, }∇.

In natural coordinates, we have

grad∇ Φϑ|U =
∂Φϑ

∂pj

∂

∂xj
+

(
∂Φϑ

∂xj
+ 2pkΓ

k
lj

∂Φϑ

∂pl

)
∂

∂pj

.

Therefore, the integral curves are given by ODEs

ẋj = ϑjkpk

ṗj =

(
1

2

∂ ϑkl

∂xj
+ 2Γk

mjϑ
ml

)
pkpl ⇒ (∇ẋẋ)

j =
1

2
([ϑ, ϑ]∇s -Sc)

jklpkpl = 0.

(geodesic equation)



Outlook

Symmetric Poisson geometry extends (pseudo-)Riemannian geometry while bringing in
features of Poisson geometry. It has the potential to blend these two areas.

• Analogue of Weinstein’s splitting theorem?

• Symmetric Poisson cohomology?

• Flat symmetric Poisson structures?
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