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Goals of the talk

Goal

Introduce new invariants of Courant algebroids

This will include:

(A) Explicit/hands-on description of Courant differential complex
and their associated cohomology (usual descriptions are
abstract and hard to work with).

(B) Representations of Courant algebroids (via connections).

(C) Intrinsic Characteristic classes.
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Analogous picture for Lie algebroids

(A) Let (A, ρ, [·, ·]) be a Lie algebroid.

C∞(M)→ ΓA∗ → Γ
∧2

A∗ → · · ·

is a complex

with differential:

dω(a0, · · · , ak) =
k∑

i=0

(−1)iρ(ai )ω(a0, · · · , âi , · · · , ak)

+
∑
i<j

(−1)i+1ω(a0, · · · , âi , · · · , [ai , aj ], · · · , ak)

(B) Representations ⇐⇒ vector bundles with a flat A−connection.

(C) Characteristic classes are obtained from the adjoint
representation up to homotopy, as done by Crainic-Fernandes.
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Motivating example of Courant algebroid

(TM ⊕ T ∗M, 〈·, ·〉, J·, ·K, ρ = pTM) where

JX + α,Y + βK = [X ,Y ] + LXβ − diYα

This bracket originally appeared in constrained mechanical systems
Courant-Weinstein, Dorfman.

The integrability of many geometric structures is encoded in the
involutivity of maximal isotropic subbundles L ⊆ TM ⊕ T ∗M with
respect to J·, ·K.

In the complex case, this gives rise to Generalized Complex
Geometry.
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Definition of Courant algebroids

Vector Bundle E → M with the following structure:

I 〈·, ·〉 nondegenerate symmetric pairing.

I ρ : E → TM a bundle map.

I J·, ·K a bracket.

Satisfiyng:

1. Je1, Je2, e3KK = JJe1, e2K, e3K + Je2, Je1, e3KK,

2. Je1, fe2K = ρ(e1)(f )e2 + f Je1, e2K,

3. ρ(e1)〈e2, e3〉 = 〈Je1, e2K, e3〉+ 〈e2, Je1, e3K〉,
4. Je1, e2K + Je2, e1K = D〈e1, e2〉,

where D : C∞(M)→ Γ(E ) is given by 〈Df , e〉 = ρ(e)(f ).

This is due to Liu-Weinstein-Xu, 1997.



More Examples

I Quadratic Lie algebras (g, 〈·, ·〉, [·, ·], ρ = 0)

I (TM ⊕ T ∗M, 〈·, ·〉, J·, ·K, ρ = pTM) where

JX + α,Y + βK = [X ,Y ] + LXβ − diYα + iX iYH

I More generally, A⊕ A∗ for a Lie bialgebroid.

Other motivations for Courant algebroids:

I Target of Topological Field Theories of AKSZ type:
Chern-Simos theory.

I Quasi-Hamiltonian spaces, Poisson-Lie T-duality.

I Manin triples and Drinfield doubles.

I Vertex algebras.

I Higher homotopy structures.
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Courant connections
Alekseev-Xu

(E → M, 〈·, ·〉, J·, ·K, ρ) Courant algebroid, B → M vector bundle.

An E -connection is ∇ : ΓE × ΓB → ΓB such that

∇feb = f∇eb ∇e(fb) = f∇eb + ρ(e)(f )b.

The curvature is

F∇(e1, e2)(b) = [∇e1 ,∇e2 ](b)−∇Je1,e2Kb.

Questions:

I Why F∇(fe1, e2) 6= f F∇(e1, e2)?

I Where does it lives?

I Cartan calculus for E?
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Theorem (Roytenberg, Severa)

Courant algebroids are in one-to-one correspondence with degree 2
symplectic Q-manifolds.

(E , 〈··〉, J·, ·K, ρ)⇐⇒ (M, {·, ·},Q)

Examples:

I TM ⊕ T ∗M corresponds to T ∗[2]T [1]M

I g corresponds to g[1]

In general, the correspondence was only implicitly defined:
E corresponds to the minimal symplectic realization of E [1].

The Q-structure defines a complex

Ok
M

Q−→ Ok+1
M ,

Questions:

I How to find an easy-to-work description?

I Any Cartan-type formula for the differential?
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Keller-Waldmann Algebra

Given a vector bundle with nondegenerate pairing (E → M, 〈·, ·〉) ,
define k-cochains as maps

ω : Γ(E )× · · · × Γ(E )︸ ︷︷ ︸
k

→ C∞(M)

I C∞(M)-linear in the last entry

I There exists a map

σω : Γ(E )× · · · × Γ(E )︸ ︷︷ ︸
k−2

→ X(M)

such that

ω(e1, . . . , ei , ei+1, . . . , ek) + ω(e1, . . . , ei+1, ei , . . . , ek)

= σω(e1, ˆ. . . ˆ. . ., ek)(〈ei , ei+1〉)

The space of cochains is denoted C •(E ). It is a graded
commutative algebra with a degree −2 Poisson bracket.
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Courant algebroid differential

If E → M is a Courant algebroid, then

T (e1, e2, e3) = 〈Je1, e2K, e3〉 ∈ C 3(E ).

Courant axioms ⇐⇒ {T ,T} = 0

dE = {T , ·} is a differential on C •(E ).

Result 1: Let E → M a Courant algebroid.
The dg-algebras (OM,Q) and (C •(E ), dE ) are ismorphic via

Υ(ψ)(e1, · · · , ek) = {ek , {ek−1, · · · {e1, ψ}, · · · }.

Keller-Waldmann introduced C •(E ) in an algebraic setting where
the correspondence with Q-manifolds doesn’t apply.



Courant algebroid differential

If E → M is a Courant algebroid, then

T (e1, e2, e3) = 〈Je1, e2K, e3〉 ∈ C 3(E ).

Courant axioms ⇐⇒ {T ,T} = 0

dE = {T , ·} is a differential on C •(E ).

Result 1: Let E → M a Courant algebroid.
The dg-algebras (OM,Q) and (C •(E ), dE ) are ismorphic via

Υ(ψ)(e1, · · · , ek) = {ek , {ek−1, · · · {e1, ψ}, · · · }.

Keller-Waldmann introduced C •(E ) in an algebraic setting where
the correspondence with Q-manifolds doesn’t apply.



Cartan calculus

Result 2: The differential satisfies the Cartan formula

dEω(e0, · · · , ek) =
k∑

i=0

(−1)iρ(ei )ω(e0, · · · , êi , · · · , ek)

+
∑
i<j

(−1)i+1ω(e0, · · · , êi , · · · , Jei , ejK, · · · , ek).

If we introduce contractions and Lie derivatives

(ιeω)(e1, · · · , ek−1) = ω(e, e1, · · · , ek−1), Leω = {{e,T}, ω}.

Result 3: The following Cartan relations hold

d2
E = 0 [Le , dE ] = 0

[ιe , dE ] = Le [Le ,Le′ ] = LJe,e′K
[Le , ιe′ ] = ιJe,e′K

Warning: [ιe , ιe′ ] 6= 0.
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E-connections

For ∇ an E -connection on B define D∇ : C •(E ;B)→ C •+1(E ;B)

D∇ω(e0, · · · , ek) =
k∑

i=0

(−1)i∇eiω(e0, · · · , êi , · · · , ek)

+
∑
i<j

(−1)i+1ω(e0, · · · , êi , · · · , Jei , ejK, · · · , ek)

Result 4: There is a correspondence between:

I ∇ E -connections on B.

I D differentials on C •(E ;B) with D(ω^τ)=dEω^τ+(−1)kω^Dτ .

Result 5: For ∇ an E -conenction on B the curvature F∇ satisfy

I F∇ ∈ C 2(E ; End(B)).

I The Bianchi identity D∇̃F∇ = 0.
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Adjoint connections I
Let ∇̂ be a linear connection on E . Then we can define an
E -connection ∇E on E by:

∇E
e1e2 = Je1, e2K + ∇̂ρ(e2)e1 − ρ

∗〈D∇̂e1, e2〉.

∇E is compatible with the pairing:

〈∇E
e1e2, e3〉+ 〈e2,∇E

e1e3〉 = ρ(e1)〈e2, e3〉 (∗∗)

But not flat!

Examples:

I E = (g, [·, ·], 〈·, ·〉) ∇E
e1e2 = [e1, e2] = ade1(e2)

I E = TM ⊕H T ∗M  Pick ∇ Torsion free on TM and

∇̂XY+β = ∇XY+∇†Xβ+
1

2
iX iYH so ∇E

X+αY+β = ∇XY+∇†Xβ
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Adjoint connections II

Let ∇̂ be a linear connection on E . We also have E -connections
on TM and T ∗M by:

∇TM
e X = [ρ(e),X ] + ρ(∇̂X e)

∇T∗M
e α = Lρ(e)α− 〈D∇̂e, ρ∗α〉

We easily check thath ∇T∗M is the dual connection of ∇TM .

∇TM = ∇TM +∇T∗M is a self-dual E -connection on TM ⊕ T ∗M.
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1. The modular class



Modular Class

Let B → M be a vector bundle with rank B = 1 and ∇B a flat
E−connection. Then B defines a cohomology class in H1(E ).
We call it the modular class of B, denoted by [ψB ] ∈ H1(E ).

The section ψ ∈ ΓE is defined via

∇B
e λ = geλ, where ge = 〈ψ, e〉.

∇B Flat =⇒ dEψ = 0.∧top E has a flat E−connection

∇top
e ω = Leω
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Unimodularity

Proposition 1

Any Courant algebroid is unimodular: [ψ
∧top E ] = 0.

Proof of 1: ∇top
e (e1 ∧ · · · ∧ em) =

∑
i e1 ∧ · · · ∧ ∇E

e (ei ) ∧ · · · ∧ em

Because 〈∇E
e1e2 − Je1, e2K, e3〉 = 〈∇̂ρ(e2)e1, e3〉 − 〈∇̂ρ(e3)e1, e2〉 is

tensorial and vanish when extended to ∧topE .
Therefore (∗∗)⇒ ∇top self-adjoint so

[ψ∧
topE ] = [ψ∧

topE∗ ] = −[ψ∧
topE ] ⇒ [ψ∧

topE ] = 0.

Stiénon-Xu had already defined this class (not noticing it vanishes).



2. Primary classes



Primary characteristic classes

Let ∇ be an E -connection on a vector bundle B. Consider

tr(F k
∇) ∈ C 2k(E ).

As in the classical theory:

I dE tr(F k
∇) = tr(D∇̃F

k
∇) = 0

I The cohomology class is independent of the connection.
Denote they by Chk(B) ∈ H2k(E )

Proposition

For a Courant algebroid Chk(E ) = Chk(TM ⊕ T ∗M).

So there is nothing new (just as for Lie algebroids)



Primary characteristic classes

Let ∇ be an E -connection on a vector bundle B. Consider

tr(F k
∇) ∈ C 2k(E ).

As in the classical theory:

I dE tr(F k
∇) = tr(D∇̃F

k
∇) = 0

I The cohomology class is independent of the connection.
Denote they by Chk(B) ∈ H2k(E )

Proposition

For a Courant algebroid Chk(E ) = Chk(TM ⊕ T ∗M).

So there is nothing new (just as for Lie algebroids)



Primary characteristic classes

Let ∇ be an E -connection on a vector bundle B. Consider

tr(F k
∇) ∈ C 2k(E ).

As in the classical theory:

I dE tr(F k
∇) = tr(D∇̃F

k
∇) = 0

I The cohomology class is independent of the connection.
Denote they by Chk(B) ∈ H2k(E )

Proposition

For a Courant algebroid Chk(E ) = Chk(TM ⊕ T ∗M).

So there is nothing new (just as for Lie algebroids)



3. Secondary classes



Transgressions
Given a vector bundle B → M denote by A the space of
E -connections on B.
Then on Ω•(A;C •(E )) define the following elements of total
degree 2k :

I The zero form
Chk(∇) = tr(F k

∇)

I The 1-form
αk |∇(∇̇) = k tr(∇̇ ∪ F k−1

∇ )

I The 2-form

βk |∇(∇̇0, ∇̇1) = k
k−2∑
i=0

tr(∇̇0 ∪ F i
∇ ∪ ∇̇1 ∪ F k−i−2

∇ )

They satisfy: dEChk = 0, dEαk = δChk , dEβk = δαk
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Secondary characteristic classes

Given two E -connections ∇0,∇1, we can produce
Chern-Simons-type transgression forms

csk(∇0,∇1) =

∫
∇t

αk ∈ C 2k−1(E ).

As in the classical theory,

Chk(∇0)− Chk(∇1) = tr(F k
∇1

)− tr(F k
∇0

) = dEcsk(∇0,∇1)

so, when the primary cocycles vanish, the transgression forms are
closed. Therefore if Chk(∇0) = Chk(∇1) = 0 we obtain
cohomology classes

[csk(∇0,∇1)] ∈ H2k−1(E ).
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Intrinsic secondary characteristic classes

Given (E → M, 〈·, ·〉, J·, ·K, ρ), make the following choices on E :

I a linear connection ∇̂
I a positive definite metric g

Then we can define the adjoint connections ∇E and ∇E ,g .

(∗∗) ⇒ Chl(E ) = tr(F l
∇E ) = 0 for l = 2k − 1

Hence we can define classes

[csk(∇E ,∇E ,g )] ∈ H4k−3(E ).

Theorem

The classes [csk(∇E ,∇E ,g )] ∈ H4k−3(E ) are independent of the
choices.



Examples

I For E = (g, [·, ·], 〈·, ·〉) we have

csk(ad , adg )(e1, . . . , e2k−1) =
∑

π∈S2k−1

(π) tr
(
adeπ(1)

· · · adeπ(2k−1)

)
I For E = TM ⊕H T ∗M we have that for a torsion free

connection
∇E

X+αY + β = ∇XY +∇†Xβ

Therefore, pic g a Riemaniann metric on M and ∇ = ∇LC

then
∇E = ∇E ,g ⇒ [csk(∇E ,∇E ,g )] = 0

Rmk: We think that there are E with [csk(∇E ,∇E ,g )] 6= 0 for
some k , so far no examples.



Thanks !!


