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▷ Discuss two “dual” operations on Dirac structures (modulo smoothness):

Tangent and cotangent product of L and R:

L ⋆ R L⊛ R

Tangent product (always Dirac):

Description of the characteristic foliation of L ⋆ R

When cotangent product Dirac, we say that L and R concur:

Concurrence is the natural compatibility condition for Dirac structures

unifies classical compatibility conditions (Libermann,
Magri-Morosi, Frobenius-Nirenberg);

clarifies constructions (coupling, normal forms);

produces new results
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▷ Generalized tangent bundle TM =: TM ⊕ T ∗M with

non-degenerate pairing

⟨u + ξ, v + η⟩ := ivη + iuξ

Dorfman bracket

[u + ξ, v + η] := [u, v ] + Luη − ivdξ

anchor prTM
is a Courant algebroid

- [x , [y , z]] = [[x , y ], z] + [y , [x , z]] (Leibniz)
- [x , fy ] = f [x , y ] +

(
LprT (x)f

)
y (Leibniz property w.r.t. anchor)

- [x , y ] + [y , x ] = d⟨x , y⟩ (controlled failure of skew-sym)
- LprT (x)⟨y , z⟩ = ⟨[x , y ], z⟩+ ⟨y , [x , z]⟩ (adjoints derive the pairing)

• L ⊂ TM Dirac structure if

- Lagrangian subbundle
⟨Γ(L), Γ(L)⟩ = 0

- Involutive (⇐⇒ trivial Courant tensor )
[Γ(L), Γ(L)] ⊂ Γ(L) (⇐⇒ ⟨[Γ(L), Γ(L)], Γ(L)⟩ = 0)
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▷ Guiding examples of Dirac structures:

i) Foliations F ⊂ TM ⇝ Gr(F ) = F ⊕ F ◦

ii) Symplectic forms ω ∈ Ω2(M) ⇝ Gr(ω) = {u + iuω | u ∈ X(M)}
iii) Poisson structures π ∈ X2(M) ⇝ Gr(π) = {ξ + iξπ | ξ ∈ Ω1(M)}

• Dirac structures makes precise smooth partitions of M by presympletic
leaves: L ⊂ TM Dirac is a Lie algebroid with the induced bracket and anchor

- characteristic foliation integrating prT (L);
- leafwise presymplectic forms: m ∈ M, a, b ∈ prT (L)

ω(a, b) := ⟨a, z⟩, z ∈ Lm, prT (z) = b

• Reasons to do Dirac geometry:

- Often constructions in Poisson geometry are better understood when
framed in Dirac geometry.

- Generalized complex geometry.

- Dirac geometry itself.
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▷ It is often convenient to decouple smoothness and involutivity conditions

- L =
∐

Lm, Lm ⊂ TmM Lagrangian subspace, is a Lagrangian family.
A Lagrangian subbundle is a smooth Lagrangian family.

- L Lagrangian family is involutive if

⟨[x , y ], z⟩ = 0, for all x , y , z ∈ Γ(U, L) smooth local sections

Smooth involutive Lagrangian families = Dirac structures

• Example: Given f : M → N, a ∈ TM, b ∈ TN are f -related (a f∼ b) if

f∗prT (a) = prTb, f ∗prT∗(b) = prT∗a

- R ⊂ TN Dirac, pullback: f !(R) = {a ∈ TmM | ∃b ∈ TN, a
f∼ b},

- L ⊂ TM Dirac, pushforward: f!(R) = {b ∈ TnN | ∃a ∈ TM, a
f∼ b},

are involutive Lagrangian families (if pushforward f -invariant)
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▷ Gauge transformation by a closed 2-form

L ⊂ TM Dirac, ω ∈ Ω2
cl(M) ⇒ Rω(L) := {a+ iprT (a)ω | a ∈ L} is Dirac.

Regard ω as a Dirac structure Gr(ω)

Rω(L) = {a+ prT∗(b) | a ∈ L, b ∈ Gr(ω), prT (a− b) = 0}

▷ Tangent/tensor product [Gualtieri],[Alekseev,Bursztyn,Meinrenken]

Algebraic definition

L ⋆ R = {a+ prT∗(b) = prT∗(a) + b | (a, b) ∈ L× R, prT (a− b) = 0}.

Geometric definition

L ⋆ R := ∆!(L× R), ∆ : M → M ×M

L ⋆ R is an involutive Lagrangian family

Smooth in the open dense where L⊕ R → TM, (a, b) 7→ prT (a− b) has ct. rank
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▷ Characteristic foliation of L ⋆ R

Presymplectic distribution

TmSL⋆R(m) = TmSL(m) ∩ TmSR(m), ωL⋆R(m) = ωL(m) + ωR(m)

• Jumping phenomenom in Dirac geometry

Example: M = R3, L = ⟨ ∂
∂x

, dy + z ∂
∂z
, dz − z ∂

∂y
⟩

f : R → R3

t 7→ (t, 0, t2)

f !(L) = TR ⇝ The unique induced leaf “jumps” between ambient leaves
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Theorem

If L ⋆ R is smooth then

its leaves are the clean intersection of leaves of L and R

leaves of one Dirac structure get an induced Dirac structure from the other

Example: M = R4

L : π = ∂
∂x1

∧ ∂
∂x2

− x3
∂

∂x3
∧ ∂

∂x4

R : F fibers of (x1, x2, x3, x4) 7→ (x3 − 1
2 (x

2
1 + x2

2 ), x4 − 1
2 (x

2
1 + x2

2 ))

- L ⋆ R not Dirac (smooth)
- Leaves of R have induced L-structures, with jumping phenomenom
- Not all leaves of L have induced R-structures
- In x3 ̸= 0 dense open subset, L ⋆ R agrees with

π′ =
(

∂
∂x1

+ x1

(
∂

∂x3
+ ∂

∂x4

))
∧
(

∂
∂x2

+ x2

(
∂

∂x3
+ ∂

∂x4

))
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▷ Cotangent product

L⊛ R = {a+ prT (b) = prT (a) + b | (a, b) ∈ L× R, prT∗(a− b) = 0}

Smooth where L⊕ R → T ∗M, (a, b) 7→ prT∗(a− b) has ct. rank (open dense)

Definition

If L⊛ R is Dirac (involutive) we say that L and R concur (weakly)

Examples:

Gr(π)⊛ L = Rπ(L) = {a+ iprT∗ (a)π | a ∈ L}
Gr(π)⊛Gr(π′) = Gr(π + π′)

E ,F subbundles Gr(E)⊛Gr(F ) = Gr(E + F )
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▷ Dirac pairs [Dorfman],[Kosmann-Schwarzbach]

Torsion of L and R:

(uL, uR , vL, vR , ζL, ζLR , ζR) 7→ ⟨[uL, vL], ζL⟩−⟨[uL, vR ]+[uR , vL], ζLR⟩+⟨[uR , vR ], ζR⟩,

(uL + ξ, uR + ξ), (vL + η, vR + η), (e + ζL, e + ζLR), (f + ζLR , f + ζR) ∈ Γ(L× R)

L and R are said to form a Dirac pair when their torsion vanishes identically

Theorem

If L and R concur weakly (L⊛ R involutive), then L and R form a Dirac pair
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▷ Transverse Dirac structures

L ⋔ R ⇐⇒ L ⋆−R = Gr(π) and L⊛−R = Gr(ω), π ∈ X2(M), ω ∈ Ω2(M)

• Coupling: L Dirac is coupling for F if L ⋔ Gr(F)

Gr(ω) = L⊛Gr(F) = TF ⊕ C , C = TF⊥ ∩ L ⇝ H = R−ωC

Gr(π) = L ⋆ Gr(F) = N∗F ⊕ D, D = N∗F⊥ ∩ L⇝ H◦ = R−πD

Gr(H) = R−ωR−π(L) L = Rω(H)⊕Rπ(H
◦)
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▷ Libermann Theorem

L Dirac on M, F siple foliation ⇝ p : M → M/F

∃ R Dirac on M/F with p!(L) = R ⇐⇒ L and Gr(F) concur

{ Dirac st. on M containing TF } 1:1−→ { pullbacks of Dirac st. on M/F}

p!(L) = R is Dirac ⇐⇒ L⊛Gr(F ) = p!(R) ⇐⇒ L⊛Gr(F ) is Dirac

• Local normal form: L Dirac, m ∈ M, ∃ U around m with

L|U = Rdαp
!Gr(π) α ∈ Ω1(U), p : U → N submersion, π Poisson in N

(R−dαL)∩TU =

{
trivial

√

dim 1⇝ R−dα(L) = R−dα(L)⊛Gr(F)
Libermann

= p!Gr(π)
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▷ Compatible endomorphisms and closed 2-forms and Poisson bivectors

• Twisted brackets, concomitants and a-symmetry
a : TM → TM ⇝ [u, v ]a := [au, v ]− [u, av ]− a[u, v ]

π : TM → TM ⇝ [ξ, η]π = Lπξη − iπηdξ
ω : TM → TM ⇝ [u, v ]ω = iu ivdω
a Nihenhuis def⇐⇒ N(a) = 0, N(a)(u, v) := a[ , ]a − [a, a]

π Poisson ⇐⇒ N(π) = 0, N(π)(ξ, η) := π[ , ]π − [π, π]

ω closed ⇐⇒ [ , ]ω = 0{
C(a, π)(ξ, η) := a∗[ , ]π − ([a∗, π] + [π, a∗])

C(a, ω)(u, v) := [a, ω] + [ω, a]− ω[ , ]a + a∗[ , ]ω{
π a − symmetric def⇐⇒ aπ = πa∗ ⇝ aiπ bivector

ω a − symmetric def⇐⇒ ωa = a∗ω ⇝ ωai 2 − form
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π, a is a PN structure if π is a-symmetric and N(π) = N(a) = C(a, π) = 0

ω, a is a ΩN structure if ω is a-symmetric and dω = N(a) = C(a, ω) = 0

π, ω is a PΩ structure if it is a PN and ΩN structure for a = ωπ

For a closed 2-form ω and a Poisson bivector π the following are equivalent:
1 π, ω is a PΩ structure
2 Gr(ω) and Gr(π) concur
3 ω is a complementary 2-form for π.

ω is a bivector on (T ∗M, [·, ·]π). It is complementary if it is Poisson:

ω ([·, ·]π)ω − [ω, ω]π = 0
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▷ Complex dirac structures:

Involutive Lagrangian subbundles of (TCM, ⟨ , ⟩C, [ , ]C)

Examples:

Scalar extensions of (real) Dirac structures

To L C-Dirac we associate two scalar extensions (modulo smoothness)

L ⋆ L (involutive) L⊛ L (Lagrangian family)

Involutive structures: E ⊂ TCM involutive subbundle ⇝ Gr(E) C-Dirac

Generalized complex structures: L C-Dirac with L ⋔ L
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▷ Involutive structures

- Complex structures: TCM = E ⊕ E

- CR structures: E ∩ E = {0}
- Holomorphic foliations F : TCF = E ⊕ E .

- Transversaly holomorphic foliations F : TCF = E ∩ E , TCM = E + E .

- Nirenberg structures: atlas ϕi : Ui → RdimM−2n−d × Cn × Rd

ϕij(x , z , y) = (a(x), b(x , z), c(x , z , y)), b(x , ·) holomorphic

For an involutive structure E the following are equivalent:
1 Gr(E) and Gr(E) concur

2 E is a Nirenberg structure of type (n,d), d = rank(E ∩ E), n = rank(E)− d
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▷ Generalized complex structures L ⊂ TCM Lagrangian subbundle

L ⋔ L ⇐⇒


L = (J + iI)(TM), J ∈ O(⟨, ⟩)

J2 = −I : J =

(
a π

ω −a∗

)
, a2 + πω, a∗ω = ωa, aπ = πa∗

L generalized cx. Crainic⇐⇒

{
N(π) = 0, C(a, π) = 0
N(a) = −π[ , ]ω, C(a, ω) = 0

For a generalized complex structure L the following are equivalent:
1 L concurs with L (J concurs with J = −J)
2 π, a is a PN structure and ω, a is an ΩN structure

L ⋆ (−L) = Gr( 1
2i π) L⊛ (−L) = Gr( 1

2i ω).

L concurs with L ⇐⇒ dω = 0
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