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1. Standard generalized geometry

In order to study geometrical structures, generalized geometry suggests to replace T by T ⊕ T ∗.

It comes with the natural symmetric non-degenerate pairing:

⟨X + α, Y + β⟩+ :=
1

2
(α(Y ) + β(X)).

Geometry is brought by the Dorfman bracket:

[X + α, Y + β]D := [X, Y ]Lie +£Xβ − ιY dα.

This framework offers an alternative viewpoint on geometrical structures, e.g. (pre-)symplectic, Poisson,
foliation and complex. Moreover, it gives a natural generalization of these structures.

2. Generalized geometry with skew-symmetric pairing

Besides ⟨ , ⟩+, there is also the natural skew-symmetric non-degenerate pairing:

⟨X + α, Y + β⟩− :=
1

2
(α(Y )− β(X)).

The Dorfman bracket is not working!

The subgroup of Aut(T ⊕ T ∗) preserving ⟨ , ⟩− and [ , ]D is isomorphic to Diff(M). (Not generalized!)

What is behind this?

The symmetric pairing ⟨ , ⟩+ induces the natural Clifford algebra action Cl(T ⊕ T ∗)

⟳

Γ(∧•T ∗):

(X + α) · φ := ιXφ+ α ∧ φ,

which recovers the Dorfman bracket as a derived bracket:

[[(X + α) · , d]g, (Y + β) · ]g φ = [X + α, Y + β]D · φ.

The skew-symmetric pairing ⟨ , ⟩− induces the natural Weyl algebra action W(T ⊕ T ∗)

⟳

Γ(⊙•T ∗):

(X + α) · σ := ιXφ+ α⊙ σ.

Does it lead to a new bracket?
[[(X + α) · , ? ]g, (Y + β) · ]g σ.

3. Symmetric Cartan calculus

ιX ∈ Der−1(Γ(⊙•T ∗)) for every X ∈ Γ(T ), ⇒ derivations are more natural than graded derivations

for symmetric forms.

Replacement for d?

Definition

For any affine connection ∇, we introduce the symmetric derivative:

∇s : Γ(⊙•T ∗)→ Γ(⊙•T ∗), ∇sσ := (|σ|+ 1) Sym(∇σ).

The assignment ∇ 7→ ∇s gives the one-to-one correspondence:{
torsion-free affine connections

} ∼←→
{
D ∈ Der1(Γ(⊙•T ∗)) such that D|C∞(M) = d|C∞(M)

}
.

If dimM > 0, there is no D ∈ Der1(Γ(⊙•T ∗)) such that D|C∞(M) = d|C∞(M) and D ◦D = 0.

Replacement for £X?

Definition

The symmetric Lie derivative w.r.t. X ∈ Γ(T ):

£∇
s

X := [ιX ,∇s].

(£∇
s

X σ)m = lim
t→0

1

t

(
P γ
2t,0

(
ΨX
−t
)∗
ΨX

2t(m)
σΨX

t (m) − σm

)
The formula is used to extend £∇

s

X to arbitrary
tensor fields.

Transport generating the symmetric Lie derivative.

Replacement for [ , ]Lie?

Definition

The symmetric bracket is the R-bilinear map:

⟨ : ⟩∇s : ×2Γ(T )→ Γ(T ), ι⟨X:Y ⟩∇s := [[ιX ,∇s], ιY ].
⟨X : Y ⟩∇s = £∇

s

X Y = ∇XY+∇YX.

Definition

A distribution ∆ ⊆ T is called geodesically invariant if every geodesic γ : I →M has the property:

∃t0 ∈ I such that γ̇(t0) ∈ ∆γ(t0) ⇒ γ̇(t) ∈ ∆γ(t) for all t ∈ I.

By [Lewis, 1998], a distribution ∆ ≤ T is geodesically invariant if and only if ⟨Γ(∆) : Γ(∆)⟩∇s ⊆ Γ(∆).

A non geodesically invariant distribution. A geodesically invariant distribution.

4. Symmetric Poisson structures

Definition

The ∇s-Schouten bracket is the unique R-bilinear map [ , ]∇s-Sch : ×2Γ(⊙•T )→ Γ(⊙•T ) satisfying

1. [X , ]∇s-Sch ∈ Der|X |−1(Γ(⊙•T )), 2. [X, ]∇s-Sch = £∇
s

X , 3. [X ,Y ]∇s-Sch = [Y ,X ]∇s-Sch.

Definition

A pair (∇, ϑ) consisting of a torsion-free affine connection ∇ and ϑ ∈ Γ(⊙2T ) is called a symmetric
Poisson structure if [ϑ, ϑ]∇s-Sch = 0.

{
symmetric bivector

fields on M

}
∼←→

{
R-bilinear maps { , } : ×2C∞(M)→ C∞(M) such that

1. {f, g} = {g, f} 2. {f, gh} = g{f, h}+ {f, g}h

}
.

grad := ϑ ◦ d : C∞(M)→ Γ(T ), or in terms of the corresponding bracket grad f = {f, }.

Proposition

(∇, ϑ) is a symmetric Poisson structure

⇔
Jac{ , }(f, g, h) = df(⟨grad g : gradh⟩∇s) + cyc(f, g, h),

⇔
(non-deg. case)

∇sϑ−1 = 0, i.e. ϑ−1 ∈ Γ(⊙2T ∗) is a Killing 2-tensor.

Definition

A pair (∇, ϑ) is called a strong symmetric Poisson structure if grad{f, g} = ⟨grad f : grad g⟩∇s.

Proposition

(∇, ϑ) is a strong symmmetric Poisson structure ⇔ ∇grad f ϑ = 0 ⇔
(non-deg. case)

∇ is Levi-Civita w.r.t. ϑ−1.

5. Back to generalized geometry!

Definition

The ∇s-Dorfman bracket:

[X +α, Y + β]∇s = ⟨X : Y ⟩∇s +£∇
s

X β + ιY∇sα.

[[(X+α) · ,∇s]
�Ag
, (Y + β) · ]

�Ag
σ

= [[ιX ,∇s], ιY ]σ + ([ιX ,∇s]β + ιY∇sα)⊙ σ.

Theorem

The subgroup of Aut(T ⊕ T ∗) preserving ⟨ , ⟩− and [ , ]∇s is isomorphic to

Aff(M,∇)⋉Kill2∇(M).

Aff(M,∇) := {ϕ ∈ Diff(M) |ϕ∗∇XY = ∇ϕ∗Xϕ∗Y } is the group of affine transformations of (M,∇).
Kill2∇(M) := ker∇s|Γ(⊙2T ∗) is the abelian group of Killing 2-tensors.

Definition

∇s-Dirac structure: a Lagrangian subbundle L ≤ (T ⊕ T ∗, ⟨ , ⟩−) such that [Γ(L),Γ(L)]∇s ⊆ Γ(L).

Examples

gr(K) ≤ T ⊕ T ∗ is a ∇s-Dirac structure if and only if K is a Killing 2-tensor.

gr(ϑ) ≤ T ⊕ T ∗ is a ∇s-Dirac structure if and only if (∇, ϑ) is a symmetric Poisson structure.

∆⊕ Ann∆ ≤ T ⊕ T ∗ is a ∇s-Dirac structure if and only if ∆ is geodesically invariant.

6. Comparison with standard generalized geometry

Standard generalized geometry Skew-symmetric generalized geometry

1

2
(α(Y ) + β(X))

1

2
(α(Y )− β(X))

Cl(T ⊕ T ∗)

⟳

Γ(∧•T ∗) W(T ⊕ T ∗)

⟳

Γ(⊙•T ∗)

[X, Y ]Lie +£Xβ − ιY dα ⟨X : Y ⟩∇s +£∇
s

X β + ιY∇sα

Diff(M)⋉ Γclosed(∧2T ∗) Aff(M,∇)⋉Kill2∇(M)

[a, b]D + [b, a]D = 2d⟨a, b⟩+ [a, b]∇s − [b, a]∇s = 2d⟨a, b⟩−

prT (a)⟨b, c⟩+ = ⟨[a, b]D, c⟩+ + ⟨b, [a, c]D⟩+ prT (a)⟨b, c⟩− = ⟨[a, b]∇s, c⟩− + ⟨b, [a, c]∇s⟩−

[a, [b, c]D]D = [[a, b]D, c]D + [b, [a, c]D]D –

Dirac structures ∇s-Dirac structures

pre-symplectic structures Killing 2-tensors

Poisson structures symmetric Poisson structures

foliations geodesically invariant distributions
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