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|. Courant algebroids

Definition

A Courant algebroid (CA) is a vector bundle E — M with:
1. scalar product (-, -),
2. bracket [-,-] : T(E) x ['(E) — ['(E), and
3. anchor w: E — TM,

such that Yu,v,w € ['(E):

AL [u, v, wl] = [[u, V], wl] + [v, [u, w],

A2) w(u) (v, w) = ([u, V], w) + (v, [, w]),

A3) ([u,v] + [v, u], w) = m(w){u, v).

Example (Generalized tangent bundle)
™  =TM& T*M

X+&Y +n]=Lx(Y+n)—Ly(§) +d(E(Y)).



Il. Generalized complex structures

Definition
A generalized almost complex structure (GACS) ona CA E is a
skew-symm. J € [(End E) s.t. J° = —Idg.

. integrable if EL0 is involutive.

Examples
a) Let J be a complex structure on M. Then

J 0
31—(0 _J*>.TI\/I—>’]I‘M

is a GCS.
b) Let w be a symplectic structure on M. Then

o
sz(o “ >:’]I‘M—>TI\/I
w 0

is a GCS.



[11. Generalized connections

Definition
A generalized connection on a CA E — M is a linear map

D:T(E) > T(E*®E), v~ Dv,
st. Vu,v,w € T(E), f € C®(M):

Du(fv) = m(u)(f)v+fDyv
m(u)(v,w) = (Dyv,w)+ (v,D,w).

Torsion
1. TP e M(A2E* ® E):

TP(u,v) := Dyv — Dyu — [u,v] + (Du)*v.

2. TP(u,v,w) := (TP(u,v), w) defines a section of I(A3E*).



I\VV. Geometric structures on Courant algebroids
Let E be a CA of signature (n1,n2) and H C O(ny, n2) a Lie
subgroup.
Definition
An H-structure on E is a reduction of the structure group
O(n1, m) to H.

.. assume that the structure is defined by a system Q of tensor
fields such as:

1. GACS Q = 3, H= U(ml, mg), ni = 2m;,
2. generalized almost hypercomplex structure Q = (J1,d2,d3),
H = Sp(my, myp), nj = 4m;,
3. generalized Riemannian metric @ = G, H = O(n1) x O(my),
4. generalized almost Hermitian structure, Q = (G,J),
H = U(ml) X U(mz),
5. generalized almost hyper-Hermitian structure,

Q =(G,d1,d2,d3), H=Sp(m1) x Sp(my).



V. Characterization of integrability

Theorem 1 (C.-David)

Let Q be any of the above structures 1, 2, 4 or 5on a CA E. Then

Q is integrable iff d torsionfree generalized connection D on E for
which @ is parallel.

Proof (sketch in the case Q@ = J)

“<" The integrability of J is equivalent to the vanishing of the
Nijenhuis tensor Ny € F(A2E* ® E):

NH(“? V) = [3"]73‘/] - [u7 V] - H([HU, V] + [U,HV]).



Sketch of proof continued

For any generalized connection D s.t. DJ = 0 we show:

(Ny(u,v),w) = TP(u,v,w) = TP(u,dv,dw) — T°(Ju, v, Jw)
~TP(3u,dv, w) (1)

So TP =0 implies Ny = 0. This proves “<".

» For the converse we observe that rhs of (1) can be viewed as
4t3, where tj is the intrinsic torsion of {.



Sketch of proof continued

Definition

The intrinsic torsion tg of an H-structure Q on a Courant
algebroid E is the image of TP in [(A3E*/im dq), where D is any
gen. conn. compatible with @ and

dg : E* @ NQE* — N*E*
is the algebraic torsion map (cyclic sum). Here /\%\)E* C N2E*is
the subbundle which corresponds to so(E)q C so(E).
For our case @ = J, we exhibit a canonical complement
/\3QE* C A3E* of im Og such that
N3E* /imdg =2 NHE®

and tq is viewed as an element of /\%\)E*.



Sketch of proof continued

To prove the converse “=" of Theorem 1, we construct a gen.
conn. D s.t. DJ = 0 and TP = t5. Then (1) shows that the
integrability of J implies TP = 0.

» D is constructed as follows. Given any torsionfree gen. conn.
DO, we define

1 1
D,v := D% — Z{Af}’m,g}v - EH(D‘%)V’

where A7™ denotes the symmetric part of A, = (D°J)u.

» Then we prove that D has the claimed properties.



VI. Generalized first prolongation

Definition
Let V be a pseudo-Euclidean vector space. Given a Lie algebra
h C so(V) = A2V* we define its generalized first prolongation by

b = ker (O : V*@h— A3V,
where 0y is again given by cyclic summation.

Proposition (C.-David)
Let @ be a generalized H-structure on a CA E.

P There exists a torsion-free generalized connection compatible
with Q iff the intrinsic torsion of @ vanishes. It is unique iff
hi) = 0.

> Given a tensor field T € I(A3E*), the space of generalized
connections compatible with @ which have torsion T is an
affine space modelled on I'((s0(E)q)™™). (Note that
s0(E)qlp = b forall pe M.)



VI. Generalized first prolongation

Examples

1) Consider the case h = so(V):

(Sym?V*) ® V*
Sym3V*

1

so(V)L

This implies that the space of torsionfree generalized
connections on any Courant algebroid E is an affine space

(Sym?E*)®E*
modelled on r(isym:)'E* ).

2) Given a generalized Riemannian metric G on E, it is known
that a compatible torsionfree generalized connection exists
(Garcia Fernandez). It is not unique since

(so(ny) @ so(n))M = so(n) @ so(np)M £0,

provided that min(ny, mp) > 1.



VI. Generalized first prolongation

Another example

» The diagonal subalgebra
Dgo(n)y = {A®A| A€ so(n)} Cso(n) D so(n)

n _
has Aso(n) =0.
» Conceptional reason for uniqueness of connection V which has

appeared in Born geometry (Freidel, Rudolph and Svoboda).

» A Born structure on a mf. M consists of data (n, /, J, K),
where 7 is a pseudo-Riemannian metric of neutral signature,
J, K € T(End(TM)) are anti-commuting involutions such that
K = 1J is n-skew-symmetric, J is n-symmetric and
g=n(J-,)>0.

» V compatible with Born structure and
VxY —VyX —[X,Y]*+(VX)'Y =0 for all X,Y, where
[X,Y]S =V5Y — VX — (VEX)*Y, VE = V7 + 1K(V'K).



VII. Spinors over E

Spinor bundles
Let S — M be a bundle of irreducible C1(E)-modules:

v:ClE) = EndS, a— v,=1(a).

» We assume for simplicity that E has neutral signature. Then
S is Zy-graded, S = S% + S, and we denote by

[A, B] = AB — (—1)deeAdeeBpp

the super commutator of homogeneous elements
A, B € End T (S) D Diff(S) D I'(End S).



VII. Dirac generating operators

The theory of Dirac generating operators has been developed by
Alexeev and Xu.

Definition

A first order odd differential operator d on S is called a Dirac
generating operator (DGO) if Vu,v € [(E), f € C>®(M):

L {[d, f],7u] = m(u)(f),
2. [[d vl W] = Yuw)»
3. 4% € C™(M).



VII. Dirac generating operators continued

Example
Let ({-,-),[",:], ) be the standard CA structure on TM.
» The bracket can be twisted by a closed 3-form H:

X4+&EY +nu=[X+&Y +n]+H(X,Y,).

» S = AT*Mis a bundle of irreducible C1(TM)-modules with
Tx+e = txp + &A@ and

dyp=dp—HAp isaDGO.



VIIIl. Regular Courant algebroids

Definition
A CA E — M is called regular if the anchor 7 : E — TM is of
constant rank. The CA is called exact if the sequence

0= TM TS F*~F " TM — 0
is exact.

Theorem (Severa)

Every exact CA is of the form (TM, (-, -), [+, -]y, ) for some closed
3-form.

Regular Courant algebroids

Severas Theorem has been generalized for regular Courant
algebroids (Chen, Stiénon and Xu). These are of the form
E=F"®G®F, where F=m(E)C TM and G = (F @ F*)* are
endowed with the following geometric structures:



VIIl. Regular Courant algebroids continued

Data encoding a regular CA E=Z F*® G @ F:

» A fiberwise Lie bracket [,-]g on G such that (-,-)|g is
ad-invariant,

» an F-connection V on G,
» R:A’F - G and
> J{ € [(A3F*) satisfying some compatibility equations.

The bracket
VX, Y €T (F),r,s €l(9),&n el (F):
> (X, Y] =H(X,Y, )+ R(X,Y)+ LxY,
> [X,r] = —[r,X] = Vxr (mod F*),
> [X, €] = Lx&, [6 X] = —Lx& + dF (E(X)),
> [r,s] =[r,slg (mod F*) and [r,&] = [, r] = [¢,n] = 0.



IX. DGOs on regular Courant algebroids

Facts (Alexeev and Xu, cf. C. and David):
» Local existence: Let E be a regular CA and S a bundle of
irreducible C1(E)-modules. Then S admits locally a DGO d.

» Ambiguity: Given a DGO d, the space of DGOs is an affine
space modeled on

{ver(E)|[d.n] e (M)}

» Canonization: 3 line bundle L — M such that S= S ® L has
a canonical DGO.

» — Global existence: S admits a DGO 4.



X. An explicit formula for the canonical DGO

Theorem 2 (C.-David)

The canonical DGO can be expressed as

d(wRsRT) = (dyw)Rs@T+ V3 sAwRT+L(T) Aw®s+algebraic,

where
> we AF*F,

> s is a section of a certain bundle 8g of irreducible
C1(9)-modules,

> 7 is a section of a certain line bundle with a natural
F-connection £ and

> ‘“algebraic” stands for an explicit algebraic operator involving
the Cartan 3-form C € T(A3G*) and R € [(A%F* ® G).



XI. Spinorial characterization of generalized Kahler
structures on regular Courant algebroids

» Let (G,J) be a gen. alm. Herm. structure on E and denote by
E. the eigenbundles of the involution G4 € '(End(E)),
G = (G ).

» Assume for simplicity that rk Ey =tk E_ =0 (mod 8). Then
we can decompose S = S, ®S_ as Zy-graded tensor product
of a Cl(E})-module Sy and a Cl(E_)-module S_.

> J|g. defines pure spinors (up to scale) nu € M(S%) s.t.
ker(ynx : ES — S§) = EL°

and 1 = 14 ® n_ is pure spinor in S€ s.t. E10 = ker(yn).



XI. Spinorial characterization of generalized Kahler
structures on regular Courant algebroids

Theorem 3 (C.-David)
(G, ) is generalized Kahler iff 3 torsionfree metric generalized
connection D s.t.

S S_
P70y € Tvgens), D7 n- € T(vgen-), (2)
Dy ny € T(Cny), DJn- €T(Cn-), (3)

for all v € T(Ey).
» Here D>+ stands for an E-connection on Si compatible with
the E-connection D|rg,) : I(Ex) = M(E* ® Ex) and D>* for
the corresponding Dirac operator; e.g. DS+ = %E'Ye,.* ij in

terms of a local ON frame (e;") of E.



Sketch of proof

" ”

=
> We use the existence of a torsionfree compatible generalized
connection D established in Theorem 1 to check egs. (2), (3).
> In fact, compatibility implies D>+, € T(E* @ n,),
D>-n_ € T(E* ®n_), hence (2), (3).

=

» We check that the equations (2), (3) imply that 7 is
projectively closed, i.e. dn € I'(ygcn), for the Dirac generating
operator d of Theorem 2.

» This property implies the integrability of J by results of
Alexeev and Xu.

» Similarly, (2), (3) do also imply that 74 ® 7 is projectively
closed, where 1, ® 7_ is the pure spinor associated with
9G4, implying the integrability of JGe»d. Ol
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