Symmetric Poisson geometry

Filip Moučka

(joint work with Roberto Rubio)

44th Winter School Geometry and Physics Srní January 18, 2024

Poisson geometry

Poisson geometry originates from the mathematical formulation of classical mechanics.

Given a bivector field $\pi \in \Gamma(\wedge^2 T)$, consider the maps:

 $\{ \ , \ \}: \times^2 C^{\infty}(M) \to C^{\infty}(M), \qquad \qquad \text{Ham: } C^{\infty}(M) \to \Gamma(T).$ $(f,g) \longmapsto \pi(\mathrm{d}f,\mathrm{d}g) \qquad \qquad f \longmapsto \iota_{\mathrm{d}f}\pi = \{f, \ \}$

We have the following series of equivalences:

 $\operatorname{Jac}_{\{\ ,\ \}}=0 \qquad \Leftrightarrow \qquad \operatorname{Ham}\{f,g\}=[\operatorname{Ham} f,\operatorname{Ham} g]_{\operatorname{Lie}} \qquad \Leftrightarrow \qquad [\pi,\pi]_{\operatorname{Sc}}=0.$

The Schouten bracket on $\Gamma(\wedge^{\bullet}T)$ is the unique map $[,]_{Sc} : \times^{2}\Gamma(\wedge^{\bullet}T) \to \Gamma(\wedge^{\bullet}T)$ s.t.

1. $[\mathcal{X},]_{sc}$ is a degree- $(|\mathcal{X}| - 1)$ graded derivation of $\Gamma(\wedge^{\bullet}T)$, 2. $[X,]_{sc} = \pounds_X$, 3. $[\mathcal{X}, \mathcal{Y}]_{sc} = -(-1)^{(|\mathcal{X}| - 1)(|\mathcal{Y}| - 1)}[\mathcal{Y}, \mathcal{X}]_{sc}$.

A Poisson structure is $\pi \in \Gamma(\wedge^2 T)$ s.t. $[\pi, \pi]_{sc} = 0$.

Equivalently, a Poisson structure is an \mathbb{R} -bilinear map $\{, \}: \times^2 C^{\infty}(M) \to C^{\infty}(M)$ s.t.

$$\{f,g\} = -\{g,f\}, \qquad \quad \{f,gh\} = g\{f,h\} + \{f,g\}h, \qquad \quad \operatorname{Jac}_{\{-,-\}} = 0.$$

Relation between Poisson and symplectic geometry

If $\pi \in \Gamma(\wedge^2 T)$ is non-degenerate, $\omega := \pi^{-1} \in \Gamma(\wedge^2 T^*)$, then

 $[\pi,\pi]_{\scriptscriptstyle{\mathrm{Sc}}}=0 \qquad \Leftrightarrow \qquad \mathrm{d}\omega=0.$

A symplectic structure is a non-degenerate $\omega \in \Gamma(\wedge^2 T^*)$ s.t. $d\omega = 0$.

Motivation

From a mathematical point of view, there is a very natural question:

What happens when instead of $\pi \in \Gamma(\wedge^2 T)$ one has $\vartheta \in \Gamma(\odot^2 T)$?

Given a symmetric bivector field $\vartheta \in \Gamma(\odot^2 T)$, consider the maps:

 $\{ \ , \ \} : \times^2 C^{\infty}(M) \to C^{\infty}(M), \qquad \qquad \text{grad} : C^{\infty}(M) \to \Gamma(T).$ $(f,g) \longmapsto \vartheta(\mathrm{d}f,\mathrm{d}g) \qquad \qquad f \longmapsto \iota_{\mathrm{d}f}\vartheta = \{f, \ \}$

Naively, one can ask

$$\begin{split} & \operatorname{Jac}_{\{\ ,\ \}} = 0 & \Leftrightarrow & \vartheta = 0, \\ & \operatorname{grad}\{f,g\} = [\operatorname{grad} f, \operatorname{grad} g]_{\operatorname{Lie}} & \Leftrightarrow & \vartheta = 0, \\ & [\vartheta,\vartheta]_{\operatorname{Sc}} = 0 & \Leftrightarrow & \vartheta \text{ is arbitrary.} \end{split}$$

The Schouten bracket on $\Gamma(\odot^{\bullet}T)$ is the unique map $[,]_{Sc} : \times^{2}\Gamma(\odot^{\bullet}T) \to \Gamma(\odot^{\bullet}T)$ s.t.

Non-degenerate case? The exterior derivative cannot act on the elements of $\Gamma(\odot^{\bullet}T^*)$.

Any way out?

Recall three ways that lead to the notion of Poisson structure:

1. $[\pi,\pi]_{\rm Sc}=0$,

- 2. $\operatorname{Ham}\{f, g\} = [\operatorname{Ham} f, \operatorname{Ham} g]_{\operatorname{Lie}}$,
- 3. non-degenerate case: $d\omega = 0$, where $\omega := \pi^{-1}$.

The way out is to find analogues of d, \pounds_X , and $[,]_{\text{Lie}}!$

Symmetric derivative

There is a unique degree-1 graded derivation d of $\Gamma(\wedge^{\bullet}T^*)$ s.t.

$$(\mathrm{d}f)(X) = Xf, \qquad \qquad \mathrm{d} \circ \mathrm{d} = 0.$$

It is called the exterior derivative.

Analogue on $\Gamma(\odot^{\bullet}T^*)$?

Def. The symmetric derivative corresponding to a connection ∇ ,

$$\nabla^s := \bigoplus_{k \in \mathbb{Z}} (k+1) \cdot \operatorname{Sym} \circ \nabla.$$

Prop. There is one-to-one correspondence between torsion-free connections and degree-1 derivations D of $\Gamma(\odot^{\bullet}T^*)$ s.t.

$$(Df)(X) = Xf.$$

Prop. There is **no** degree-1 derivation D of $\Gamma(\odot^{\bullet}T^*)$ s.t.

$$(Df)(X) = Xf, \qquad D \circ D = 0.$$

The covariant gradient $\nabla : \Gamma(\otimes^{\bullet} T^*) \to \Gamma(\otimes^{\bullet} T^*)$:

 $\nabla(\Gamma(\otimes^k T^*)) \subseteq \Gamma(\otimes^{k+1} T^*), \qquad (\nabla A)(X, X_1, \dots, X_k) := (\nabla_X A)(X_1, \dots, X_k).$

Analogue of closed forms?

A Killing structure is a pair (∇, K) consisting of a torsion-free connection ∇ and $K \in \Gamma(\odot^{\bullet}T^*)$ s.t.

$$\nabla^s K = 0.$$

A Killing structure (∇, K) induces the function $f_K \in C^{\infty}(TM)$

$$f_K((p,v)) := K_p(v,\ldots,v)$$
 for all $(p,v) \in TM_p$

that is constant along every geodesic of ∇ .

Killing tensors are used in general relativity (Carter tensor in Kerr-Newman spacetime), integrable systems (separability of Hamilton-Jacobi eq.), cosmology (FLRW spacetimes),

Symmetric Lie derivative

The Lie derivative w.r.t. $X \in \Gamma(T)$:

$$\pounds_X := [\iota_X, \mathbf{d}]_{\mathbf{g}} = \iota_X \circ \mathbf{d} + \mathbf{d} \circ \iota_X.$$

Def. The symmetric Lie derivative corresponding to ∇^s w.r.t. $X \in \Gamma(T)$:

$$\pounds_X^{\nabla^s} := [\iota_X, \nabla^s] = \iota_X \circ \nabla^s - \nabla^s \circ \iota_X$$

 $\mathbf{Prop.} \ (\pounds_X^{\nabla^s} \sigma)_p = \lim_{t \to 0} \frac{1}{t} \left(P_{2t,0}^{\gamma} \left(\Psi_{-t}^X \right)_{\Psi_{2t}^X(p)}^* \sigma_{\Psi_t^X(p)} - \sigma_p \right).$

Symmetric Lie derivative

∇^s -Schouten bracket

Prop. Given a symmetric derivative ∇^s , there is a unique map

$$[\ ,\]_{\nabla^{S}\operatorname{-Sc}}:\times^{2}\Gamma(\odot^{\bullet}T)\to\Gamma(\odot^{\bullet}T)$$

s.t.

We call it the ∇^s -Schouten bracket.

Prop. Let G be a (pseudo-)Riemannian metric and $\mathcal{X} \in \Gamma(\odot^{\bullet}T)$. Then

Symmetric bracket

The Lie bracket of vector fields is the \mathbb{R} -bilinear map

$$[,]_{\text{Lie}}: \times^2 \Gamma(T) \to \Gamma(T)$$

given by

$$\iota_{[X,Y]_{\mathrm{Lie}}} := [\pounds_X, \iota_Y]_{\mathrm{g}} = \pounds_X \circ \iota_Y - \iota_Y \circ \pounds_X.$$

Explicitly: $[X, Y]_{\text{Lie}} = X \circ Y - Y \circ X.$

$$[X,Y]_{\text{Lie}}|_{p} = (\pounds_{X}Y)_{p} = \lim_{t \to 0} \frac{1}{t} \left(\left(\Psi_{-t}^{X} \right)_{*\Psi_{t}^{X}(p)} Y_{\Psi_{t}^{X}(p)} - Y_{p} \right).$$

Def. The symmetric bracket corresponding to ∇^s is the \mathbb{R} -bilinear map

$$\langle : \rangle_{\nabla^s} : \times^2 \Gamma(T) \to \Gamma(T)$$

given by

$$\iota_{\langle X:Y\rangle_{\nabla^s}} := [\pounds_X^{\nabla^s}, \iota_Y] = \pounds_X^{\nabla^s} \circ \iota_Y - \iota_Y \circ \pounds_X^{\nabla^s}.$$

Explicitly: $\langle X:Y\rangle_{\nabla^s} = \nabla_X Y + \nabla_Y X.$

$$\mathbf{Prop.} \ \langle X:Y\rangle_{\nabla^S}|_p = (\pounds_X^{\nabla^S}Y)_p = \lim_{t\to 0} \frac{1}{t} \left(P_{2t,0}^{\gamma} \left(\Psi_t^X\right)_{*\Psi_t^X(p)} Y_{\Psi_t^X(p)} - Y_p\right).$$

Back to bivector fields

$$\begin{split} & [\pi,\pi]_{\mathsf{sc}} = 0 & (\pounds_X \rightsquigarrow \pounds_X^{\nabla^S}) & [\vartheta,\vartheta]_{\nabla^S,\mathsf{sc}} = 0, \\ & \operatorname{Ham}\{f,g\} = [\operatorname{Ham} f, \operatorname{Ham} g]_{\mathsf{Lie}} & ([\ ,\]_{\mathsf{Lie}} \rightsquigarrow \langle \ ,\ \rangle_{\nabla^S}) & \operatorname{grad}\{f,g\} = \langle \operatorname{grad} f, \operatorname{grad} g \rangle_{\nabla^S} \\ & d\omega = 0 & (d \rightsquigarrow \nabla^s) & \nabla^s G = 0. \end{split}$$

Prop. Let ∇ be a torsion-free connection and $\vartheta \in \Gamma(\odot^2 T)$. Then

$$\begin{split} [\vartheta,\vartheta]_{\nabla^{s}\text{-}\mathsf{Sc}} &= 0 \qquad \Leftrightarrow \qquad (\nabla_{\operatorname{grad} f} \vartheta)(\mathrm{d}g,\mathrm{d}h) + \operatorname{cyclic}(f,g,h) = 0, \\ &\Leftrightarrow \qquad \operatorname{Jac}_{\{\ ,\ \}}(f,g,h) = \mathrm{d}h(\langle \operatorname{grad} f: \operatorname{grad} g \rangle_{\nabla^{s}}) + \operatorname{cyclic}(f,g,h). \end{split}$$

Prop. Let ∇ be a torsion-free connection and $\vartheta \in \Gamma(\odot^2 T)$. Then

$$[\vartheta,\vartheta]_{\nabla^{S}\mathsf{.sc}} = 0 \qquad \Leftarrow \qquad \operatorname{grad} \{f,g\} = \langle \operatorname{grad} f : \operatorname{grad} g \rangle_{\nabla^{S}} \qquad \Leftrightarrow \qquad \nabla_{\operatorname{grad} f} \vartheta = 0.$$

Def. A symmetric Poisson structure is a pair (∇, ϑ) consisting of a torsion-free connection ∇ and $\vartheta \in \Gamma(\odot^2 T)$ s.t. $[\vartheta, \vartheta]_{\nabla^{S,S_c}} = 0$.

Def. A strong symmetric Poisson structure is a pair (∇, ϑ) consisting of a torsion-free connection ∇ and $\vartheta \in \Gamma(\odot^2 T)$ s.t. $\nabla_{\text{grad } f} \vartheta = 0$.

Non-degenerate symmetric Poisson structures

Prop. Let ∇ be a torsion-free connection and $\vartheta \in \Gamma(\odot^2 T)$ be non-degenerate, $G := \vartheta^{-1} \in \Gamma(\odot^2 T^*)$. Then

 $\nabla^s G = 0 \qquad \Leftrightarrow \qquad [\vartheta, \vartheta]_{\nabla^s \cdot \mathsf{Sc}} = 0.$

non-degenerate symmetric Poisson structures

(1:1)

non-degenerate 2-Killing structures

Prop. Let ∇ be a torsion-free connection and $\vartheta \in \Gamma(\odot^2 T)$ be non-degenerate, $G := \vartheta^{-1} \in \Gamma(\odot^2 T^*)$. Then

 $\nabla_{\operatorname{grad} f} \vartheta = 0 \quad \Leftrightarrow \quad \nabla \vartheta = 0 \quad \Leftrightarrow \quad \nabla G = 0 \quad \Leftrightarrow \quad \nabla \text{ is the Levi-Civita connection of } G.$

non-degenerate strong symmetric Poisson structures

(1:1)

(pseudo-)Riemannian structures

(Strong) symmetric Poisson, Killing, and (pseudo-)Riemannian structures

Comparison of symmetric Poisson and Poisson structures

Patterson-Walker metric

Given a torsion-free connection ∇ on M, one can construct (pseudo-)Riemannian metric $G_{\nabla} \in \Gamma(\odot^2 T^*(T^*M))$, the so-called Patterson-Walker metric.

In natural coordinates, it is given by

$$G_{\nabla}|_{U} = \mathrm{d}x^{j} \odot \mathrm{d}p_{j} - p_{k} \Gamma^{k}{}_{lj} \mathrm{d}x^{l} \odot \mathrm{d}x^{j}.$$

It gives us the bracket $\{\ ,\ \}_{\nabla}:\times^{\scriptscriptstyle 2} C^\infty(T^*M)\to C^\infty(T^*M),$

$$\{f,g\}_{\nabla}|_{U} = \frac{\partial f}{\partial x^{j}}\frac{\partial g}{\partial p_{j}} + \frac{\partial f}{\partial p_{j}}\frac{\partial g}{\partial x^{j}} + 2p_{k}\Gamma^{k}_{\ lj}\frac{\partial f}{\partial p_{l}}\frac{\partial g}{\partial p_{j}}$$

Compare with the canonical symplectic structure $\omega_{can} \in \Gamma(\wedge^2 T^*(T^*M))$,

$$\omega_{\rm can}|_U = \mathrm{d} x^j \wedge \mathrm{d} p_j,$$

and the canonical Poisson bracket $\{ \ , \ \}_{\text{\tiny can}} : \times^2 C^{\infty}(T^*M) \to C^{\infty}(T^*M)$,

$$\{f,g\}_{\operatorname{can}}|_U = \frac{\partial f}{\partial x^j}\frac{\partial g}{\partial p_j} - \frac{\partial f}{\partial p_j}\frac{\partial g}{\partial x^j}.$$

How does it relate to symmetric Poisson structures?

Every $\mathcal{X} \in \Gamma(\odot^k T)$ induces a smooth function $\Phi_{\mathcal{X}} \in C^{\infty}(T^*M)$,

$$\Phi_{\mathcal{X}}((p,\alpha)) := \frac{1}{k!} \mathcal{X}_p(\alpha, \dots, \alpha) \qquad \qquad \text{for all } (p,\alpha) \in T^*M.$$

Prop. The map $\Phi: \Gamma(\odot^{\bullet}T) \to C^{\infty}(T^*M)$ is a $C^{\infty}(M)$ -module morphism and satisfies

1.
$$\Phi_{\mathcal{X} \odot \mathcal{Y}} = \Phi_{\mathcal{X}} \Phi_{\mathcal{Y}}$$
, 2. $\Phi_{[\mathcal{X}, \mathcal{Y}]_{\nabla^{S}, Sc}} = \{\Phi_{\mathcal{X}}, \Phi_{\mathcal{Y}}\}_{\nabla}$

Given a symmetric Poisson structure (∇, ϑ) it follows that

In natural coordinates, we have

$$\operatorname{grad}_{\nabla} \Phi_{\vartheta}|_{U} = \frac{\partial \Phi_{\vartheta}}{\partial p_{j}} \frac{\partial}{\partial x^{j}} + \left(\frac{\partial \Phi_{\vartheta}}{\partial x^{j}} + 2p_{k} \Gamma^{k}_{\ lj} \frac{\partial \Phi_{\vartheta}}{\partial p_{l}} \right) \frac{\partial}{\partial p_{j}}$$

Therefore, the integral curves are given by ODEs

$$\begin{split} \dot{x}^{j} &= \vartheta^{jk} p_{k} \\ \dot{p}_{j} &= \left(\frac{1}{2} \frac{\partial \vartheta^{kl}}{\partial x^{j}} + 2\Gamma^{k}{}_{mj} \vartheta^{ml}\right) p_{k} p_{l} \qquad \Rightarrow \qquad (\nabla_{x} \dot{x})^{j} = \frac{1}{2} ([\vartheta, \vartheta]_{\nabla^{s} \cdot s_{c}})^{jkl} p_{k} p_{l} = 0. \\ (\text{geodesic equation}) \end{split}$$

Outlook

Symmetric Poisson geometry extends (pseudo-)Riemannian geometry while bringing in features of Poisson geometry. It has the potential to blend these two areas.

- Analogue of Weinstein's splitting theorem?
- Symmetric Poisson cohomology?
- Flat symmetric Poisson structures?

Thank you for your attention!

This research has been supported by the Spanish State Research Agency under the grant PID2022-137667NA-I00.