Courant connections

Miquel Cueca Ten
(joint with Rajan Mehta)

Georg-August-Universität
Göttingen, Germany

March 7, 2024

Goals of the talk

Goal

Introduce new invariants of Courant algebroids

Goals of the talk

Goal

Introduce new invariants of Courant algebroids

This will include:

Goals of the talk

Goal

Introduce new invariants of Courant algebroids

This will include:
(A) Explicit/hands-on description of Courant differential complex and their associated cohomology (usual descriptions are abstract and hard to work with).
(B) Representations of Courant algebroids (via connections).
(C) Intrinsic Characteristic classes.

Analogous picture for Lie algebroids

(A) Let ($A, \rho,[\cdot, \cdot]$) be a Lie algebroid.

$$
C^{\infty}(M) \rightarrow \Gamma A^{*} \rightarrow \Gamma \bigwedge^{2} A^{*} \rightarrow \cdots
$$

is a complex

Analogous picture for Lie algebroids

(A) Let ($A, \rho,[\cdot, \cdot]$) be a Lie algebroid.

$$
C^{\infty}(M) \rightarrow\left\lceilA ^ { * } \rightarrow \left\ulcorner\bigwedge^{2} A^{*} \rightarrow \cdots\right.\right.
$$

is a complex with differential:

$$
\begin{aligned}
d \omega\left(a_{0}, \cdots, a_{k}\right)= & \sum_{i=0}^{k}(-1)^{i} \rho\left(a_{i}\right) \omega\left(a_{0}, \cdots, \widehat{a}_{i}, \cdots, a_{k}\right) \\
& +\sum_{i<j}(-1)^{i+1} \omega\left(a_{0}, \cdots, \widehat{a}_{i}, \cdots,\left[a_{i}, a_{j}\right], \cdots, a_{k}\right)
\end{aligned}
$$

Analogous picture for Lie algebroids

(A) Let $(A, \rho,[\cdot, \cdot])$ be a Lie algebroid.

$$
C^{\infty}(M) \rightarrow \Gamma A^{*} \rightarrow \Gamma \bigwedge^{2} A^{*} \rightarrow \cdots
$$

is a complex with differential:

$$
\begin{aligned}
d \omega\left(a_{0}, \cdots, a_{k}\right)= & \sum_{i=0}^{k}(-1)^{i} \rho\left(a_{i}\right) \omega\left(a_{0}, \cdots, \widehat{a}_{i}, \cdots, a_{k}\right) \\
& +\sum_{i<j}(-1)^{i+1} \omega\left(a_{0}, \cdots, \widehat{a}_{i}, \cdots,\left[a_{i}, a_{j}\right], \cdots, a_{k}\right)
\end{aligned}
$$

(B) Representations \Longleftrightarrow vector bundles with a flat A-connection.

Analogous picture for Lie algebroids

(A) Let $(A, \rho,[\cdot, \cdot])$ be a Lie algebroid.

$$
C^{\infty}(M) \rightarrow \Gamma A^{*} \rightarrow \Gamma \bigwedge^{2} A^{*} \rightarrow \cdots
$$

is a complex with differential:

$$
\begin{aligned}
d \omega\left(a_{0}, \cdots, a_{k}\right)= & \sum_{i=0}^{k}(-1)^{i} \rho\left(a_{i}\right) \omega\left(a_{0}, \cdots, \widehat{a}_{i}, \cdots, a_{k}\right) \\
& +\sum_{i<j}(-1)^{i+1} \omega\left(a_{0}, \cdots, \widehat{a}_{i}, \cdots,\left[a_{i}, a_{j}\right], \cdots, a_{k}\right)
\end{aligned}
$$

(B) Representations \Longleftrightarrow vector bundles with a flat A-connection.
(C) Characteristic classes are obtained from the adjoint representation up to homotopy, as done by Crainic-Fernandes.

Motivating example of Courant algebroid

$\left(T M \oplus T^{*} M,\langle\cdot, \cdot\rangle, \llbracket \cdot, \cdot \rrbracket, \rho=p_{T M}\right)$ where

$$
\llbracket X+\alpha, Y+\beta \rrbracket=[X, Y]+\mathcal{L}_{X} \beta-\operatorname{di}_{Y} \alpha
$$

Motivating example of Courant algebroid

$\left(T M \oplus T^{*} M,\langle\cdot, \cdot\rangle, \llbracket \cdot, \cdot \rrbracket, \rho=p_{T M}\right)$ where

$$
\llbracket X+\alpha, Y+\beta \rrbracket=[X, Y]+\mathcal{L}_{X} \beta-\operatorname{di}_{Y} \alpha
$$

This bracket originally appeared in constrained mechanical systems Courant-Weinstein, Dorfman.

Motivating example of Courant algebroid

$\left(T M \oplus T^{*} M,\langle\cdot, \cdot\rangle, \llbracket \cdot, \cdot \rrbracket, \rho=p_{T M}\right)$ where

$$
\llbracket X+\alpha, Y+\beta \rrbracket=[X, Y]+\mathcal{L}_{X} \beta-\operatorname{di}_{Y} \alpha
$$

This bracket originally appeared in constrained mechanical systems Courant-Weinstein, Dorfman.

The integrability of many geometric structures is encoded in the involutivity of maximal isotropic subbundles $L \subseteq T M \oplus T^{*} M$ with respect to $\llbracket \cdot, \cdot \rrbracket$.

Motivating example of Courant algebroid

$\left(T M \oplus T^{*} M,\langle\cdot, \cdot\rangle, \llbracket \cdot, \cdot \rrbracket, \rho=p_{T M}\right)$ where

$$
\llbracket X+\alpha, Y+\beta \rrbracket=[X, Y]+\mathcal{L}_{X} \beta-\operatorname{di}_{Y} \alpha
$$

This bracket originally appeared in constrained mechanical systems Courant-Weinstein, Dorfman.

The integrability of many geometric structures is encoded in the involutivity of maximal isotropic subbundles $L \subseteq T M \oplus T^{*} M$ with respect to $\llbracket \cdot, \cdot \rrbracket$.

In the complex case, this gives rise to Generalized Complex Geometry.

Definition of Courant algebroids

Vector Bundle $E \rightarrow M$ with the following structure:

- $\langle\cdot, \cdot\rangle$ nondegenerate symmetric pairing.
- $\rho: E \rightarrow T M$ a bundle map.
- $\llbracket \cdot, \cdot \rrbracket$ a bracket.

Satisfiyng:

$$
\begin{aligned}
& \text { 1. } \llbracket e_{1}, \llbracket e_{2}, e_{3} \rrbracket \rrbracket=\llbracket \llbracket e_{1}, e_{2} \rrbracket, e_{3} \rrbracket+\llbracket e_{2}, \llbracket e_{1}, e_{3} \rrbracket \rrbracket \text {, } \\
& \text { 2. } \llbracket e_{1}, f e_{2} \rrbracket=\rho\left(e_{1}\right)(f) e_{2}+f \llbracket e_{1}, e_{2} \rrbracket \text {, } \\
& \text { 3. } \rho\left(e_{1}\right)\left\langle e_{2}, e_{3}\right\rangle=\left\langle\llbracket e_{1}, e_{2} \rrbracket, e_{3}\right\rangle+\left\langle e_{2}, \llbracket e_{1}, e_{3} \rrbracket\right\rangle \text {, } \\
& \text { 4. } \llbracket e_{1}, e_{2} \rrbracket+\llbracket e_{2}, e_{1} \rrbracket=\mathcal{D}\left\langle e_{1}, e_{2}\right\rangle \text {, } \\
& \text { where } \mathcal{D}: C^{\infty}(M) \rightarrow \Gamma(E) \text { is given by }\langle\mathcal{D} f, e\rangle=\rho(e)(f) \text {. }
\end{aligned}
$$

This is due to Liu-Weinstein-Xu, 1997.

More Examples

- Quadratic Lie algebras ($\mathfrak{g},\langle\cdot, \cdot\rangle,[\cdot, \cdot], \rho=0$)

More Examples

- Quadratic Lie algebras ($\mathfrak{g},\langle\cdot, \cdot\rangle,[\cdot, \cdot], \rho=0$)
- $\left(T M \oplus T^{*} M,\langle\cdot, \cdot\rangle, \llbracket \cdot, \cdot \rrbracket, \rho=p_{T M}\right)$ where

$$
\llbracket X+\alpha, Y+\beta \rrbracket=[X, Y]+\mathcal{L}_{X} \beta-d i_{Y} \alpha+i_{X} i_{Y} H
$$

More Examples

- Quadratic Lie algebras ($\mathfrak{g},\langle\cdot, \cdot\rangle,[\cdot, \cdot], \rho=0$)
- $\left(T M \oplus T^{*} M,\langle\cdot, \cdot\rangle, \llbracket \cdot, \cdot \rrbracket, \rho=p_{T M}\right)$ where

$$
\llbracket X+\alpha, Y+\beta \rrbracket=[X, Y]+\mathcal{L}_{X} \beta-d i_{Y} \alpha+i_{X} i_{Y} H
$$

- More generally, $A \oplus A^{*}$ for a Lie bialgebroid.

More Examples

- Quadratic Lie algebras ($\mathfrak{g},\langle\cdot, \cdot\rangle,[\cdot, \cdot], \rho=0$)
- $\left(T M \oplus T^{*} M,\langle\cdot, \cdot\rangle, \llbracket \cdot, \cdot \rrbracket, \rho=p_{T M}\right)$ where

$$
\llbracket X+\alpha, Y+\beta \rrbracket=[X, Y]+\mathcal{L}_{X} \beta-d_{Y} \alpha+i_{X} i_{Y} H
$$

- More generally, $A \oplus A^{*}$ for a Lie bialgebroid.

Other motivations for Courant algebroids:

- Target of Topological Field Theories of AKSZ type:

Chern-Simos theory.

- Quasi-Hamiltonian spaces, Poisson-Lie T-duality.
- Manin triples and Drinfield doubles.
- Vertex algebras.
- Higher homotopy structures.

Courant connections

Alekseev-Xu

$(E \rightarrow M,\langle\cdot, \cdot\rangle, \llbracket \cdot, \cdot \rrbracket, \rho)$ Courant algebroid, $B \rightarrow M$ vector bundle.
An E-connection is $\nabla: \Gamma E \times \Gamma B \rightarrow \Gamma B$ such that

$$
\nabla_{f e} b=f \nabla_{e} b \quad \nabla_{e}(f b)=f \nabla_{e} b+\rho(e)(f) b .
$$

The curvature is

$$
F_{\nabla}\left(e_{1}, e_{2}\right)(b)=\left[\nabla_{e_{1}}, \nabla_{e_{2}}\right](b)-\nabla_{\llbracket e_{1}, e_{2} \rrbracket} b .
$$

Courant connections

Alekseev-Xu

$(E \rightarrow M,\langle\cdot, \cdot\rangle, \llbracket \cdot, \cdot \rrbracket, \rho)$ Courant algebroid, $B \rightarrow M$ vector bundle.
An E-connection is $\nabla: \Gamma E \times \Gamma B \rightarrow \Gamma B$ such that

$$
\nabla_{f e} b=f \nabla_{e} b \quad \nabla_{e}(f b)=f \nabla_{e} b+\rho(e)(f) b
$$

The curvature is

$$
F_{\nabla}\left(e_{1}, e_{2}\right)(b)=\left[\nabla_{e_{1}}, \nabla_{e_{2}}\right](b)-\nabla_{\llbracket e_{1}, e_{2} \rrbracket} b .
$$

Questions:

- Why $F_{\nabla}\left(f e_{1}, e_{2}\right) \neq f F_{\nabla}\left(e_{1}, e_{2}\right)$?
- Where does it lives?
- Cartan calculus for E ?

Theorem (Roytenberg, Severa)
Courant algebroids are in one-to-one correspondence with degree 2 symplectic Q-manifolds.

$$
(E,\langle\cdot \cdot\rangle, \llbracket \cdot, \cdot \rrbracket, \rho) \Longleftrightarrow(\mathcal{M},\{\cdot, \cdot\}, Q)
$$

Theorem (Roytenberg, Severa)

Courant algebroids are in one-to-one correspondence with degree 2 symplectic Q-manifolds.

$$
(E,\langle\cdot \cdot\rangle, \llbracket \cdot, \cdot \rrbracket, \rho) \Longleftrightarrow(\mathcal{M},\{\cdot, \cdot\}, Q)
$$

Examples:

- $T M \oplus T^{*} M$ corresponds to $T^{*}[2] T[1] M$
- \mathfrak{g} corresponds to $\mathfrak{g}[1]$

In general, the correspondence was only implicitly defined:
E corresponds to the minimal symplectic realization of $E[1]$.

Theorem (Roytenberg, Severa)

Courant algebroids are in one-to-one correspondence with degree 2 symplectic Q-manifolds.

$$
(E,\langle\cdot \cdot\rangle, \llbracket \cdot, \cdot \rrbracket, \rho) \Longleftrightarrow(\mathcal{M},\{\cdot, \cdot\}, Q)
$$

Examples:

- $T M \oplus T^{*} M$ corresponds to $T^{*}[2] T[1] M$
- \mathfrak{g} corresponds to $\mathfrak{g}[1]$

In general, the correspondence was only implicitly defined:
E corresponds to the minimal symplectic realization of $E[1]$.
The Q-structure defines a complex

$$
\mathcal{O}_{\mathcal{M}}^{k} \xrightarrow{Q} \mathcal{O}_{\mathcal{M}}^{k+1}
$$

Theorem (Roytenberg, Severa)

Courant algebroids are in one-to-one correspondence with degree 2 symplectic Q-manifolds.

$$
(E,\langle\cdot \cdot\rangle, \llbracket \cdot, \cdot \rrbracket, \rho) \Longleftrightarrow(\mathcal{M},\{\cdot, \cdot\}, Q)
$$

Examples:

- $T M \oplus T^{*} M$ corresponds to $T^{*}[2] T[1] M$
- \mathfrak{g} corresponds to $\mathfrak{g}[1]$

In general, the correspondence was only implicitly defined:
E corresponds to the minimal symplectic realization of $E[1]$.
The Q-structure defines a complex

Questions:

$$
\mathcal{O}_{\mathcal{M}}^{k} \xrightarrow{Q} \mathcal{O}_{\mathcal{M}}^{k+1}
$$

- How to find an easy-to-work description?
- Any Cartan-type formula for the differential?

Keller-Waldmann Algebra

Given a vector bundle with nondegenerate pairing ($E \rightarrow M,\langle\cdot, \cdot\rangle$), define k-cochains as maps

$$
\omega: \underbrace{\Gamma(E) \times \cdots \times \Gamma(E)}_{k} \rightarrow C^{\infty}(M)
$$

Keller-Waldmann Algebra

Given a vector bundle with nondegenerate pairing $(E \rightarrow M,\langle\cdot, \cdot\rangle)$, define k-cochains as maps

$$
\omega: \underbrace{\Gamma(E) \times \cdots \times \Gamma(E)}_{k} \rightarrow C^{\infty}(M)
$$

- $C^{\infty}(M)$-linear in the last entry
- There exists a map

$$
\sigma_{\omega}: \underbrace{\Gamma(E) \times \cdots \times \Gamma(E)}_{k-2} \rightarrow \mathfrak{X}(M)
$$

such that

$$
\begin{aligned}
& \omega\left(e_{1}, \ldots, e_{i}, e_{i+1}, \ldots, e_{k}\right)+\omega\left(e_{1}, \ldots, e_{i+1}, e_{i}, \ldots, e_{k}\right) \\
& =\sigma_{\omega}\left(e_{1}, \ldots . \hat{.}, e_{k}\right)\left(\left\langle e_{i}, e_{i+1}\right\rangle\right)
\end{aligned}
$$

Keller-Waldmann Algebra

Given a vector bundle with nondegenerate pairing ($E \rightarrow M,\langle\cdot, \cdot\rangle$), define k-cochains as maps

$$
\omega: \underbrace{\Gamma(E) \times \cdots \times \Gamma(E)}_{k} \rightarrow C^{\infty}(M)
$$

- $C^{\infty}(M)$-linear in the last entry
- There exists a map

$$
\sigma_{\omega}: \underbrace{\Gamma(E) \times \cdots \times \Gamma(E)}_{k-2} \rightarrow \mathfrak{X}(M)
$$

such that

$$
\begin{aligned}
& \omega\left(e_{1}, \ldots, e_{i}, e_{i+1}, \ldots, e_{k}\right)+\omega\left(e_{1}, \ldots, e_{i+1}, e_{i}, \ldots, e_{k}\right) \\
& =\sigma_{\omega}\left(e_{1}, \hat{\ldots} \hat{.}, e_{k}\right)\left(\left\langle e_{i}, e_{i+1}\right\rangle\right)
\end{aligned}
$$

The space of cochains is denoted $C^{\bullet}(E)$. It is a graded commutative algebra with a degree -2 Poisson bracket.

Courant algebroid differential

If $E \rightarrow M$ is a Courant algebroid, then

$$
T\left(e_{1}, e_{2}, e_{3}\right)=\left\langle\llbracket e_{1}, e_{2} \rrbracket, e_{3}\right\rangle \in C^{3}(E)
$$

Courant axioms $\Longleftrightarrow\{T, T\}=0$
$d_{E}=\{T, \cdot\}$ is a differential on $C^{\bullet}(E)$.

Courant algebroid differential

If $E \rightarrow M$ is a Courant algebroid, then

$$
T\left(e_{1}, e_{2}, e_{3}\right)=\left\langle\llbracket e_{1}, e_{2} \rrbracket, e_{3}\right\rangle \in C^{3}(E)
$$

Courant axioms $\Longleftrightarrow\{T, T\}=0$
$d_{E}=\{T, \cdot\}$ is a differential on $C^{\bullet}(E)$.
Result 1: Let $E \rightarrow M$ a Courant algebroid. The dg-algebras $\left(\mathcal{O}_{\mathcal{M}}, Q\right)$ and $\left(C^{\bullet}(E), d_{E}\right)$ are ismorphic via

$$
\Upsilon(\psi)\left(e_{1}, \cdots, e_{k}\right)=\left\{e_{k},\left\{e_{k-1}, \cdots\left\{e_{1}, \psi\right\}, \cdots\right\} .\right.
$$

Keller-Waldmann introduced $C^{\bullet}(E)$ in an algebraic setting where the correspondence with Q-manifolds doesn't apply.

Cartan calculus

Result 2: The differential satisfies the Cartan formula

$$
\begin{aligned}
d_{E} \omega\left(e_{0}, \cdots, e_{k}\right) & =\sum_{i=0}^{k}(-1)^{i} \rho\left(e_{i}\right) \omega\left(e_{0}, \cdots, \widehat{e}_{i}, \cdots, e_{k}\right) \\
& +\sum_{i<j}(-1)^{i+1} \omega\left(e_{0}, \cdots, \widehat{e}_{i}, \cdots, \llbracket e_{i}, e_{j} \rrbracket, \cdots, e_{k}\right)
\end{aligned}
$$

Cartan calculus

Result 2: The differential satisfies the Cartan formula

$$
\begin{aligned}
d_{E} \omega\left(e_{0}, \cdots, e_{k}\right) & =\sum_{i=0}^{k}(-1)^{i} \rho\left(e_{i}\right) \omega\left(e_{0}, \cdots, \widehat{e}_{i}, \cdots, e_{k}\right) \\
& +\sum_{i<j}(-1)^{i+1} \omega\left(e_{0}, \cdots, \widehat{e}_{i}, \cdots, \llbracket e_{i}, e_{j} \rrbracket, \cdots, e_{k}\right)
\end{aligned}
$$

If we introduce contractions and Lie derivatives

$$
\left(\iota_{e} \omega\right)\left(e_{1}, \cdots, e_{k-1}\right)=\omega\left(e, e_{1}, \cdots, e_{k-1}\right), \quad \mathcal{L}_{e} \omega=\{\{e, T\}, \omega\}
$$

Result 3: The following Cartan relations hold

$$
\begin{array}{rlrl}
d_{E}^{2} & =0 & {\left[\mathcal{L}_{e}, d_{E}\right]} & =0 \\
{\left[\iota_{e}, d_{E}\right]} & =\mathcal{L}_{e} & {\left[\mathcal{L}_{e}, \mathcal{L}_{e^{\prime}}\right]=\mathcal{L}_{\llbracket e, e^{\prime} \rrbracket}} \\
{\left[\mathcal{L}_{e}, \iota_{e^{\prime}}\right]} & =\iota_{\llbracket e, e^{\prime} \rrbracket} &
\end{array}
$$

Warning: $\left[\iota_{e}, \iota_{e^{\prime}}\right] \neq 0$.

E-connections

For ∇ an E-connection on B define $D^{\nabla}: C^{\bullet}(E ; B) \rightarrow C^{\bullet+1}(E ; B)$

$$
\begin{aligned}
D^{\nabla} \omega\left(e_{0}, \cdots, e_{k}\right) & =\sum_{i=0}^{k}(-1)^{i} \nabla_{e_{i}} \omega\left(e_{0}, \cdots, \widehat{e}_{i}, \cdots, e_{k}\right) \\
& +\sum_{i<j}(-1)^{i+1} \omega\left(e_{0}, \cdots, \widehat{e}_{i}, \cdots, \llbracket e_{i}, e_{j} \rrbracket, \cdots, e_{k}\right)
\end{aligned}
$$

E-connections

For ∇ an E-connection on B define $D^{\nabla}: C^{\bullet}(E ; B) \rightarrow C^{\bullet+1}(E ; B)$

$$
\begin{aligned}
D^{\nabla} \omega\left(e_{0}, \cdots, e_{k}\right) & =\sum_{i=0}^{k}(-1)^{i} \nabla_{e_{i}} \omega\left(e_{0}, \cdots, \widehat{e}_{i}, \cdots, e_{k}\right) \\
& +\sum_{i<j}(-1)^{i+1} \omega\left(e_{0}, \cdots, \widehat{e}_{i}, \cdots, \llbracket e_{i}, e_{j} \rrbracket, \cdots, e_{k}\right)
\end{aligned}
$$

Result 4: There is a correspondence between:

- ∇E-connections on B.
- D differentials on $C^{\bullet}(E ; B)$ with $D(\omega \smile \tau)=d_{E} \omega \smile \tau+(-1)^{k} \omega \smile D \tau$.

E-connections

For ∇ an E-connection on B define $D^{\nabla}: C^{\bullet}(E ; B) \rightarrow C^{\bullet+1}(E ; B)$

$$
\begin{aligned}
D^{\nabla} \omega\left(e_{0}, \cdots, e_{k}\right) & =\sum_{i=0}^{k}(-1)^{i} \nabla_{e_{i}} \omega\left(e_{0}, \cdots, \widehat{e}_{i}, \cdots, e_{k}\right) \\
& +\sum_{i<j}(-1)^{i+1} \omega\left(e_{0}, \cdots, \widehat{e}_{i}, \cdots, \llbracket e_{i}, e_{j} \rrbracket, \cdots, e_{k}\right)
\end{aligned}
$$

Result 4: There is a correspondence between:

- ∇E-connections on B.
- D differentials on $C^{\bullet}(E ; B)$ with $D(\omega \leftharpoonup \tau)=d_{E} \omega \leftharpoonup \tau+(-1)^{k} \omega \leftharpoonup D \tau$.

Result 5: For ∇ an E-conenction on B the curvature F_{∇} satisfy

- $F_{\nabla} \in C^{2}(E ; \operatorname{End}(B))$.
- The Bianchi identity $D^{\widetilde{\nabla}} F_{\nabla}=0$.

Adjoint connections I

Let $\hat{\nabla}$ be a linear connection on E. Then we can define an E-connection ∇^{E} on E by:

$$
\nabla_{e_{1}}^{E} e_{2}=\llbracket e_{1}, e_{2} \rrbracket+\hat{\nabla}_{\rho\left(e_{2}\right)} e_{1}-\rho^{*}\left\langle D^{\hat{\nabla}} e_{1}, e_{2}\right\rangle .
$$

Adjoint connections I

Let $\hat{\nabla}$ be a linear connection on E. Then we can define an E-connection ∇^{E} on E by:

$$
\nabla_{e_{1}}^{E} e_{2}=\llbracket e_{1}, e_{2} \rrbracket+\hat{\nabla}_{\rho\left(e_{2}\right)} e_{1}-\rho^{*}\left\langle D^{\hat{\nabla}} e_{1}, e_{2}\right\rangle .
$$

∇^{E} is compatible with the pairing:

$$
\begin{equation*}
\left\langle\nabla_{e_{1}}^{E} e_{2}, e_{3}\right\rangle+\left\langle e_{2}, \nabla_{e_{1}}^{E} e_{3}\right\rangle=\rho\left(e_{1}\right)\left\langle e_{2}, e_{3}\right\rangle \tag{**}
\end{equation*}
$$

But not flat!

Adjoint connections I

Let $\hat{\nabla}$ be a linear connection on E. Then we can define an E-connection ∇^{E} on E by:

$$
\nabla_{e_{1}}^{E} e_{2}=\llbracket e_{1}, e_{2} \rrbracket+\hat{\nabla}_{\rho\left(e_{2}\right)} e_{1}-\rho^{*}\left\langle D^{\hat{\nabla}} e_{1}, e_{2}\right\rangle .
$$

∇^{E} is compatible with the pairing:

$$
\left\langle\nabla_{e_{1}}^{E} e_{2}, e_{3}\right\rangle+\left\langle e_{2}, \nabla_{e_{1}}^{E} e_{3}\right\rangle=\rho\left(e_{1}\right)\left\langle e_{2}, e_{3}\right\rangle \quad(* *)
$$

But not flat!
Examples:

- $E=(\mathfrak{g},[\cdot, \cdot],\langle\cdot, \cdot\rangle) \rightsquigarrow \nabla_{e_{1}}^{E} e_{2}=\left[e_{1}, e_{2}\right]=\operatorname{ad}_{e_{1}}\left(e_{2}\right)$
- $E=T M \oplus_{H} T^{*} M \rightsquigarrow$ Pick ∇ Torsion free on $T M$ and
$\hat{\nabla}_{X} Y+\beta=\nabla_{X} Y+\nabla_{X}^{\dagger} \beta+\frac{1}{2} i_{X} i_{Y} H \quad$ so $\quad \nabla_{X+\alpha}^{E} Y+\beta=\nabla_{X} Y+\nabla_{X}^{\dagger} \beta$

Adjoint connections II

Let $\hat{\nabla}$ be a linear connection on E. We also have E-connections on $T M$ and $T^{*} M$ by:

$$
\begin{aligned}
\nabla_{e}^{T M} X & =[\rho(e), X]+\rho\left(\hat{\nabla}_{X} e\right) \\
\nabla_{e}^{T^{*} M} \alpha & =\mathcal{L}_{\rho(e)} \alpha-\left\langle D^{\hat{\nabla}} e, \rho^{*} \alpha\right\rangle
\end{aligned}
$$

Adjoint connections II

Let $\hat{\nabla}$ be a linear connection on E. We also have E-connections on $T M$ and $T^{*} M$ by:

$$
\begin{aligned}
\nabla_{e}^{T M} X & =[\rho(e), X]+\rho\left(\hat{\nabla}_{X} e\right) \\
\nabla_{e}^{T^{*} M} \alpha & =\mathcal{L}_{\rho(e)} \alpha-\left\langle D^{\hat{\nabla}} e, \rho^{*} \alpha\right\rangle
\end{aligned}
$$

We easily check thath $\nabla^{T^{*} M}$ is the dual connection of $\nabla^{T M}$. $\nabla^{\mathbb{T} M}=\nabla^{T M}+\nabla^{T^{*} M}$ is a self-dual E-connection on $T M \oplus T^{*} M$.

1. The modular class

Modular Class

Let $B \rightarrow M$ be a vector bundle with rank $B=1$ and ∇^{B} a flat E-connection. Then B defines a cohomology class in $H^{1}(E)$. We call it the modular class of B, denoted by $\left[\psi^{B}\right] \in H^{1}(E)$.

Modular Class

Let $B \rightarrow M$ be a vector bundle with rank $B=1$ and ∇^{B} a flat E-connection. Then B defines a cohomology class in $H^{1}(E)$. We call it the modular class of B, denoted by $\left[\psi^{B}\right] \in H^{1}(E)$.

The section $\psi \in \Gamma E$ is defined via

$$
\nabla_{e}^{B} \lambda=g_{e} \lambda, \text { where } g_{e}=\langle\psi, e\rangle
$$

∇^{B} Flat $\Longrightarrow d_{E} \psi=0$.
$\bigwedge^{\text {top }} E$ has a flat E-connection

$$
\nabla_{e}^{\text {top }} \omega=\mathcal{L}_{e} \omega
$$

Unimodularity

Proposition 1

Any Courant algebroid is unimodular: $\left[\psi^{\text {top } E}\right]=0$.

Proof of 1: $\nabla_{e}^{\text {top }}\left(e_{1} \wedge \cdots \wedge e_{m}\right)=\sum_{i} e_{1} \wedge \cdots \wedge \nabla_{e}^{E}\left(e_{i}\right) \wedge \cdots \wedge e_{m}$
Because $\left\langle\nabla_{e_{1}}^{E} e_{2}-\llbracket e_{1}, e_{2} \rrbracket, e_{3}\right\rangle=\left\langle\widehat{\nabla}_{\rho\left(e_{2}\right)} e_{1}, e_{3}\right\rangle-\left\langle\widehat{\nabla}_{\rho\left(e_{3}\right)} e_{1}, e_{2}\right\rangle$ is tensorial and vanish when extended to $\wedge^{\text {top }} E$.
Therefore $(* *) \Rightarrow \nabla^{\text {top }}$ self-adjoint so

$$
\left[\psi^{\wedge^{\text {top }} E}\right]=\left[\psi^{\wedge \text { top } E^{*}}\right]=-\left[\psi^{\wedge \text { top } E}\right] \quad \Rightarrow \quad\left[\psi^{\wedge t o p} E\right]=0
$$

Stiénon-Xu had already defined this class (not noticing it vanishes).
2. Primary classes

Primary characteristic classes

Let ∇ be an E-connection on a vector bundle B. Consider

$$
\operatorname{tr}\left(F_{\nabla}^{k}\right) \in C^{2 k}(E)
$$

Primary characteristic classes

Let ∇ be an E-connection on a vector bundle B. Consider

$$
\operatorname{tr}\left(F_{\nabla}^{k}\right) \in C^{2 k}(E)
$$

As in the classical theory:

- $d_{E} \operatorname{tr}\left(F_{\nabla}^{k}\right)=\operatorname{tr}\left(D_{\widetilde{\nabla}} F_{\nabla}^{k}\right)=0$
- The cohomology class is independent of the connection. Denote they by $C h_{k}(B) \in H^{2 k}(E)$

Primary characteristic classes

Let ∇ be an E-connection on a vector bundle B. Consider

$$
\operatorname{tr}\left(F_{\nabla}^{k}\right) \in C^{2 k}(E)
$$

As in the classical theory:

- $d_{E} \operatorname{tr}\left(F_{\nabla}^{k}\right)=\operatorname{tr}\left(D_{\widetilde{\nabla}} F_{\nabla}^{k}\right)=0$
- The cohomology class is independent of the connection. Denote they by $C h_{k}(B) \in H^{2 k}(E)$

Proposition
For a Courant algebroid $C h_{k}(E)=C h_{k}\left(T M \oplus T^{*} M\right)$.
So there is nothing new (just as for Lie algebroids)
3. Secondary classes

Transgressions

Given a vector bundle $B \rightarrow M$ denote by \mathcal{A} the space of E-connections on B. Then on $\Omega^{\bullet}\left(\mathcal{A} ; C^{\bullet}(E)\right)$ define the following elements of total degree $2 k$:

Transgressions

Given a vector bundle $B \rightarrow M$ denote by \mathcal{A} the space of E-connections on B. Then on $\Omega^{\bullet}\left(\mathcal{A} ; C^{\bullet}(E)\right)$ define the following elements of total degree $2 k$:

- The zero form

$$
C h_{k}(\nabla)=\operatorname{tr}\left(F_{\nabla}^{k}\right)
$$

Transgressions

Given a vector bundle $B \rightarrow M$ denote by \mathcal{A} the space of E-connections on B. Then on $\Omega^{\bullet}\left(\mathcal{A} ; C^{\bullet}(E)\right)$ define the following elements of total degree $2 k$:

- The zero form

$$
C h_{k}(\nabla)=\operatorname{tr}\left(F_{\nabla}^{k}\right)
$$

- The 1-form

$$
\alpha_{k \mid \nabla}(\dot{\nabla})=k \operatorname{tr}\left(\dot{\nabla} \cup F_{\nabla}^{k-1}\right)
$$

Transgressions

Given a vector bundle $B \rightarrow M$ denote by \mathcal{A} the space of E-connections on B.
Then on $\Omega^{\bullet}\left(\mathcal{A} ; C^{\bullet}(E)\right)$ define the following elements of total degree $2 k$:

- The zero form

$$
C h_{k}(\nabla)=\operatorname{tr}\left(F_{\nabla}^{k}\right)
$$

- The 1-form

$$
\alpha_{k \mid \nabla}(\dot{\nabla})=k \operatorname{tr}\left(\dot{\nabla} \cup F_{\nabla}^{k-1}\right)
$$

- The 2-form

$$
\beta_{k} \mid \nabla\left(\dot{\nabla}_{0}, \dot{\nabla}_{1}\right)=k \sum_{i=0}^{k-2} \operatorname{tr}\left(\dot{\nabla}_{0} \cup F_{\nabla}^{i} \cup \dot{\nabla}_{1} \cup F_{\nabla}^{k-i-2}\right)
$$

They satisfy: $d_{E} C h_{k}=0, \quad d_{E} \alpha_{k}=\delta C h_{k}, \quad d_{E} \beta_{k}=\delta \alpha_{k}$

Secondary characteristic classes

Given two E-connections ∇_{0}, ∇_{1}, we can produce Chern-Simons-type transgression forms

$$
\operatorname{cs}_{k}\left(\nabla_{0}, \nabla_{1}\right)=\int_{\nabla_{t}} \alpha_{k} \in C^{2 k-1}(E)
$$

Secondary characteristic classes

Given two E-connections ∇_{0}, ∇_{1}, we can produce Chern-Simons-type transgression forms

$$
\operatorname{cs}_{k}\left(\nabla_{0}, \nabla_{1}\right)=\int_{\nabla_{t}} \alpha_{k} \in C^{2 k-1}(E)
$$

As in the classical theory,

$$
C h_{k}\left(\nabla_{0}\right)-C h_{k}\left(\nabla_{1}\right)=\operatorname{tr}\left(F_{\nabla_{1}}^{k}\right)-\operatorname{tr}\left(F_{\nabla_{0}}^{k}\right)=d_{E} \operatorname{cs}_{k}\left(\nabla_{0}, \nabla_{1}\right)
$$

so, when the primary cocycles vanish, the transgression forms are closed. Therefore if $C h_{k}\left(\nabla_{0}\right)=C h_{k}\left(\nabla_{1}\right)=0$ we obtain cohomology classes

$$
\left[c_{k}\left(\nabla_{0}, \nabla_{1}\right)\right] \in H^{2 k-1}(E)
$$

Intrinsic secondary characteristic classes

Given $(E \rightarrow M,\langle\cdot, \cdot\rangle, \llbracket \cdot, \cdot \rrbracket, \rho)$, make the following choices on E :

- a linear connection $\hat{\nabla}$
- a positive definite metric g

Then we can define the adjoint connections ∇^{E} and $\nabla^{E, g}$.

$$
(* *) \quad \Rightarrow \quad C h_{l}(E)=\operatorname{tr}\left(F_{\nabla E}^{\prime}\right)=0 \quad \text { for } \quad I=2 k-1
$$

Hence we can define classes

$$
\left[\operatorname{cs}_{k}\left(\nabla^{E}, \nabla^{E, g}\right)\right] \in H^{4 k-3}(E)
$$

Theorem

The classes $\left[\operatorname{cs}_{k}\left(\nabla^{E}, \nabla^{E, g}\right)\right] \in H^{4 k-3}(E)$ are independent of the choices.

Examples

- For $E=(\mathfrak{g},[\cdot, \cdot],\langle\cdot, \cdot\rangle)$ we have

$$
\operatorname{cs}_{k}\left(a d, a d^{g}\right)\left(e_{1}, \ldots, e_{2 k-1}\right)=\sum_{\pi \in S_{2 k-1}}(\pi) \operatorname{tr}\left(a d_{e_{\pi(1)}} \cdots a d_{e_{\pi(2 k-1)}}\right)
$$

- For $E=T M \oplus_{H} T^{*} M$ we have that for a torsion free connection

$$
\nabla_{X+\alpha}^{E} Y+\beta=\nabla_{X} Y+\nabla_{X}^{\dagger} \beta
$$

Therefore, pic g a Riemaniann metric on M and $\nabla=\nabla^{L C}$ then

$$
\nabla^{E}=\nabla^{E, g} \Rightarrow\left[\operatorname{cs}_{k}\left(\nabla^{E}, \nabla^{E, g}\right)\right]=0
$$

Rmk: We think that there are E with $\left[\operatorname{cs}_{k}\left(\nabla^{E}, \nabla^{E, g}\right)\right] \neq 0$ for some k, so far no examples.

Thanks !!

