

Generalized geometry with skew-symmetric pairing

Filip Moučka^{1,2} (joint work with Roberto Rubio¹)

¹Autonomous University of Barcelona, Faculty of Sciences, Carrer dels Til·lers, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain ²Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19 Prague 1, Czech Republic

1. Standard generalized geometry

- In order to study geometrical structures, generalized geometry suggests to replace T by $T \oplus T^*$.
- It comes with the natural symmetric non-degenerate pairing:

$$\langle X + \alpha, Y + \beta \rangle_+ := \frac{1}{2} (\alpha(Y) + \beta(X)).$$

Geometry is brought by the Dorfman bracket:

 $[X + \alpha, Y + \beta]_D := [X, Y]_{\mathsf{Lie}} + \pounds_X \beta - \iota_Y \mathrm{d}\alpha.$

This framework offers an alternative viewpoint on geometrical structures, e.g. (pre-)symplectic, Poisson, foliation and complex. Moreover, it gives a natural generalization of these structures.

2. Generalized geometry with skew-symmetric pairing

Besides \langle , \rangle_+ , there is also the natural skew-symmetric non-degenerate pairing:

$$\langle X + \alpha, Y + \beta \rangle_{-} := \frac{1}{2} (\alpha(Y) - \beta(X))$$

The Dorfman bracket is not working!

The subgroup of $\operatorname{Aut}(T \oplus T^*)$ preserving \langle , \rangle_- and $[,]_D$ is isomorphic to $\operatorname{Diff}(M)$. (Not generalized!)

What is behind this?

The symmetric pairing \langle , \rangle_+ induces the natural Clifford algebra action $Cl(T \oplus T^*) \odot \Gamma(\wedge^{\bullet}T^*)$:

$$(X+\alpha)\cdot\varphi:=\iota_X\varphi+\alpha\wedge\varphi,$$

which recovers the Dorfman bracket as a derived bracket:

 $[[(X + \alpha) \cdot, \mathbf{d}]_{\mathbf{g}}, (Y + \beta) \cdot]_{\mathbf{g}} \varphi = [X + \alpha, Y + \beta]_D \cdot \varphi.$

• The skew-symmetric pairing \langle , \rangle_{-} induces the natural Weyl algebra action $\mathcal{W}(T \oplus T^*) \odot \Gamma(\odot^{\bullet}T^*)$:

 $(X + \alpha) \cdot \sigma := \iota_X \varphi + \alpha \odot \sigma.$

4. Symmetric Poisson structures

Definition

The ∇^s -Schouten bracket is the unique \mathbb{R} -bilinear map $[,]_{\nabla^s$ -Sch} : $\times^2 \Gamma(\odot^{\bullet}T) \to \Gamma(\odot^{\bullet}T)$ satisfying

1. $[\mathcal{X},]_{\nabla^s \text{-Sch}} \in \text{Der}_{|\mathcal{X}|-1}(\Gamma(\odot^{\bullet}T)),$ 2. $[X,]_{\nabla^s \text{-Sch}} = \pounds_X^{\nabla^s},$ 3. $[\mathcal{X}, \mathcal{Y}]_{\nabla^s \text{-Sch}} = [\mathcal{Y}, \mathcal{X}]_{\nabla^s \text{-Sch}}.$

Definition

A pair (∇, ϑ) consisting of a torsion-free affine connection ∇ and $\vartheta \in \Gamma(\odot^2 T)$ is called a symmetric **Poisson structure** if $[\vartheta, \vartheta]_{\nabla^s - Sch} = 0$.

symmetric bivector
fields on
$$M$$
 $\Big\} \xleftarrow{\sim} \begin{cases} \mathbb{R}\text{-bilinear maps } \{ \ , \ \} : \times^2 C^{\infty}(M) \to C^{\infty}(M) \text{ such that} \\ 1. \ \{f,g\} = \{g,f\} \\ 2. \ \{f,gh\} = g\{f,h\} + \{f,g\}h \end{cases}$

• grad := $\vartheta \circ d : C^{\infty}(M) \to \Gamma(T)$, or in terms of the corresponding bracket grad $f = \{f, \}$.

Proposition
$$(\nabla, \vartheta)$$
 is a symmetric Poisson structure \Leftrightarrow $Jac_{\{,,\}}(f,g,h) = df(\langle \operatorname{grad} g : \operatorname{grad} h \rangle_{\nabla^s}) + \operatorname{cyc}(f,g,h),$ \Leftrightarrow $(\operatorname{non-deg. case})$ $\nabla^s \vartheta^{-1} = 0, \text{ i.e. } \vartheta^{-1} \in \Gamma(\odot^2 T^*)$ is a Killing 2-tensor.

Definition

A pair (∇, ϑ) is called a strong symmetric Poisson structure if grad $\{f, g\} = \langle \operatorname{grad} f : \operatorname{grad} g \rangle_{\nabla^s}$.

Proposition

 (∇, ϑ) is a strong symmetric Poisson structure $\Leftrightarrow \nabla_{\operatorname{grad} f} \vartheta = 0$ $\Leftrightarrow \nabla$ is Levi-Civita w.r.t. ϑ^{-1}

• $\operatorname{Kill}^2_{\nabla}(M) := \ker \nabla^s|_{\Gamma(\odot^2 T^*)}$ is the abelian group of Killing 2-tensors.

 ∇^s -Dirac structure: a Lagrangian subbundle $L \leq (T \oplus T^*, \langle , \rangle_{-})$ such that $[\Gamma(L), \Gamma(L)]_{\nabla^s} \subseteq \Gamma(L)$.

- $gr(K) \leq T \oplus T^*$ is a ∇^s -Dirac structure if and only if K is a Killing 2-tensor
- $gr(\vartheta) \leq T \oplus T^*$ is a ∇^s -Dirac structure if and only if (∇, ϑ) is a symmetric Poisson structure.
- $\Delta \oplus \operatorname{Ann} \Delta \leq T \oplus T^*$ is a ∇^s -Dirac structure if and only if Δ is geodesically invariant.

Transport generating the symmetric Lie derivative.

Definition

The **symmetric bracket** *is the* \mathbb{R} *-bilinear map:*

 $\langle X:Y\rangle_{\nabla^s} = \pounds_X^{\nabla^s} Y = \nabla_X Y + \nabla_Y X.$ $\langle : \rangle_{\nabla^s} : \times^2 \Gamma(T) \to \Gamma(T), \qquad \iota_{\langle X:Y \rangle_{\nabla^s}} := [[\iota_X, \nabla^s], \iota_Y].$

Definition

A distribution $\Delta \subseteq T$ is called **geodesically invariant** if every geodesic $\gamma : I \to M$ has the property: $\exists t_0 \in I \text{ such that } \dot{\gamma}(t_0) \in \Delta_{\gamma(t_0)}$ $\dot{\gamma}(t) \in \Delta_{\gamma(t)}$ for all $t \in I$. \Rightarrow

By [Lewis, 1998], a distribution $\Delta \leq T$ is geodesically invariant if and only if $\langle \Gamma(\Delta) : \Gamma(\Delta) \rangle_{\nabla^s} \subseteq \Gamma(\Delta)$.

A non geodesically invariant distribution.

A geodesically invariant distribution.

6. Comparison with standard generalized geometry

Standard generalized geometry	Skew-symmetric generalized geometry
$\frac{1}{2}(\alpha(Y) + \beta(X))$	$\frac{1}{2}(\alpha(Y) - \beta(X))$
$\mathcal{C}l(T\oplus T^*) \subset \Gamma(\wedge^{\bullet}T^*)$	$\mathcal{W}(T\oplus T^*) \odot \Gamma(\odot^{ullet}T^*)$
$[X,Y]_{Lie} + \pounds_X \beta - \iota_Y \mathrm{d}\alpha$	$\langle X:Y\rangle_{\nabla^s} + \pounds_X^{\nabla^s}\beta + \iota_Y \nabla^s \alpha$
$\operatorname{Diff}(M) \ltimes \Gamma_{\operatorname{closed}}(\wedge^2 T^*)$	$\operatorname{Aff}(M, \nabla) \ltimes \operatorname{Kill}^2_{\nabla}(M)$
$[a,b]_D + [b,a]_D = 2d\langle a,b\rangle_+$	$[a,b]_{ abla^s}-[b,a]_{ abla^s}=2\mathrm{d}\langle a,b angle$
$\operatorname{pr}_{T}(a)\langle b, c \rangle_{+} = \langle [a, b]_{D}, c \rangle_{+} + \langle b, [a, c]_{D} \rangle_{+}$	$\mathrm{pr}_{T}(a)\langle b,c\rangle_{-} = \langle [a,b]_{\nabla^{s}},c\rangle_{-} + \langle b,[a,c]_{\nabla^{s}}\rangle_{-}$
$[a, [b, c]_D]_D = [[a, b]_D, c]_D + [b, [a, c]_D]_D$	_
Dirac structures	$ abla^s$ -Dirac structures
pre-symplectic structures	Killing 2-tensors
Poisson structures	symmetric Poisson structures
foliations	geodesically invariant distributions

This research has been supported by the Spanish State Research Agency under the grant PID2022-137667NA-I00.

Poisson 2024 Conference, Naples, Italy

July 8 - 12, 2024