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Outline:

– Metric connections with torsion, or: why torsion?

– Cartan types of metric connections

– Holonomy as a key technique in differential geometry

– The Ambrose-Singer homogeneity theorem

– The almost complex structure on S6 and nearly Kähler manifolds

. . .
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Élie Cartan (1869–1951)

Given a manifold embedded in affine
(or projective or conformal etc.)
space, attribute to this manifold the
affine (or projective or conformal
etc.) connection that reflects in the
simplest possible way the relations
of this manifold with the ambient
space.

[Étant donné une variété plongée dans

l’espace affine (ou projectif, ou conforme

etc.), attribuer à cette variété la connexion

affine (ou projective, ou conforme etc.)

qui rende le plus simplement compte des

relations de cette variété avec l’espace

ambiant.].
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Connections

Exa. Projection ∇g
UV of dir. derivative

~∇UV to tangent plane
= ‘Levi-Civita connection’ ∇g

Compatible with metric, torsion-free

p

TpM
~∇UV

∇g
UV

M

But: not only possibility connection with torsion [Dfn: Cartan, 1925]

Exa. Electrodynamics: ∇UV := ~∇UV + ie
~
A(U)V (⇔ ∇µ = ∂µ + ie

~
Aµ)

A: gauge potential = electromagnetic potential

Exa. If n = 3: ∇UV := ~∇UV + U × V additional term gives space an
‘internal angular momentum’, a torsion

Fact: ∃ 3 types of torsion: vectorial, skew symmetric, and [something else].
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Why torsion?

• General relativity:

a) Cartan (1929): torsion ∼ intrinsic angular momentum, derived a set of
gravitational field eqs., but postulated that the energy-momentum tensor
should still be divergence-free → too restrictive

b) Einstein-Cartan theory (≥ 1950): variation of the scalar curvature and
of an additional Lagrangian generating the energy-momentum and the spin
tensors: allowed any torsion and not nec. metric

• Superstring theory:

Classical Yang-Mills theory: curvature ∼= field strength,

in superstring theories: torsion ∼= higher order field strength

(+ extra differential eqs.)

• Differential geometry: Connections adapted to the geometry useful
for ‘non-integrable’ geometries, like: Hermitian non Kähler mnfds, contact
manifolds. . .
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Set-up:

(M,g) Riemannian mnfd, ∇ metric conn., ∇g Levi-Civita conn.

• Torsion as a (2, 1)-tensor: T (X,Y ) := ∇XY −∇YX − [X,Y ]

• Transform torsion into a (3, 0)-tensor via the metric:

T (X,Y,Z) := g(T (X,Y ), Z)

• A metric connection is uniquely determined by its torsion

• Called ‘skew torsion’ if T is a 3-form

This implies:

• ∇ may be written as ∇XY = ∇g
XY + 1

2T (X,Y,−)

So vanishing torsion (T = 0) reduces ∇ to the Levi-Civita connection
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Example: Compact Lie groups

Consider a compact Lie group G, g = TeG. A metric g on G is called
biinvariant if left and right translations are always isometries ⇔

g([V,X ], Y ) + g(X, [V, Y ]) = 0. (∗)

Easy: ∇g
XY = 1

2[X,Y ] ∀X,Y ∈ g. We make the Ansatz that T is
proportional to [, ], i. e.

∇s
XY := s[X,Y ], ∀ s ∈ R, hence T s(X,Y ) = (2s− 1)[X,Y ],

This defines an element T ∈ Λ3(G) iff the metric satisfies (∗). The curvature
of this connection is

Rs(X,Y )Z = s(1−s)[Z, [X,Y ]] =

{
1
4[Z, [X,Y ]] for the LC conn. (s = 1

2)
0 for s = 0, 1

The two flat connections are called the ±-connection and were first decribed
by Cartan and Schouten (1926).
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Types of metric connections

(Mn, g) oriented Riemannian mnfd, ∇ any connection:

∇XY = ∇g
XY + A(X,Y ) .

Then: ∇ is metric ⇔ g(A(X, Y ), Z) + g(A(X,Z), Y ) = 0

⇔ A ∈ Ag := Rn ⊗ Λ2(Rn)

For metric connections: difference tensor A ⇔ torsion T via

2A(X,Y,Z) = T (X,Y,Z)− T (Y,Z,X) + T (Z,X, Y ),

T (X,Y,Z) = A(X,Y,Z)− A(Y,X,Z)

So identify Ag with T : space of possible torsion tensors,

Ag ∼= T ∼= R
n ⊗ Λ2(Rn), dim =

n2(n− 1)

2
.
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Decompose this space under SO(n) action (E. Cartan, 1925), n ≥ 3:

R
n ⊗ Λ2(Rn) ∼= R

n ⊕ Λ3(Rn) ⊕ T ′.

(For n = 2: R2 ⊗ Λ2(R2) ∼= R
2 is irreducible).

• A ∈ Λ3(Rn): “Connections with skew (symmetric) torsion”:

∇XY := ∇g
XY +

1

2
T (X,Y,−) .

Lemma. ∇ is metric and geodesics preserving iff its torsion T lies in
Λ3(TM). In this case, 2A = T , and the ∇-Killing vector fields coincide
with the Riemannian Killing vector fields.

Connections used in superstring theory

• A ∈ Rn: “Connections with vectorial torsion”, V a vector field:

∇XY := ∇g
XY − g(X,Y ) · V + g(Y, V ) ·X .

In particular, any metric connection on a surface is of this type
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Holonomy of arbitrary connections

• γ from p to q, ∇ any connection

• Pγ : TpM → TqM is the unique map
s. t. V (q) := PγV (p) is parallel along
γ, ∇V (s)/ds = ∇γ̇V = 0.

• C(p): closed loops through p
Hol(p;∇) = {Pγ | γ ∈ C(p)}

• C0(p): null-homotopic el’ts in C(p)
Hol0(p;∇) = {Pγ | γ ∈ C0(p)}

p

TpMPγ

γ
M

Independent of p, so drop p in notation: Hol(M ;∇), Hol0(M ;∇).

A priori:

(1) Hol(M ;∇) is a Lie subgroup of GL(n,R),

(2) Hol0(p) is the connected component of the identity of Hol(M ;∇).
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Holonomy of metric connections

Assume: M carries a Riemannian metric g, ∇ metric

⇒ parallel transport is an isometry:

d

ds
g
(
V (s),W (s)

)
= g

(∇V (s)

ds
,W (s)

)
+
(
V (s),

∇W (s)

ds

)
= 0.

and Hol(M ;∇) ⊂ O(n,R), Hol0(M ;∇) ⊂ SO(n,R).

Notation: Hol(0)(M ;∇g) = “Riemannian (restricted) holonomy group”

N.B. (1) Hol(0)(M ;∇) needs not to be closed!

(2) The holonomy representation needs not to be irreducible on

irreducible manifolds!

Larger variety of holonomy groups, but classification difficult
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Curvature & Holonomy

Holonomy can be computed through curvature:

Thm (Ambrose-Singer, 1953). For any connection ∇ on (M, g), the
Lie algebra hol(p;∇) of Hol(p;∇) in p ∈ M is exactly the subalgebra of
so(TpM) generated by the elements

P−1
γ ◦ R(PγV, PγW ) ◦ Pγ V,W ∈ TpM, γ ∈ C(p).

But only of restricted use:

Thm (Bianchi I). (1) For a metric connection with vectorial torsion

V ∈ TMn:
X,Y,Z
σ R(X,Y )Z =

X,Y,Z
σ dV (X,Y )Z.

(2) For a metric connection with skew symmetric torsion T ∈ Λ3(Mn):

X,Y,Z
σ R(X,Y,Z, V ) = dT (X,Y,Z, V )−σT (X,Y,Z, V )+(∇V T )(X,Y,Z),

2σT :=
n∑

i=1

(ei T ) ∧ (ei T ) for any orthonormal frame e1, . . . , en.
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Thm (Berger, Simons, > 1955). For a non symmetric Riemannian
manifold (M, g) and the Levi-Civita connection ∇g, the possible holonomy
groups are SO(n) or

4n 2n 2n 4n 7 8 16

SpnSp1 U(n) SU(n) Spn G2 Spin(7) (Spin(9))

quatern. Kähler Calabi- hyper- par. par. par.
Kähler Yau Kähler

∇J 6= 0 ∇gJ = 0 ∇gJ = 0 ∇gJ = 0 ∇gω3 = 0 ∇gΩ4 = 0 −−

Ric = λg −− Ric = 0 Ric = 0 Ric = 0 Ric = 0 −−

• Recall – Construction of compact Ricci flat examples difficult!

Q1: What about Riemannian mnfds not covered by this result?

Q2: Good Reformulation / replacement for connections with torsion?
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General Holonomy Principle

Thm (General Holonomy Principle). M a manifold, E a (real or complex)
vector bundle over M with (any!) connection ∇. Then the following are
equivalent:

(1) E has a global section α which is invariant under parallel transport,
i. e. α(q) = Pγ(α(p)) for any path γ from p to q;

(2) E has a parallel global section α, i. e. ∇α = 0;

(3) In some point p ∈ M , there exists an algebraic vector α0 ∈ Ep which is
invariant under the holonomy representation on the fiber.

Corollary. The number of parallel global sections of E coincides with the
number of trivial representations occuring in the holonomy representation
on the fibers.
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Example. Orientability from a holonomy point of view:

Lemma. The determinant ist an SO(n)-invariant element in Λn(Rn) that
is not )(n)-invariant.

Corollary. (Mn, g) is orientable iff Hol(M ;∇) ⊂ SO(n) for any metric
connection ∇, and the volume form is then ∇-parallel.

[Take dMp := det = e1 ∧ . . . ∧ en in p ∈ M , then apply holonomy principle to

E = Λn(TM).]

An orthonormal frame that is parallel transported along the drawn curve reverses its

orientation.

Ilka Agricola
O
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The Ambrose–Singer homogeneity theorem

Thm. A complete Riemannian manifold (M,g) equipped with a
homogeneous structure, i. e. a metric connection ∇ with torsion T and
curvature R such that ∇R = 0 and ∇T = 0, is locally isometric to a
Riemannian homogeneous space. [Ambrose–Singer, 1958]

• Symmetric spaces: Correspond to T = 0, the ”integrable” case, ∇gRg =
0; intuitively this follows because ∇gRg would be a (5, 0)-tensor, the
invariance under reflections then forces it to vanish.

Q. Is the connection unique?

– yes! This will be a non-trivial consequence of the skew torsion holonomy
theorem (except on spheres, Lie groups, and their coverings).

⇒ 3 classes of homogeneous spaces according to Cartan type of this
torsion!

• Empirical fact: In the non-homogeneous case, metric connections with
parallel torsion turn out to be very useful (and natural) as well.
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One class: Naturally reductive homogeneous spaces

Traditional approach: (M = G/H, g) a homogeneous space

Dfn. M = G/H is naturally reductive if h admits a reductive complement
m in g s. t.

〈[X,Y ]m, Z〉+ 〈Y, [X,Z]m〉 = 0 for all X,Y,Z ∈ m, (∗)

where 〈−,−〉 denotes the inner product on m induced from g.

The PFB G → G/H induces a metric connection ∇ with torsion

T (X,Y, Z) = −〈[X,Y ]m, Z〉,

the canonical connection. It satisfies ∇T = ∇R = 0, so it’s just the
connection from the AS thm!

• If G/H is symmetric, then [m,m] ⊂ h, hence T = 0 and ∇ = ∇g

• condition (∗) ⇔ T is a 3-form, i. e. T ∈ Λ3(M).
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Approaching a key example: The almost complex structure on S6

Hopf problem: Does there exist a complex structure on S6?

Kirchhoff (1947) observes:

• The only sphere (other than S2) that may carry a complex structure is S6.

• An almost complex structure on S6 can easily be defined by interpreting
S6 as the purely imaginary Cayley numbers of norm 1.

This is strongly related to the transitive action of G2 on S6 – but it took a
while to understand the link

Thm. The only even-dim. sphere with a transitive group G acting that is
not orthogonal is S6 with G = G2. [Borel, 1949]

• Ehresmann, Libermann (1951): Studied the almost complex structure on
S6 in more detail, prove that it’s not complex, conclude: ‘The structure we
considered is therefore locally equivalent to an almost hermitian structure
on S6 admitting G2 as its group of automorphisms.’
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Explicit description I: Hypersurfaces in ImO ∼= R
7 [Calabi, 1958]

• M6 a compact hypersurface in ImO

• N : normal vector field
• K: shape operator (Weingarten map)
• Define J ∈ End(TM) by

J(Y ) = N × Y, Y ∈ TM

• J2 = −Id is a non integrable almost
complex structure satisfying

x TxS
2

y
J(y) := x× y

S2

for S2 ⊂ R3:

〈(∇g
XJ)(Y ), Z〉 = 〈K(X)× Y,Z〉

• For M6 = S6, K = Id and J satisfies the simpler eq. ∇g
XJ(X) = 0

Such an almost Hermitian mnfd is called a ‘nearly Kähler manifold’.
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Sketch of proof: The cross product on ImO satisfies:

• 〈A, (B × C)〉 = 〈(A×B), C〉 =: (ABC) (scalar triple product identity),

• A× (A×B) = −|A|2B + 〈A,B〉A (Malcev identity),

• (A× B)× C = A× (B × C)− 〈A,B〉C for C ⊥ A,B.

• Prove J2 = −Id: Malcev id. implies N × (N ×X) = −|N |2X+ 〈N,X〉N
for any X ∈ TS. But |N | = 1 and N ⊥ X ⇒ claim.

• Metric is J-compatible: Use scalar triple product and Malcev identity

〈J(X), J(Y )〉 = 〈N × X,N × Y 〉 = 〈N × X) × N, Y 〉 = −〈N × (N ×
X), Y 〉 = 〈X,Y 〉

• Compute (∇g
XJ)(Y ):

(∇g
XJ)(Y ) = ∇g

X(J(Y ))−J(∇g
XY ) = ∇g

X(N×Y )−N×∇g
XY = ∇g

XN×
Y +N ×∇g

XY −N ×∇g
XY = K(X)× Y.

In fact, more holds: J is integrable iff K ◦ J = −J ◦K, which cannot hold
on a closed hypersurface of Euclidian space.

Corollary. J is never integrable. For the sphere, N(X,Y ) = 4(∇g
XJ)JY .
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Explicit description II: S6 = G2/SU(3) as naturally reductive space
[Fukami, Ishihara, 1955]

Thm. S6 = G2/SU(3) is naturally reductive and the torsion 3-form of the
Ambrose-Singer connection is given by the formula

T c(X,Y,Z) = −〈J(X × Y ), Z〉 = −〈N, (X × Y )× Z〉 .

The existence of this connection is no coincidence. Gray started the
systematic investigation of nearly Kähler mnfds in the early 70ies and
proved:

Thm. Let (M,g, J) be a nearly Kähler mnfd. There exists a unique metric
connection preserving J and with skew symmetric torsion, and its torsion
3-form is given by the formula

T c(X, Y,Z) = 〈(∇g
XJ)(JY ) , Z〉 .

Furthermore, it satisfies ∇T = 0.

∇ is the first example of what it now known as a characteristic connection!
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Thm. The only homogeneous nearly Kähler 6-manifolds are S6, S3 × S3,
CP

3 and the flag manifold F1,2. They are all naturally reductive and their
characteristic connection coincides with the Ambrose-Singer connection.
[Butruille, 2005]

Thm. Let (M, g, J) be a 6–dimensional nearly Kähler manifold that is not
Kähler. Then

• g is an Einstein metric on M ,

• the first Chern class of M vanishes and hence it is spin. [Gray, 1976]

Thm. The characteristic torsion of a nearly Kähler 6-manifold is parallel
with respect to the characteristic connection, ∇cT c = 0. [Kirichenko, 1977]

Philosophically: The LC connection does not ’see’ the nearly Kähler
structure of these mnfds; the characteristic connection, having non-generic
holonomy, carries crucial information and is a tool for proofs even in the
non-homogeneous case
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Non homogeneous nearly Kähler manifolds

Were widely believed to exist, but their explicit construction was an open
problem for many years!

Thm. There exists a non-homogeneous nearly Kähler structure on S6 and
on S3 × S3. [Foscolo-Haskins, 2017]

They admit an isometric action of a compact Lie group such that generic
orbits of the action are of codimension one.

The Lie group considered in this case is SU(2) × SU(2) and the generic
orbits are S2 × S3, which is motivated by results of Podesta and Spiro
(2012) characterizing all possible groups and orbits for cohomogeneity one
nearly Kähler.

Local homogeneous non-homogeneous examples of nearly Kähler manifolds
are constructed by Cortés and Vásquez (2015).
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Algebraic preliminaries for holonomy theorem

Dfn. For a 3-form T , define [introduced in AFr, 2004]

• kernel: kerT = {X ∈ Rn |X T = 0} (for later)

• Lie algebra generated by its image: gT := Lie〈X T |X ∈ Rn〉

isotropy Lie algebra : hT := {A ∈ gl(n,R) | A∗T = 0}

gT is not related in any obvious way to hT !

Thm. gT is a compact semisimple Lie algebra.

Next step: In its original version, Berger’s holonomy theorem is not suitable
for generalization to connections with skew torsion.

Formulate a holonomy theorem in terms of gT !



32

The skew torsion holonomy theorem

Dfn. Let 0 6= T ∈ Λ3(V ), gT as before, GT ⊂ SO(n) its Lie group. Hence,
X T ∈ gT ⊂ so(V ) ∼= Λ2(V ) ∀ X ∈ V . Then (GT , V, T ) is called a
skew-torsion holonomy system (STHS). It is said to be

- irreducible if GT acts irreducibly on V ,

- transitive if GT acts transitively on the unit sphere of V ,

- and symmetric if T is GT -invariant.

Recall: The only transitive sphere actions are:

SO(n) on Sn−1 ⊂ Rn, [S]U(n) on S2n−1 ⊂ Cn, Sp(n)[Sp(1)] on S4n−1 ⊂
H

n, G2 on S6, Spin(7) on S7, Spin(9) on S15. [Montgomery-Samelson, 1943]

Thm (STHT). Let (GT , V, T ) be an irreducible STHS. If it is transitive,
GT = SO(n). If it is not transitive, it is symmetric, and

• V is a simple Lie algebra of rank ≥ 2 w. r. t. the bracket [X,Y ] = T (X,Y ),
and GT acts on V by its adjoint representation,

• T is unique up to a scalar multiple.
[transitive: AFr 2004, general: Olmos-Reggiani, 2012; Nagy 2013]
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The newer proofs are based on general holonomy theory. The statement
about transitive actions is easily verified on a case by case basis.

Want to apply this to existence of characteristic connections!
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The characteristic connection of a geometric structure

Fix G ⊂ SO(n), Λ2(Rn) ∼= so(n) = g ⊕ m, F(Mn): frame bundle of
(Mn, g).

Dfn. A geometric G-structure on Mn is a G-PFB R which is subbundle of
F(Mn): R ⊂ F(Mn).

Choose a G-adapted local ONF e1, . . . , en in R and define connection
1-forms of ∇g:

ωij(X) := g(∇g
Xei, ej), g(ei, ej) = δij ⇒ ωij + ωji = 0.

Define a skew symmetric matrix Ω with values in Λ1(Rn) ∼= R
n by Ω(X) :=(

ωij(X)
)
∈ so(n) = g⊕m und set

Γ := prm(Ω).

• Γ is a 1-Form on Mn with values in m, Γx ∈ Rn ⊗m (x ∈ Mn) [“intrinsic
torsion”, Swann/Salamon]
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Fact: Γ = 0 ⇔ ∇g is a G-connection ⇔ Hol(∇g) ⊂ G

Via Γ, geometric G-structures R ⊂ F(Mn) correspond to irreducible
components of the G-representation R

n ⊗m.

Thm. A geometric G-structure R ⊂ F(Mn) admits a metric G-connection
with antisymmetric torsion iff Γ lies in the image of Θ,

Θ : Λ3(Mn) → T ∗(Mn)⊗m, Θ(T ) :=
∑n

i=1 ei ⊗ prm(ei T ).

[Fr, 2003]

If such a connection exists, it is called the characteristic connection ∇c →
replace the (unadapted) LC connection by ∇c.

Thm. If G 6⊂ SO(n) acts irreducibly and not by its adjoint rep. on
R

n ∼= TpM
n, then kerΘ = {0}, and hence the characteristic connection of

a G-structure on a Riemannian manifold (Mn, g) is, if existent, unique.

[A-Fr-Höll, 2013]
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Uniqueness of characteristic connections

This is a consequence of the STHT:

Proof. T ∈ kerΘ iff all X T ∈ g ⊂ so(n), that is,

kerΘ = {T ∈ Λ3(Rn) | gT ⊂ g},

so (T,G,Rn) defines an irreducible STHS, which by assumption is non
transitive (because G 6⊂ SO(n)). By the STHT, it has to be a Lie algebra
with the adjoint representation. Since this was excluded as well, it follows
that kerΘ = {0}. �

For many G-structures, uniqueness can be proved directly case by case –
including a few cases where the G-action is not irreducible.

For example, a large class of almost metric contact manifolds admits a
characteristic connection ∇, and for these: Hol0(∇) ⊂ U(n) ⊂ SO(2n+1).

We cite only one class of examples:
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Thm. An almost hermitian manifold (M2n, g, J) admits a characteristic
connection ∇ if and only if the Nijenhuis tensor

N(X,Y,Z) := g
(
N(X,Y ), Z

)

is skew-symmetric. Its torsion is then

T (X,Y,Z) = −dΩ(JX, JY, JZ) +N(X,Y,Z)

and it satisfies: ∇Ω = 0, Hol(∇) ⊂ U(n). [Fr-Ivanov, 2002]

‘Trivial case’: If (M2n, g, J) is Kähler (N = 0 and dΩ = 0), then T = 0,
the LC connection ∇g is the characteristic connection.

In particular for n = 3: [Gray-Hervella]

• so(6) = u(3)⊕m6, Γ ∈ R
6 ⊗m6

∣∣
U(3)

∼= W 2
1 ⊕W 16

2 ⊕W 12
3 ⊕W 6

4

• N is skew-symmetric ⇔ Γ has no W2-part

• Γ ∈ W1: nearly Kähler manifolds (S6, S3 × S3, F (1, 2),CP3)

• Γ ∈ W3 ⊕W4: hermitian manifolds (N = 0)
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Flat metric connections with skew torsion

Suppose ∇ is metric and has antisymmetric torsion T ∈ Λ3(M),

∇XY = ∇g
XY + 1

2T (X,Y ).

Q: What are the manifolds with a flat metric connection with skew torsion?

[this section: A-Fr, 2010]

• We know that compact Lie groups are examples,

• We show that S7 is another example.

Assume simply connected where needed.
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Flat connections

Dfn. ∇ is called flat, if R(X,Y ) = 0 for all X,Y

⇔ ∇ : TM → End(TM), X 7→ ∇X is Lie algebra homomorphism

⇔ By Ambrose-Singer Thm (γ ∈ C(p), Pγ : TpM → TpM par.tr.):

0 = hol(∇, p) = 〈P−1
γ ◦ R(PγV, PγW ) ◦ Pγ〉 ⊂ so(TpM),

i. e. Hol(p;∇) is a discrete group

⇔ parallel transport is path-independent

⇒ (M, g) is parallelisable and therefore spin

p

TpMPγ

γ M
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Example 2: S7

• only parallelisable sphere that is not a Lie group (but almost. . . )

Consider spin representation κC : Spin(7) → End(∆C
7 ), ∆C

7
∼= C

8.

In dim.7, this turns out to be complexification of 8-dim. real rep.,

κ : Spin(7) → End(∆7), ∆7
∼= R8.

κ is in fact a repr. of the Clifford algebra over R7 (Spin(7) ⊂ Cl(R7)!),

κ : R7 ⊂ Cl(R7) → End(∆7).

Choose e1, . . . , e7 an ON basis of R7, and set κi = κ(ei).

• Embed S7 ⊂ ∆7 as spinors of length 1,

• define VFs on S7 by Vi(x) = κi · x for all x ∈ S7 ⊂ ∆7
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Properties of the VFs Vi(x) = κ(ei) · x

Thm. (1) These vector fields realize a ON trivialization of S7,

[computation rules for Clifford multipl.]

(2) the connection ∇ defined by ∇Vi = 0 is metric, flat, and with torsion

T (Vi, Vj, Vk)(x) = −〈[Vi, Vj], Vk〉 = 2〈κiκjκkx, x〉 ∈ Λ3(S7),

(3) ∇T 6= 0 (check that T does not have constant coefficients), σT 6= 0

(4) ∇ is a G2 connection of Fernandez-Gray type X1 ⊕X3 ⊕X4.
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Classification of flat skew torsion manifolds

Thm Any irr.,c.s.c.M with a flat, metric connection with skew torsion
T ∈ Λ3(M) is either a compact Lie group or S7.

• 1926: Cartan-Schouten “On manifolds with absolute parallelism” – wrong
proof.

• 1968: d’Atri-Nickerson “On the existence of special orthonormal frames”
– when does (M, g) admit an ONF of Killing vectors?

This is mainly an equivalent problem:

V is Killing VF ⇔ g(∇g
XV, Y ) + g(X,∇Y V ) = 0 (∗)

If V is parallel for ∇ with torsion T , then ∇g
XV = −1

2T (X,V ), hence

(∗) ⇔ g(T (X,V ), Y ) + g(X,T (Y, V )) = 0 ⇔ T ∈ Λ3(M)

• 1972: J. Wolf “On the geometry and classification of absolute parallelisms”
– 2 long papers in J. Diff.Geom.

Both proofs rely on classification of symmetric spaces.

• First classification free proof uses STHT [A-Friedrich, 2010]
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Towards a classification of naturally reductive spaces

Main pb: 6 ∃ invariant theory for Λ3(Rn) under SO(n) for n ≥ 6,
i. e. normal forms for the SO(n)-orbits of 3-forms!

• Use the recent progress on metric connections with [parallel] skew torsion

• Use torsion (instead of curvature) as basic geometric quantity, find
a G-structure (contact str., almost hermitian str. etc.) inducing the
nat. red. structure

Obviously:
nat.red.homog.

Riemannian mnfds
⊂

(homogeneous) Riemannian

mnfds with parallel skew torsion
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Review of some classical results

• all isotropy irreducible homogeneous manifolds are naturally reductive

• the ±-connections on any Lie group with a biinvariant metric are naturally
reductive (and, by the way, flat) [Cartan-Schouten, 1926]

• construction / classification (under some assumptions) of left-invariant
naturally reductive metrics on compact Lie groups [D’Atri-Ziller, 1979]

• All 6-dim. homog. nearly Kähler mnfds (w. r. t. their canonical almost
Hermitian structure) are naturally reductive. These are precisely: S3 × S3,
CP

3, the flag manifold F (1, 2) = U(3)/U(1)3, and S6 = G2/SU(3).

• Known classifications:

- dimension 3 [Tricerri-Vanhecke, 1983], dimension 4 [Kowalski-Vanhecke, 1983],
dimension 5 [Kowalski-Vanhecke, 1985]

These proceeded by finding normal forms for the curvature operator.
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An important tool: the 4-form σT

Dfn. For any T ∈ Λ3(M), define (e1, . . . , en a local ONF)

σT :=
1

2

n∑

i=1

(ei T ) ∧ (ei T ) (= 0 if n ≤ 4)

Exa: For T = α e123 + β e456, σT = 0;
for T = (e12 + e34)e5, σT = −e1234

• σT measures the ‘degeneracy’ of T and, if non degenerate, induces
the geometric structure on M

[ σT appears in many important relations:

* 1st Bianchi identity:
X,Y,Z

S R(X, Y, Z, V ) = σT(X, Y, Z, V )

* T 2 = −2σT + ‖T‖2 in the Clifford algebra

* If ∇T = 0: dT = 2σT and ∇gT = 1
2σT ]
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σT and the Nomizu construction

Idea: for M = G/H, reconstruct g from h, T , R and V ∼= TxM

Set-up: h a real Lie algebra, V a real f. d. h-module with h-invariant
pos. def. scalar product 〈, 〉, i. e. h ⊂ so(V ) ∼= Λ2V

R : Λ2V → h an h-equivariant map, T ∈ (Λ3V )h an h-invariant 3-form,

Define a Lie algebra structure on g := h⊕ V by (A,B ∈ h,X, Y ∈ V ):

[A+X,B + Y ] := ([A,B]h −R(X,Y )) + (AY −BX − T (X,Y ))

Jacobi identity for g ⇔

•
X,Y,Z

S R(X,Y,Z, V ) = σT (X,Y, Z, V ) (1st Bianchi condition)

•
X,Y,Z

S R(T (X,Y ), Z) = 0 (2nd Bianchi condition)
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Observation: If (M,g, T ) satisfies ∇T = 0, then R : Λ2(M) → Λ2(M) is
symmetric (as in the Riemannian case).

Consider C(V ) := C(V,−〈, 〉): Clifford algebra, (recall: T 2 = −2σT + ‖T‖2)

Thm. If R : Λ2V → h ⊂ Λ2V is symmetric, the first Bianchi condition is
equivalent to T 2+R ∈ R ⊂ C(V ) (⇔ 2σT = R ⊂ C(V )) , and the second
Bianchi condition holds automatically.

Exists in the literature in various formulations: based on an algebraic identity (Kostant);

crucial step in a formula of Parthasarathy type for the square of the Dirac operator (A,

’03); previously used by Schoemann 2007 and Fr. 2007, but without a clear statement nor

a proof.

Practical relevance: allows to evaluate the 1st Bianchi identity in one
condition, good for implementation on a computer!
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Splitting theorems

Dfn. For T 3-form, define [introduced in AFr, 2004]

• kernel: kerT = {X ∈ TM |X T = 0}

• Lie algebra generated by its image: gT := Lie〈X T |X ∈ V 〉

gT is not related in any obvious way to the isotropy algebra of T !

Thm 1. Let (M,g, T ) be a c. s. c. Riemannian mfld with parallel skew
torsion T . Then kerT and (kerT )⊥ are∇-parallel and ∇g-parallel integrable
distributions, M is a Riemannian product s. t.

(M, g, T ) = (M1, g1, T1 = 0)× (M2, g2, T2), kerT2 = {0}

Thm 2. Let (M,g, T ) be a c. s. c. Riemannian mfld with parallel skew
torsion T s. t. σT = 0, TM = T1 ⊕ . . . ⊕ Tq the decomposition of TM in
gT -irreducible, ∇-par. distributions. Then all Ti are ∇

g-par. and integrable,
M is a Riemannian product, and the torsion T splits accordingly

(M, g, T ) = (M1, g1, T1)× . . .× (Mq, gq, Tq)
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A structure theorem for vanishing σT

Thm. Let (Mn, g) be an irreducible, c. s. c. Riemannian mnfld with
parallel skew torsion T 6= 0 s. t. σT = 0, n ≥ 5. Then Mn is a
simple compact Lie group with biinvariant metric or its dual noncompact
symmetric space. [A-Ferreira-Friedrich, 2015]

Key ideas: σT = 0 ⇒ Nomizu construction yields Lie algebra structure on TM

use gT ; use the Skew Torsion Holonomy Theorem to show that GT is simple and acts on

TM by its adjoint rep.

prove that gT = iso(T ) = holg, hence acts irreducibly on TM , hence M is an irred.

symmetric space by Berger’s Thm
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Classification of nat. red. spaces in n = 3

[Tricerri-Vanhecke, 1983]

Then σT = 0, and the Nomizu construction can be applied directly to obtain
in a few lines:

Thm. Let (M3, g, T 6= 0) be a 3-dim. c. s. c. Riemannian mnfld with a
naturally reductive structure. Then (M3, g) is one of the following:

• R3, S3 or H3;

• isometric to one of the following Lie groups with a suitable left-invariant
metric:

SU(2), S̃L(2,R), or the 3-dim. Heisenberg group H3

N.B. A general classification of mnfds with par. skew torsion is meaningless
– any 3-dim. volume form of a metric connection is parallel.
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Classification of nat. red. spaces in n = 4

Thm. (M4, g, T 6= 0) a c. s. c. Riem. 4-mnfld with parallel skew torsion.
Then

1) V := ∗T is a ∇g-parallel vector field.

2) Hol(∇g) ⊂ SO(3), hence M4 is isometric to a product N3 × R, where
(N3, g) is a 3-manifold with a parallel 3-form T .

• T has normal form T = e123, so dimkerT = 1 and 2) follows at once
from our 1st splitting thm: but the existence of V explains directly &
geometrically the result in a few lines.

Corollary. A 4-dim. naturally reductive Riemannian manifold with T 6= 0
is locally isometric to a Riemannian product N3 × R, where N3 is a 3-
dimensional naturally reductive Riemannian manifold. [Kowalski-Vanhecke,

1983]


