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I. Courant algebroids

Definition
A Courant algebroid (CA) is a vector bundle E → M with:

1. scalar product ⟨·, ·⟩,
2. bracket [·, ·] : Γ(E )× Γ(E ) → Γ(E ), and

3. anchor π : E → TM,

such that ∀u, v ,w ∈ Γ(E ):

A1) [u, [v ,w ]] = [[u, v ],w ] + [v , [u,w ]],

A2) π(u)⟨v ,w⟩ = ⟨[u, v ],w⟩+ ⟨v , [u,w ]⟩,
A3) ⟨[u, v ] + [v , u],w⟩ = π(w)⟨u, v⟩.

Example (Generalized tangent bundle)

TM := TM ⊕ T ∗M

[X + ξ,Y + η] = LX (Y + η)− LY (ξ) + d(ξ(Y )).



II. Generalized complex structures

Definition
A generalized almost complex structure (GACS) on a CA E is a
skew-symm. J ∈ Γ(EndE ) s.t. J2 = −IdE .
... integrable if E 1,0 is involutive.

Examples

a) Let J be a complex structure on M. Then

JJ =

(
J 0
0 −J∗

)
: TM → TM

is a GCS.

b) Let ω be a symplectic structure on M. Then

Jω =

(
0 −ω−1

ω 0

)
: TM → TM

is a GCS.



III. Generalized connections

Definition
A generalized connection on a CA E → M is a linear map

D : Γ(E ) → Γ(E ∗ ⊗ E ), v 7→ Dv ,

s.t. ∀u, v ,w ∈ Γ(E ), f ∈ C∞(M):

Du(f v) = π(u)(f ) v + f Duv

π(u)⟨v ,w⟩ = ⟨Duv ,w⟩+ ⟨v ,Duw⟩.

Torsion

1. TD ∈ Γ(∧2E ∗ ⊗ E ):

TD(u, v) := Duv − Dvu − [u, v ] + (Du)∗v .

2. TD(u, v ,w) := ⟨TD(u, v),w⟩ defines a section of Γ(∧3E ∗).



IV. Geometric structures on Courant algebroids
Let E be a CA of signature (n1, n2) and H ⊂ O(n1, n2) a Lie
subgroup.

Definition
An H-structure on E is a reduction of the structure group
O(n1, n2) to H.

... assume that the structure is defined by a system Q of tensor
fields such as:

1. GACS Q = J, H = U(m1,m2), ni = 2mi ,

2. generalized almost hypercomplex structure Q = (J1, J2, J3),
H = Sp(m1,m2), ni = 4mi ,

3. generalized Riemannian metric Q = G , H = O(n1)×O(n2),

4. generalized almost Hermitian structure, Q = (G , J),
H = U(m1)×U(m2),

5. generalized almost hyper-Hermitian structure,
Q = (G , J1, J2, J3), H = Sp(m1)× Sp(m2).



V. Characterization of integrability

Theorem 1 (C.-David)

Let Q be any of the above structures 1, 2, 4 or 5 on a CA E . Then
Q is integrable iff ∃ torsionfree generalized connection D on E for
which Q is parallel.

Proof (sketch in the case Q = J)

“⇐” The integrability of J is equivalent to the vanishing of the
Nijenhuis tensor NJ ∈ Γ(∧2E ∗ ⊗ E ):

NJ(u, v) := [Ju, Jv ]− [u, v ]− J([Ju, v ] + [u, Jv ]).



Sketch of proof continued

For any generalized connection D s.t. DJ = 0 we show:

⟨NJ(u, v),w⟩ = TD(u, v ,w)− TD(u, Jv , Jw)− TD(Ju, v , Jw)

−TD(Ju, Jv ,w) (1)

So TD = 0 implies NJ = 0. This proves “⇐”.

▶ For the converse we observe that rhs of (1) can be viewed as
4tJ, where tJ is the intrinsic torsion of J.



Sketch of proof continued

Definition
The intrinsic torsion tQ of an H-structure Q on a Courant
algebroid E is the image of TD in Γ(∧3E ∗/im ∂Q), where D is any
gen. conn. compatible with Q and

∂Q : E ∗ ⊗ ∧2
QE

∗ → ∧3E ∗

is the algebraic torsion map (cyclic sum). Here ∧2
QE

∗ ⊂ ∧2E ∗ is
the subbundle which corresponds to so(E )Q ⊂ so(E ).

For our case Q = J, we exhibit a canonical complement
∧3
QE

∗ ⊂ ∧3E ∗ of im ∂Q such that

∧3E ∗/im ∂Q ∼= ∧3
QE

∗

and tQ is viewed as an element of ∧3
QE

∗.



Sketch of proof continued

To prove the converse “⇒” of Theorem 1, we construct a gen.
conn. D s.t. DJ = 0 and TD = tJ. Then (1) shows that the
integrability of J implies TD = 0.

▶ D is constructed as follows. Given any torsionfree gen. conn.
D0, we define

Duv := D0
uv − 1

4
{Asym

u , J}v − 1

2
J(D0

uJ)v ,

where Asym
u denotes the symmetric part of Au = (D0J)u.

▶ Then we prove that D has the claimed properties.



VI. Generalized first prolongation

Definition
Let V be a pseudo-Euclidean vector space. Given a Lie algebra
h ⊂ so(V ) ∼= ∧2V ∗ we define its generalized first prolongation by

h⟨1⟩ := ker (∂h : V
∗ ⊗ h → ∧3V ∗),

where ∂h is again given by cyclic summation.

Proposition (C.-David)

Let Q be a generalized H-structure on a CA E .

▶ There exists a torsion-free generalized connection compatible
with Q iff the intrinsic torsion of Q vanishes. It is unique iff
h⟨1⟩ = 0.

▶ Given a tensor field T ∈ Γ(∧3E ∗), the space of generalized
connections compatible with Q which have torsion T is an
affine space modelled on Γ((so(E )Q)

⟨1⟩). (Note that
so(E )Q |p ∼= h for all p ∈ M.)



VI. Generalized first prolongation

Examples

1) Consider the case h = so(V ):

so(V )⟨1⟩ ∼=
(Sym2V ∗)⊗ V ∗

Sym3V ∗ .

This implies that the space of torsionfree generalized
connections on any Courant algebroid E is an affine space

modelled on Γ( (Sym
2E∗)⊗E∗

Sym3E∗ ).

2) Given a generalized Riemannian metric G on E , it is known
that a compatible torsionfree generalized connection exists
(Garćıa Fernández). It is not unique since

(so(n1)⊕ so(n2))
⟨1⟩ = so(n1)

⟨1⟩ ⊕ so(n2)
⟨1⟩ ̸= 0,

provided that min(n1, n2) > 1.



VI. Generalized first prolongation

Another example

▶ The diagonal subalgebra

∆so(n) := {A⊕ A | A ∈ so(n)} ⊂ so(n)⊕ so(n)

has ∆
⟨1⟩
so(n) = 0.

▶ Conceptional reason for uniqueness of connection ∇ which has
appeared in Born geometry (Freidel, Rudolph and Svoboda).

▶ A Born structure on a mf. M consists of data (η, I , J,K ),
where η is a pseudo-Riemannian metric of neutral signature,
J,K ∈ Γ(End(TM)) are anti-commuting involutions such that
K = IJ is η-skew-symmetric, J is η-symmetric and
g = η(J·, ·) > 0.

▶ ∇ compatible with Born structure and
∇XY −∇YX − [X ,Y ]c + (∇X )∗Y = 0 for all X ,Y , where
[X ,Y ]c = ∇c

XY −∇c
YX − (∇cX )∗Y , ∇c = ∇η + 1

2K (∇ηK ).



VII. Spinors over E

Spinor bundles

Let S → M be a bundle of irreducible Cl(E )-modules:

γ : Cl(E ) → EndS , a 7→ γa = γ(a).

▶ We assume for simplicity that E has neutral signature. Then
S is Z2-graded, S = S0 + S1, and we denote by

[A,B] = AB − (−1)degA degBBA

the super commutator of homogeneous elements
A,B ∈ End Γ(S) ⊃ Diff(S) ⊃ Γ(EndS).



VII. Dirac generating operators

The theory of Dirac generating operators has been developed by
Alexeev and Xu.

Definition
A first order odd differential operator /d on S is called a Dirac
generating operator (DGO) if ∀u, v ∈ Γ(E ), f ∈ C∞(M):

1. [[/d , f ], γu] = π(u)(f ),

2. [[/d , γu], γv ] = γ[u,v ],

3. /d
2 ∈ C∞(M).



VII. Dirac generating operators continued

Example

Let (⟨·, ·⟩, [·, ·], π) be the standard CA structure on TM.

▶ The bracket can be twisted by a closed 3-form H:

[X + ξ,Y + η]H = [X + ξ,Y + η] + H(X ,Y , ·).

▶ S = ∧T ∗M is a bundle of irreducible Cl(TM)-modules with
γX+ξφ = ιXφ+ ξ ∧ φ and

dHφ = dφ− H ∧ φ is a DGO.



VIII. Regular Courant algebroids

Definition
A CA E → M is called regular if the anchor π : E → TM is of
constant rank. The CA is called exact if the sequence

0 → T ∗M
π∗
−→ E ∗ ∼= E

π−→ TM → 0

is exact.

Theorem (Severa)

Every exact CA is of the form (TM, ⟨·, ·⟩, [·, ·]H , π) for some closed
3-form.

Regular Courant algebroids

Severas Theorem has been generalized for regular Courant
algebroids (Chen, Stiénon and Xu). These are of the form
E ∼= F ∗ ⊕ G⊕ F , where F = π(E ) ⊂ TM and G = (F ⊕ F ∗)⊥ are
endowed with the following geometric structures:



VIII. Regular Courant algebroids continued

Data encoding a regular CA E ∼= F ∗ ⊕ G⊕ F :

▶ A fiberwise Lie bracket [·, ·]G on G such that ⟨·, ·⟩|G is
ad-invariant,

▶ an F -connection ∇ on G,

▶ R : ∧2F → G and

▶ H ∈ Γ(∧3F ∗) satisfying some compatibility equations.

The bracket
∀X ,Y ∈ Γ(F ), r , s ∈ Γ(G), ξ, η ∈ Γ(F ∗):

▶ [X ,Y ] = H(X ,Y , ·) + R(X ,Y ) + LXY ,

▶ [X , r ] = −[r ,X ] ≡ ∇X r (mod F ∗),

▶ [X , ξ] = LX ξ, [ξ,X ] = −LX ξ + dF (ξ(X )),

▶ [r , s] ≡ [r , s]G (mod F ∗) and [r , ξ] = [ξ, r ] = [ξ, η] = 0.



IX. DGOs on regular Courant algebroids

Facts (Alexeev and Xu, cf. C. and David):

▶ Local existence: Let E be a regular CA and S a bundle of
irreducible Cl(E )-modules. Then S admits locally a DGO /d .

▶ Ambiguity: Given a DGO /d , the space of DGOs is an affine
space modeled on

{v ∈ Γ(E ) | [/d , γv ] ∈ C∞(M)}.

▶ Canonization: ∃ line bundle L → M such that S = S ⊗ L has
a canonical DGO.

▶ =⇒ Global existence: S admits a DGO /d .



X. An explicit formula for the canonical DGO

Theorem 2 (C.-David)

The canonical DGO can be expressed as

/d(ω⊗s⊗τ) = (dHω)⊗s⊗τ+∇SGs∧ω⊗τ+L(τ)∧ω⊗s+algebraic,

where

▶ ω ∈ ∧F ∗,

▶ s is a section of a certain bundle SG of irreducible
Cl(G)-modules,

▶ τ is a section of a certain line bundle with a natural
F -connection L and

▶ “algebraic” stands for an explicit algebraic operator involving
the Cartan 3-form C ∈ Γ(∧3G∗) and R ∈ Γ(∧2F ∗ ⊗ G).



XI. Spinorial characterization of generalized Kähler
structures on regular Courant algebroids

▶ Let (G , J) be a gen. alm. Herm. structure on E and denote by
E± the eigenbundles of the involution G end ∈ Γ(End(E )),
G = ⟨G end·, ·⟩.

▶ Assume for simplicity that rkE+ = rkE− ≡ 0 (mod 8). Then
we can decompose S = S+⊗̂S− as Z2-graded tensor product
of a Cl(E+)-module S+ and a Cl(E−)-module S−.

▶ J|E± defines pure spinors (up to scale) η± ∈ Γ(SC
±) s.t.

ker(γη± : EC
± → SC

±) = E 1,0
±

and η = η+ ⊗ η− is pure spinor in SC s.t. E 1,0 = ker(γη).



XI. Spinorial characterization of generalized Kähler
structures on regular Courant algebroids

Theorem 3 (C.-David)

(G , J) is generalized Kähler iff ∃ torsionfree metric generalized
connection D s.t.

/D
S+η+ ∈ Γ(γEC

+
η+), /D

S−η− ∈ Γ(γEC
−
η−), (2)

DS+
v− η+ ∈ Γ(Cη+), DS−

v+ η− ∈ Γ(Cη−), (3)

for all v± ∈ Γ(E±).

▶ Here DS± stands for an E -connection on S± compatible with

the E -connection D|Γ(E±) : Γ(E±) → Γ(E ∗ ⊗ E±) and /D
S± for

the corresponding Dirac operator; e.g. /D
S+ = 1

2

∑
γe+i

DS+
e+i

in

terms of a local ON frame (e+i ) of E+.



Sketch of proof

“⇒”
▶ We use the existence of a torsionfree compatible generalized

connection D established in Theorem 1 to check eqs. (2), (3).

▶ In fact, compatibility implies DS+η+ ∈ Γ(E ∗ ⊗ η+),
DS−η− ∈ Γ(E ∗ ⊗ η−), hence (2), (3).

“⇐”
▶ We check that the equations (2), (3) imply that η is

projectively closed, i.e. /dη ∈ Γ(γECη), for the Dirac generating
operator /d of Theorem 2.

▶ This property implies the integrability of J by results of
Alexeev and Xu.

▶ Similarly, (2), (3) do also imply that η+ ⊗ η̄− is projectively
closed, where η+ ⊗ η̄− is the pure spinor associated with
JG end, implying the integrability of JG end.



Gràcies !

¡ Gracias !


