Generalized connections, spinors, and integrability of generalized structures on Courant algebroids

> Vicente Cortés Department of Mathematics University of Hamburg

Seminar - GENTLE Universitat Autònoma de Barcelona (virtual), May 8, 2024 Talk based on:

V. C. and L. David, *Generalized connections, spinors, and integrability of generalized structures on Courant algebroids,* Moscow Mathematical Journal 21, no. 4 (2021), 695-736.

I. Courant algebroids

Definition

A Courant algebroid (CA) is a vector bundle $E \rightarrow M$ with:

- 1. scalar product $\langle\cdot,\cdot\rangle$,
- 2. bracket $[\cdot, \cdot] : \Gamma(E) \times \Gamma(E) \to \Gamma(E)$, and
- 3. anchor $\pi: E \to TM$,

such that $\forall u, v, w \in \Gamma(E)$:

A1) [u, [v, w]] = [[u, v], w] + [v, [u, w]],A2) $\pi(u)\langle v, w \rangle = \langle [u, v], w \rangle + \langle v, [u, w] \rangle,$ A3) $\langle [u, v] + [v, u], w \rangle = \pi(w)\langle u, v \rangle.$

Example (Generalized tangent bundle) $\mathbb{T}M := TM \oplus T^*M$

$$[X + \xi, Y + \eta] = \mathcal{L}_X(Y + \eta) - \mathcal{L}_Y(\xi) + d(\xi(Y)).$$

II. Generalized complex structures

Definition

A generalized almost complex structure (GACS) on a CA E is a skew-symm. $\mathcal{J} \in \Gamma(\operatorname{End} E)$ s.t. $\mathcal{J}^2 = -\operatorname{Id}_E$ integrable if $E^{1,0}$ is involutive.

Examples

a) Let J be a complex structure on M. Then

$$\mathcal{J}_J = \left(egin{array}{cc} J & 0 \\ 0 & -J^* \end{array}
ight) : \mathbb{T}M o \mathbb{T}M$$

is a GCS.

b) Let ω be a symplectic structure on M. Then

$$\mathfrak{J}_{\omega} = \left(egin{array}{cc} 0 & -\omega^{-1} \ \omega & 0 \end{array}
ight) : \mathbb{T}M o \mathbb{T}M$$

is a GCS.

III. Generalized connections

Definition

A generalized connection on a CA $E \rightarrow M$ is a linear map

$$D: \Gamma(E) \to \Gamma(E^* \otimes E), \quad v \mapsto Dv,$$

s.t. $\forall u, v, w \in \Gamma(E), f \in C^{\infty}(M):$
$$D_u(f v) = \pi(u)(f) v + f D_u v$$

$$\pi(u)\langle v,w\rangle = \langle D_uv,w\rangle + \langle v,D_uw\rangle.$$

Torsion

1. $T^{D} \in \Gamma(\wedge^{2}E^{*} \otimes E)$: $T^{D}(u, v) := D_{u}v - D_{v}u - [u, v] + (Du)^{*}v.$ 2. $T^{D}(u, v, w) := \langle T^{D}(u, v), w \rangle$ defines a section of $\Gamma(\wedge^{3}E^{*}).$ IV. Geometric structures on Courant algebroids Let E be a CA of signature (n_1, n_2) and $H \subset O(n_1, n_2)$ a Lie subgroup. Definition

An *H*-structure on *E* is a reduction of the structure group $O(n_1, n_2)$ to *H*.

 \dots assume that the structure is defined by a system Q of tensor fields such as:

- 1. GACS $Q = \mathcal{J}$, $H = U(m_1, m_2)$, $n_i = 2m_i$,
- 2. generalized almost hypercomplex structure $Q = (\mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3)$, $H = \operatorname{Sp}(m_1, m_2)$, $n_i = 4m_i$,
- 3. generalized Riemannian metric Q = G, $H = O(n_1) \times O(n_2)$,
- 4. generalized almost Hermitian structure, $Q = (G, \mathcal{J})$, $H = U(m_1) \times U(m_2)$,

5. generalized almost hyper-Hermitian structure, $Q = (G, \mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3), H = \operatorname{Sp}(m_1) \times \operatorname{Sp}(m_2).$

V. Characterization of integrability

Theorem 1 (C.-David)

Let Q be any of the above structures 1, 2, 4 or 5 on a CA E. Then Q is integrable iff \exists torsionfree generalized connection D on E for which Q is parallel.

Proof (sketch in the case $Q = \mathcal{J}$)

" \Leftarrow " The integrability of \mathcal{J} is equivalent to the vanishing of the Nijenhuis tensor $N_{\mathcal{J}} \in \Gamma(\wedge^2 E^* \otimes E)$:

$$N_{\mathcal{J}}(u,v) := [\mathcal{J}u, \mathcal{J}v] - [u,v] - \mathcal{J}([\mathcal{J}u,v] + [u,\mathcal{J}v]).$$

Sketch of proof continued

For any generalized connection D s.t. $D\mathcal{J} = 0$ we show:

$$\langle N_{\mathcal{J}}(u,v),w\rangle = T^{D}(u,v,w) - T^{D}(u,\mathcal{J}v,\mathcal{J}w) - T^{D}(\mathcal{J}u,v,\mathcal{J}w) - T^{D}(\mathcal{J}u,\mathcal{J}v,w)$$
(1)

So $T^D = 0$ implies $N_{\mathcal{J}} = 0$. This proves " \Leftarrow ".

For the converse we observe that rhs of (1) can be viewed as $4t_{\mathcal{J}}$, where $t_{\mathcal{J}}$ is the intrinsic torsion of \mathcal{J} .

Sketch of proof continued

Definition

The intrinsic torsion t_Q of an *H*-structure Q on a Courant algebroid E is the image of T^D in $\Gamma(\wedge^3 E^*/\operatorname{im} \partial_Q)$, where D is any gen. conn. compatible with Q and

$$\partial_Q: E^* \otimes \wedge^2_Q E^* \to \wedge^3 E^*$$

is the algebraic torsion map (cyclic sum). Here $\wedge_Q^2 E^* \subset \wedge^2 E^*$ is the subbundle which corresponds to $\mathfrak{so}(E)_Q \subset \mathfrak{so}(E)$.

For our case $Q = \mathcal{J}$, we exhibit a canonical complement $\wedge^3_{Q} E^* \subset \wedge^3 E^*$ of $\operatorname{im} \partial_Q$ such that

$$\wedge^3 E^*/\mathrm{im}\,\partial_Q\cong\wedge^3_Q E^*$$

and t_Q is viewed as an element of $\wedge_Q^3 E^*$.

Sketch of proof continued

To prove the converse " \Rightarrow " of Theorem 1, we construct a gen. conn. D s.t. $D\mathcal{J} = 0$ and $T^D = t_{\mathcal{J}}$. Then (1) shows that the integrability of \mathcal{J} implies $T^D = 0$.

D is constructed as follows. Given any torsionfree gen. conn.
 D⁰, we define

$$D_u v := D_u^0 v - rac{1}{4} \{A_u^{\mathrm{sym}}, \mathcal{J}\} v - rac{1}{2} \mathcal{J}(D_u^0 \mathcal{J}) v,$$

where A_u^{sym} denotes the symmetric part of $A_u = (D^0 \mathcal{J})u$. Then we prove that D has the claimed properties.

VI. Generalized first prolongation

Definition

Let V be a pseudo-Euclidean vector space. Given a Lie algebra $\mathfrak{h} \subset \mathfrak{so}(V) \cong \wedge^2 V^*$ we define its generalized first prolongation by

$$\mathfrak{h}^{\langle 1
angle} := \ker{(\partial_{\mathfrak{h}}: V^* \otimes \mathfrak{h}
ightarrow \wedge^3 V^*)},$$

where $\partial_{\mathfrak{h}}$ is again given by cyclic summation.

Proposition (C.-David)

Let Q be a generalized H-structure on a CA E.

- There exists a torsion-free generalized connection compatible with Q iff the intrinsic torsion of Q vanishes. It is unique iff h⁽¹⁾ = 0.
- Given a tensor field T ∈ Γ(∧³E*), the space of generalized connections compatible with Q which have torsion T is an affine space modelled on Γ((so(E)_Q)^{⟨1⟩}). (Note that so(E)_Q|_p ≃ ħ for all p ∈ M.)

VI. Generalized first prolongation

Examples

1) Consider the case
$$\mathfrak{h} = \mathfrak{so}(V)$$
:

$$\mathfrak{so}(V)^{\langle 1 \rangle} \cong rac{(\mathrm{Sym}^2 V^*) \otimes V^*}{\mathrm{Sym}^3 V^*}$$

This implies that the space of torsionfree generalized connections on any Courant algebroid *E* is an affine space modelled on $\Gamma(\frac{(\text{Sym}^2 E^*) \otimes E^*}{\text{Sym}^3 E^*})$.

 Given a generalized Riemannian metric G on E, it is known that a compatible torsionfree generalized connection exists (García Fernández). It is not unique since

$$(\mathfrak{so}(n_1)\oplus\mathfrak{so}(n_2))^{\langle 1
angle}=\mathfrak{so}(n_1)^{\langle 1
angle}\oplus\mathfrak{so}(n_2)^{\langle 1
angle}\neq 0,$$

provided that $\min(n_1, n_2) > 1$.

VI. Generalized first prolongation

Another example

The diagonal subalgebra

$$\Delta_{\mathfrak{so}(n)} := \{A \oplus A \mid A \in \mathfrak{so}(n)\} \subset \mathfrak{so}(n) \oplus \mathfrak{so}(n)$$

has $\Delta_{\mathfrak{so}(n)}^{\langle 1 \rangle} = 0.$

- Conceptional reason for uniqueness of connection ∇ which has appeared in Born geometry (Freidel, Rudolph and Svoboda).
- ▶ A Born structure on a mf. *M* consists of data (η, I, J, K) , where η is a pseudo-Riemannian metric of neutral signature, $J, K \in \Gamma(\text{End}(TM))$ are anti-commuting involutions such that K = IJ is η -skew-symmetric, *J* is η -symmetric and $g = \eta(J, \cdot, \cdot) > 0$.

• ∇ compatible with Born structure and $\nabla_X Y - \nabla_Y X - [X, Y]^c + (\nabla X)^* Y = 0$ for all X, Y, where $[X, Y]^c = \nabla_X^c Y - \nabla_Y^c X - (\nabla^c X)^* Y$, $\nabla^c = \nabla^\eta + \frac{1}{2} K(\nabla^\eta K)$.

VII. Spinors over E

Spinor bundles Let $S \to M$ be a bundle of irreducible Cl(E)-modules:

$$\gamma : \operatorname{Cl}(E) \to \operatorname{End} S, \quad a \mapsto \gamma_a = \gamma(a).$$

▶ We assume for simplicity that *E* has neutral signature. Then *S* is \mathbb{Z}_2 -graded, $S = S^0 + S^1$, and we denote by

$$[A, B] = AB - (-1)^{\deg A \deg B} BA$$

the super commutator of homogeneous elements $A, B \in \operatorname{End} \Gamma(S) \supset \operatorname{Diff}(S) \supset \Gamma(\operatorname{End} S)$.

VII. Dirac generating operators

The theory of Dirac generating operators has been developed by Alexeev and Xu.

Definition

A first order odd differential operator \oint on S is called a Dirac generating operator (DGO) if $\forall u, v \in \Gamma(E), f \in C^{\infty}(M)$:

1.
$$[[\not{a}, f], \gamma_u] = \pi(u)(f),$$

2. $[[\not{a}, \gamma_u], \gamma_v] = \gamma_{[u,v]},$

3.
$$\not d^2 \in C^\infty(M)$$
.

VII. Dirac generating operators continued

Example

Let $(\langle \cdot, \cdot \rangle, [\cdot, \cdot], \pi)$ be the standard CA structure on $\mathbb{T}M$.

▶ The bracket can be twisted by a closed 3-form *H*:

$$[X + \xi, Y + \eta]_H = [X + \xi, Y + \eta] + H(X, Y, \cdot).$$

• $S = \wedge T^*M$ is a bundle of irreducible $Cl(\mathbb{T}M)$ -modules with $\gamma_{X+\xi}\varphi = \iota_X\varphi + \xi \wedge \varphi$ and

$$d_H \varphi = d\varphi - H \wedge \varphi$$
 is a DGO.

VIII. Regular Courant algebroids

Definition

A CA $E \rightarrow M$ is called regular if the anchor $\pi : E \rightarrow TM$ is of constant rank. The CA is called exact if the sequence

$$0 \to T^*M \xrightarrow{\pi^*} E^* \cong E \xrightarrow{\pi} TM \to 0$$

is exact.

Theorem (Severa)

Every exact CA is of the form $(\mathbb{T}M, \langle \cdot, \cdot \rangle, [\cdot, \cdot]_H, \pi)$ for some closed 3-form.

Regular Courant algebroids

Severas Theorem has been generalized for regular Courant algebroids (Chen, Stiénon and Xu). These are of the form $E \cong F^* \oplus \mathcal{G} \oplus F$, where $F = \pi(E) \subset TM$ and $\mathcal{G} = (F \oplus F^*)^{\perp}$ are endowed with the following geometric structures:

VIII. Regular Courant algebroids continued

Data encoding a regular CA $E \cong F^* \oplus \mathfrak{G} \oplus F$:

- ▶ A fiberwise Lie bracket $[\cdot, \cdot]_{\mathcal{G}}$ on \mathcal{G} such that $\langle \cdot, \cdot \rangle|_{\mathcal{G}}$ is ad-invariant,
- ▶ an *F*-connection ∇ on \mathcal{G} ,
- $R : \wedge^2 F \to \mathfrak{G}$ and
- $\mathcal{H} \in \Gamma(\wedge^3 F^*)$ satisfying some compatibility equations.

The bracket $\forall X, Y \in \Gamma(F), r, s \in \Gamma(\mathcal{G}), \xi, \eta \in \Gamma(F^*):$ $\models [X, Y] = \mathcal{H}(X, Y, \cdot) + R(X, Y) + \mathcal{L}_X Y,$ $\models [X, r] = -[r, X] \equiv \nabla_X r \pmod{F^*},$ $\models [X, \xi] = \mathcal{L}_X \xi, [\xi, X] = -\mathcal{L}_X \xi + d^F(\xi(X)),$ $\models [r, s] \equiv [r, s]_{\mathcal{G}} \pmod{F^*} \text{ and } [r, \xi] = [\xi, r] = [\xi, \eta] = 0.$

IX. DGOs on regular Courant algebroids

Facts (Alexeev and Xu, cf. C. and David):

- Local existence: Let E be a regular CA and S a bundle of irreducible Cl(E)-modules. Then S admits locally a DGO Ø.
- ► Ambiguity: Given a DGO Ø, the space of DGOs is an affine space modeled on

$$\{v \in \Gamma(E) \mid [d, \gamma_v] \in C^{\infty}(M)\}.$$

- ▶ Canonization: \exists line bundle $L \to M$ such that $S = S \otimes L$ has a canonical DGO.
- $\blacktriangleright \implies \text{Global existence: } S \text{ admits a DGO } \#.$

X. An explicit formula for the canonical DGO

Theorem 2 (C.-David)

The canonical DGO can be expressed as

$$\mathbf{\not\!\!\!/}(\omega \otimes \mathbf{s} \otimes \tau) = (\mathbf{d}_{\mathcal{H}}\omega) \otimes \mathbf{s} \otimes \tau + \nabla^{\mathbb{S}_{\mathbb{S}}} \mathbf{s} \wedge \omega \otimes \tau + \mathcal{L}(\tau) \wedge \omega \otimes \mathbf{s} + \text{algebraic},$$

where

$$\blacktriangleright \ \omega \in \wedge F^*$$
,

- s is a section of a certain bundle S_g of irreducible Cl(g)-modules,
- τ is a section of a certain line bundle with a natural
 F-connection L and
- "algebraic" stands for an explicit algebraic operator involving the Cartan 3-form C ∈ Γ(∧³G*) and R ∈ Γ(∧²F* ⊗ G).

XI. Spinorial characterization of generalized Kähler structures on regular Courant algebroids

- Let (G, J) be a gen. alm. Herm. structure on E and denote by E_± the eigenbundles of the involution G^{end} ∈ Γ(End(E)), G = ⟨G^{end}·, ·⟩.
- Assume for simplicity that rk E₊ = rk E₋ ≡ 0 (mod 8). Then we can decompose S = S₊ ⊗S₋ as Z₂-graded tensor product of a Cl(E₊)-module S₊ and a Cl(E₋)-module S₋.

► $\mathcal{J}|_{\mathcal{E}_{\pm}}$ defines pure spinors (up to scale) $\eta_{\pm} \in \Gamma(\mathcal{S}_{\pm}^{\mathbb{C}})$ s.t.

$$\ker(\gamma\eta_{\pm}: E_{\pm}^{\mathbb{C}} \to S_{\pm}^{\mathbb{C}}) = E_{\pm}^{1,0}$$

and $\eta = \eta_+ \otimes \eta_-$ is pure spinor in $S^{\mathbb{C}}$ s.t. $E^{1,0} = \ker(\gamma \eta)$.

XI. Spinorial characterization of generalized Kähler structures on regular Courant algebroids

Theorem 3 (C.-David)

 (G, \mathcal{J}) is generalized Kähler iff \exists torsionfree metric generalized connection D s.t.

$$\not D^{S_+}\eta_+ \in \Gamma(\gamma_{E_+^{\mathbb{C}}}\eta_+), \quad \not D^{S_-}\eta_- \in \Gamma(\gamma_{E_-^{\mathbb{C}}}\eta_-),$$
(2)

$$D_{\nu_{-}}^{S_{+}}\eta_{+}\in \Gamma(\mathbb{C}\eta_{+}), \quad D_{\nu_{+}}^{S_{-}}\eta_{-}\in \Gamma(\mathbb{C}\eta_{-}),$$
(3)

for all $v_{\pm} \in \Gamma(E_{\pm})$.

Here D^{S±} stands for an E-connection on S± compatible with the E-connection D|_{Γ(E±)} : Γ(E±) → Γ(E* ⊗ E±) and Ø^{S±} for the corresponding Dirac operator; e.g. Ø^{S+} = ½ ∑γ_{ei}⁺D^{S+}_{ei}⁺ in terms of a local ON frame (e_i⁺) of E₊.

Sketch of proof

"⇒"

- We use the existence of a torsionfree compatible generalized connection D established in Theorem 1 to check eqs. (2), (3).
- ► In fact, compatibility implies $D^{S_+}\eta_+ \in \Gamma(E^* \otimes \eta_+)$, $D^{S_-}\eta_- \in \Gamma(E^* \otimes \eta_-)$, hence (2), (3).

"⇐"

- We check that the equations (2), (3) imply that η is projectively closed, i.e. *d*η ∈ Γ(γ_Ecη), for the Dirac generating operator *d* of Theorem 2.
- ► This property implies the integrability of *J* by results of Alexeev and Xu.
- Similarly, (2), (3) do also imply that η₊ ⊗ η

 is projectively closed, where η₊ ⊗ η

 is the pure spinor associated with ∂G^{end}, implying the integrability of ∂G^{end}.

Gràcies ! ¡ Gracias !