# Dirac products and concurring Dirac structures

joint with P. Frejlich

arXiv:2412.16342, LMP 115 (2025), n. 2

< ∃→

-

э

Summary Set-up Disclaimer

Discuss two "dual" operations on Dirac structures (modulo smoothness):

Tangent and cotangent product of L and R:

Tangent product (always Dirac):

Description of the characteristic foliation of  $L \star R$ 

When cotangent product Dirac, we say that L and R concur:

Concurrence is the natural compatibility condition for Dirac structures

- unifies classical compatibility conditions (Libermann, Magri-Morosi, Frobenius-Nirenberg);
- clarifies constructions (coupling, normal forms);
- produces new results

Summary Set-up Disclaimer

- ▷ Generalized tangent bundle  $\mathbb{T}M =: TM \oplus T^*M$  with
  - non-degenerate pairing

$$\langle u+\xi,v+\eta\rangle := i_v\eta + i_u\xi$$

Dorfman bracket

$$[u + \xi, v + \eta] := [u, v] + \mathcal{L}_u \eta - i_v \mathrm{d}\xi$$

• anchor pr<sub>TM</sub>

## is a Courant algebroid

$$\begin{array}{l} - \ [x, [y, z]] = [[x, y], z] + [y, [x, z]] \\ - \ [x, fy] = f[x, y] + (\mathcal{L}_{\mathrm{pr}_{\mathcal{T}}(x)}f) y \\ - \ [x, y] + [y, x] = d\langle x, y \rangle \\ - \ \mathcal{L}_{\mathrm{pr}_{\mathcal{T}}(x)}\langle y, z \rangle = \langle [x, y], z \rangle + \langle y, [x, z] \rangle \end{array}$$

(Leibniz) (Leibniz property w.r.t. anchor) (controlled failure of skew-sym) (adjoints derive the pairing)



Summary Set-up Disclaimer

Guiding examples of Dirac structures:

- i) Foliations  $F \subset TM$   $\rightsquigarrow$   $\operatorname{Gr}(F) = F \oplus F^{\circ}$ ii) Symplectic forms  $\omega \in \Omega^{2}(M)$   $\rightsquigarrow$   $\operatorname{Gr}(\omega) = \{u + i_{u}\omega \mid u \in \mathfrak{X}(M)\}$
- iii) Poisson structures  $\pi \in \mathfrak{X}^{2}(M) \quad \rightsquigarrow \quad \operatorname{Gr}(\pi) = \{\xi + i_{\xi}\pi \mid \xi \in \Omega^{1}(M)\}$

• Dirac structures makes precise smooth partitions of M by presympletic leaves:  $L \subset \mathbb{T}M$  Dirac is a Lie algebroid with the induced bracket and anchor

- characteristic foliation integrating  $pr_{T}(L)$ ;
- leafwise presymplectic forms:  $m \in M$ ,  $a, b \in \mathrm{pr}_{\mathcal{T}}(L)$

$$\omega(a,b) := \langle a, z \rangle, \quad z \in L_m, \operatorname{pr}_T(z) = b$$

- Reasons to do Dirac geometry:
  - Often constructions in Poisson geometry are better understood when framed in Dirac geometry.
  - Generalized complex geometry.
  - Dirac geometry itself.

Summary Set-up Disclaimer

- ▷ It is often convenient to decouple smoothness and involutivity conditions
  - $L = \coprod L_m, L_m \subset \mathbb{T}_m M$  Lagrangian subspace, is a Lagrangian family. A Lagrangian subbundle is a smooth Lagrangian family.
  - L Lagrangian family is involutive if

 $\langle [x, y], z \rangle = 0$ , for all  $x, y, z \in \Gamma(U, L)$  smooth local sections

Smooth involutive Lagrangian families = Dirac structures

• Example: Given  $f: M \to N$ ,  $a \in \mathbb{T}M$ ,  $b \in \mathbb{T}N$  are f-related  $(a \stackrel{f}{\sim} b)$  if

$$f_*\operatorname{pr}_T(a) = \operatorname{pr}_T b, \quad f^*\operatorname{pr}_{T^*}(b) = \operatorname{pr}_{T^*} a$$

- $R \subset \mathbb{T}N$  Dirac, pullback:  $f^!(R) = \{a \in T_m \mathbb{M} \mid \exists b \in \mathbb{T}N, a \stackrel{f}{\sim} b\},\$
- $L \subset \mathbb{T}M$  Dirac, pushforward:  $f_!(R) = \{b \in T_n \mathbb{N} \mid \exists a \in \mathbb{T}M, a \stackrel{f}{\sim} b\}$ , are involutive Lagrangian families (if pushforward *f*-invariant)

イロト 不得下 イヨト イヨト 二日

Gauge transformation by a closed 2-form

 $L \subset \mathbb{T}M$  Dirac,  $\omega \in \Omega^2_{\mathrm{cl}}(M) \Rightarrow \mathcal{R}_{\omega}(L) := \{a + i_{\mathrm{pr}_{\mathcal{T}}(a)}\omega \,|\, a \in L\}$  is Dirac.

Regard  $\omega$  as a Dirac structure  $Gr(\omega)$ 

$$\mathcal{R}_{\omega}(L) = \{ a + \operatorname{pr}_{\mathcal{T}^*}(b) \, | \, a \in L, \ b \in \operatorname{Gr}(\omega), \ \operatorname{pr}_{\mathcal{T}}(a - b) = 0 \}$$

- Tangent/tensor product [Gualtieri],[Alekseev,Bursztyn,Meinrenken]
  - Algebraic definition

$$L\star R=\{a+\operatorname{pr}_{\mathcal{T}^*}(b)=\operatorname{pr}_{\mathcal{T}^*}(a)+b\mid (a,b)\in L\times R, \ \operatorname{pr}_{\mathcal{T}}(a-b)=0\}.$$

Geometric definition

$$L \star R := \Delta^! (L \times R), \quad \Delta : M \to M \times M$$

 $L \star R$  is an involutive Lagrangian family

Smooth in the open dense where  $L \oplus R \to TM$ ,  $(a, b) \mapsto \operatorname{pr}_T(a - b)$  has ct. rank

イロト イポト イヨト イヨト

3

## $\triangleright \quad \textbf{Characteristic foliation of } L \star R$

Presymplectic distribution

$$T_m S_{L\star R}(m) = T_m S_L(m) \cap T_m S_R(m), \quad \omega_{L\star R}(m) = \omega_L(m) + \omega_R(m)$$

• Jumping phenomenom in Dirac geometry

Example: 
$$M = \mathbb{R}^3$$
,  $L = \langle \frac{\partial}{\partial x}, dy + z \frac{\partial}{\partial z}, dz - z \frac{\partial}{\partial y} \rangle$   
 $f : \mathbb{R} \rightarrow \mathbb{R}^3$   
 $t \mapsto (t, 0, t^2)$ 

 $f^{!}(L) = T\mathbb{R} \rightsquigarrow$  The unique induced leaf "jumps" between ambient leaves

Tangent product (a.k.a. tensor product) Clean intersection of characteristic foliations

#### Theorem

## If $L \star R$ is smooth then

- its leaves are the clean intersection of leaves of L and R
- leaves of one Dirac structure get an induced Dirac structure from the other

Example:  $M = \mathbb{R}^4$ 

$$L: \pi = \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial x_2} - x_3 \frac{\partial}{\partial x_3} \wedge \frac{\partial}{\partial x_4}$$

 $R: \mathcal{F} \text{ fibers of } (x_1, x_2, x_3, x_4) \mapsto \big(x_3 - \tfrac{1}{2} \big( x_1^2 + x_2^2 \big), x_4 - \tfrac{1}{2} \big( x_1^2 + x_2^2 \big) \big)$ 

- $L \star R$  not Dirac (smooth)
- Leaves of R have induced L-structures, with jumping phenomenom
- Not all leaves of *L* have induced *R*-structures
- In  $x_3 \neq 0$  dense open subset,  $L \star R$  agrees with

$$\pi' = \left(\frac{\partial}{\partial x_1} + x_1 \left(\frac{\partial}{\partial x_3} + \frac{\partial}{\partial x_4}\right)\right) \land \left(\frac{\partial}{\partial x_2} + x_2 \left(\frac{\partial}{\partial x_3} + \frac{\partial}{\partial x_4}\right)\right)$$

э.

Concurrence Dirac pairs Transverse Dirac structures Libermannn Theorem Magri-Morosi

イロン イボン イヨン イヨン

3

### Cotangent product

$$L \circledast R = \{a + \operatorname{pr}_{\mathcal{T}}(b) = \operatorname{pr}_{\mathcal{T}}(a) + b \mid (a, b) \in L \times R, \ \operatorname{pr}_{\mathcal{T}^*}(a - b) = 0\}$$

Smooth where  $L \oplus R \to T^*M$ ,  $(a, b) \mapsto \operatorname{pr}_{T^*}(a - b)$  has ct. rank (open dense)

### Definition

If  $L \otimes R$  is Dirac (involutive) we say that L and R concur (weakly)

#### Examples:

- Gr( $\pi$ )  $\circledast$   $L = \mathcal{R}_{\pi}(L) = \{a + i_{\mathrm{pr}_{\mathcal{T}^*}(a)}\pi \mid a \in L\}$
- $\operatorname{Gr}(\pi) \circledast \operatorname{Gr}(\pi') = \operatorname{Gr}(\pi + \pi')$
- E, F subbundles  $Gr(E) \otimes Gr(F) = Gr(E + F)$

Concurrence Dirac pairs Transverse Dirac structures Libermannn Theorem Magri-Morosi

イロン イボン イヨン イヨン

3

## Dirac pairs [Dorfman], [Kosmann-Schwarzbach]

Torsion of *L* and *R*:

 $\begin{aligned} (u_L, u_R, v_L, v_R, \zeta_L, \zeta_{LR}, \zeta_R) &\mapsto \langle [u_L, v_L], \zeta_L \rangle - \langle [u_L, v_R] + [u_R, v_L], \zeta_{LR} \rangle + \langle [u_R, v_R], \zeta_R \rangle, \\ (u_L + \xi, u_R + \xi), (v_L + \eta, v_R + \eta), (e + \zeta_L, e + \zeta_{LR}), (f + \zeta_{LR}, f + \zeta_R) \in \Gamma(L \times R) \end{aligned}$ 

L and R are said to form a **Dirac pair** when their torsion vanishes identically

#### Theorem

If L and R concur weakly ( $L \otimes R$  involutive), then L and R form a Dirac pair

Concurrence Dirac pairs Transverse Dirac structures Libermannn Theorem Magri-Morosi

э.

#### Transverse Dirac structures

$$L \pitchfork R \iff L \star - R = \operatorname{Gr}(\pi) \text{ and } L \circledast - R = \operatorname{Gr}(\omega), \quad \pi \in \mathfrak{X}^{2}(M), \omega \in \Omega^{2}(M)$$

• Coupling: *L* Dirac is coupling for  $\mathcal{F}$  if  $L \oplus \operatorname{Gr}(\mathcal{F})$ 

$$\operatorname{Gr}(\omega) = L \circledast \operatorname{Gr}(\mathcal{F}) = T\mathcal{F} \oplus C, \quad C = T\mathcal{F}^{\perp} \cap L \quad \rightsquigarrow H = \mathcal{R}_{-\omega}C$$

 $\operatorname{Gr}(\pi) = L \star \operatorname{Gr}(\mathcal{F}) = N^* \mathcal{F} \oplus D, \quad D = N^* \mathcal{F}^{\perp} \cap L \rightsquigarrow H^\circ = \mathcal{R}_{-\pi} D$ 

$$\operatorname{Gr}(H) = \mathcal{R}_{-\omega} \mathcal{R}_{-\pi}(L) \qquad \qquad L = \mathcal{R}_{\omega}(H) \oplus \mathcal{R}_{\pi}(H^{\circ})$$

Concurrence Dirac pairs Transverse Dirac structures Libermannn Theorem Magri-Morosi

### Libermann Theorem

L Dirac on 
$$M$$
,  $\mathcal{F}$  siple foliation  $\rightsquigarrow p: M \rightarrow M/\mathcal{F}$ 

 $\exists$  R Dirac on  $M/\mathcal{F}$  with  $p!(L) = R \iff L$  and  $Gr(\mathcal{F})$  concur

{ Dirac st. on M containing  $T\mathcal{F}$  }  $\xrightarrow{1:1}$  { pullbacks of Dirac st. on  $M/\mathcal{F}$ }  $p_!(L) = R$  is Dirac  $\iff L \circledast \operatorname{Gr}(\mathscr{F}) = p^!(R) \iff L \circledast \operatorname{Gr}(\mathscr{F})$  is Dirac

• Local normal form: L Dirac,  $m \in M$ ,  $\exists U$  around m with

$$L|_{U} = \mathcal{R}_{d\alpha} p^{!} \operatorname{Gr}(\pi) \qquad \alpha \in \Omega^{1}(U), \ p : U \to N \text{ submersion}, \ \pi \text{ Poisson in } N$$
$$(\mathcal{R}_{-d\alpha}L) \cap TU = \begin{cases} \operatorname{trivial} \sqrt{} \\ \dim 1 \rightsquigarrow \mathcal{R}_{-d\alpha}(L) = \mathcal{R}_{-d\alpha}(L) \circledast \operatorname{Gr}(\mathcal{F}) \stackrel{\textit{Libermann}}{=} p^{!} \operatorname{Gr}(\pi) \end{cases}$$

- > Compatible endomorphisms and closed 2-forms and Poisson bivectors
- Twisted brackets, concomitants and *a*-symmetry

$$\begin{cases} a: TM \to TM \quad \rightsquigarrow [u, v]^{a} := [au, v] - [u, av] - a[u, v] \\ \pi: \mathbb{T}M \to \mathbb{T}M \quad \rightsquigarrow [\xi, \eta]^{\pi} = \mathcal{L}_{\pi\xi}\eta - i_{\pi\eta}d\xi \\ \omega: \mathbb{T}M \to \mathbb{T}M \quad \rightsquigarrow [u, v]^{\omega} = i_{u}i_{v}d\omega \end{cases}$$
$$\begin{cases} a \text{ Nihenhuis } \stackrel{\text{def}}{\Longrightarrow} N(a) = 0, \quad N(a)(u, v) := a[, ]^{a} - [a, a] \\ \pi \text{ Poisson } \iff N(\pi) = 0, \quad N(\pi)(\xi, \eta) := \pi[, ]^{\pi} - [\pi, \pi] \\ \omega \text{ closed } \iff [, ]^{\omega} = 0 \end{cases}$$
$$\begin{cases} C(a, \pi)(\xi, \eta) := a^{*}[, ]^{\pi} - ([a^{*}, \pi] + [\pi, a^{*}]) \\ C(a, \omega)(u, v) := [a, \omega] + [\omega, a] - \omega[, ]^{a} + a^{*}[, ]^{\omega} \end{cases}$$
$$\begin{cases} \pi \text{ a - symmetric } \stackrel{\text{def}}{\iff} a\pi = \pi a^{*} \rightsquigarrow a^{i} \pi \text{ bivector} \\ \omega \text{ a - symmetric } \stackrel{\text{def}}{\iff} \omega a = a^{*} \omega \rightarrow \omega a^{i} 2 - \text{ form} \end{cases}$$

イロン イボン イヨン イヨン

3

 $\pi$ , *a* is a *PN* structure if  $\pi$  is *a*-symmetric and  $N(\pi) = N(a) = C(a, \pi) = 0$  $\omega$ , *a* is a  $\Omega N$  structure if  $\omega$  is *a*-symmetric and  $d\omega = N(a) = C(a, \omega) = 0$  $\pi, \omega$  is a *P* $\Omega$  structure if it is a *PN* and  $\Omega N$  structure for  $a = \omega \pi$ 

For a closed 2-form  $\omega$  and a Poisson bivector  $\pi$  the following are equivalent:

- **1**  $\pi, \omega$  is a  $P\Omega$  structure
- **2**  $Gr(\omega)$  and  $Gr(\pi)$  concur
- (a)  $\omega$  is a complementary 2-form for  $\pi$ .

 $\omega$  is a bivector on  $(T^*M, [\cdot, \cdot]^{\pi})$ . It is **complementary** if it is Poisson:

$$\omega \left( [\cdot, \cdot]^{\pi} \right)^{\omega} - [\omega, \omega]^{\pi} = 0$$

イロト イポト イヨト イヨト

-

< ロ > < 同 > < 回 > < 回 > :

э.

## Complex dirac structures:

Involutive Lagrangian subbundles of  $(\mathbb{T}_{\mathbb{C}}M, \langle , \rangle_{\mathbb{C}}, [, ]_{\mathbb{C}})$ 

## Examples:

- Scalar extensions of (real) Dirac structures
- To L C-Dirac we associate two scalar extensions (modulo smoothness)

 $L \star \overline{L}$  (involutive)  $L \circledast \overline{L}$  (Lagrangian family)

- Involutive structures:  $E \subset T_{\mathbb{C}}M$  involutive subbundle  $\rightsquigarrow \operatorname{Gr}(E)$   $\mathbb{C}$ -Dirac
- Generalized complex structures:  $L \mathbb{C}$ -Dirac with  $L \pitchfork \overline{L}$

### Involutive structures

- Complex structures:  $T_{\mathbb{C}}M = E \oplus \overline{E}$
- CR structures:  $E \cap \overline{E} = \{0\}$
- Holomorphic foliations  $\mathcal{F}$ :  $T_{\mathbb{C}}\mathcal{F} = E \oplus \overline{E}$ .
- Transversaly holomorphic foliations  $\mathcal{F}$ :  $T_{\mathbb{C}}\mathcal{F} = E \cap \overline{E}, \ T_{\mathbb{C}}M = E + \overline{E}.$
- Nirenberg structures: atlas  $\phi_i: U_i \to \mathbb{R}^{\dim M 2n d} \times \mathbb{C}^n \times \mathbb{R}^d$

 $\phi_{ij}(x,z,y) = (a(x),b(x,z),c(x,z,y)), \quad b(x,\cdot) \text{ holomorphic}$ 

For an involutive structure E the following are equivalent:

- Gr(E) and  $Gr(\overline{E})$  concur
- **2** E is a Nirenberg structure of type (n,d),  $d = \operatorname{rank}(E \cap \overline{E})$ ,  $n = \operatorname{rank}(E) d$

イロト 不得 とくき とくき とうき

▷ Generalized complex structures  $L \subset \mathbb{T}_{\mathbb{C}}M$  Lagrangian subbundle

$$L \pitchfork \overline{L} \iff \begin{cases} L &= (J + i\mathbf{I})(\mathbb{T}M), \quad J \in \mathcal{O}(\langle, \rangle) \\ J^2 &= -\mathbf{I}: \quad J = \begin{pmatrix} a & \pi \\ \omega & -a^* \end{pmatrix}, \quad a^2 + \pi\omega, \ a^*\omega = \omega a, \ a\pi = \pi a^* \end{cases}$$

$$L \text{ generalized cx.} \stackrel{\text{Crainic}}{\longleftrightarrow} \begin{cases} N(\pi) = 0, & C(a, \pi) = 0\\ N(a) = -\pi[\,,\,]^{\omega}, & C(a, \omega) = 0 \end{cases}$$

For a generalized complex structure L the following are equivalent:

- L concurs with  $\overline{L}$  (J concurs with  $\overline{J} = -J$ )
- **2**  $\pi$ , *a* is a *PN* structure and  $\omega$ , *a* is an  $\Omega N$  structure

$$L \star (-\overline{L}) = \operatorname{Gr}(\frac{1}{2i}\pi) \qquad L \circledast (-\overline{L}) = \operatorname{Gr}(\frac{1}{2i}\omega).$$

*L* concurs with  $\overline{L} \iff d\omega = 0$