Symmetric Poisson geometry

Filip Moučka^{1,2} (joint work with Roberto Rubio¹)

¹Autonomous University of Barcelona, Faculty of Sciences, Carrer dels Til·lers, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain ²Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19 Prague 1, Czech Republic

1. Symmetric bivector fields

$$\left\{ \begin{array}{l} \text{symmetric bivector fields} \\ \vartheta \in \mathfrak{X}^2_{\mathsf{sym}}(M) \end{array} \right\} \xleftarrow[\vartheta(\mathrm{d}f, \mathrm{dg}) = \{f, \mathrm{g}\} \\ \forall (\mathrm{d}f, \mathrm{dg}) = \{f, \mathrm{g}\} \end{array} \left\{ \begin{array}{l} \mathbb{R}\text{-bilinear maps} \left\{ \ , \ \} : \times^2 \mathcal{C}^\infty(M) \to \mathcal{C}^\infty(M) \\ \{f, \mathrm{g}\} = \{\mathrm{g}, f\}, \quad \{f, \mathrm{g}h\} = \{f, \mathrm{g}\}h + \mathrm{g}\{f, h\} \end{array} \right\}$$

Every $\vartheta \in \mathfrak{X}^2_{sym}(M)$ has associated the gradient map

grad : $\mathcal{C}^{\infty}(M) \to \mathfrak{X}(M)$, $f \mapsto \vartheta(\mathrm{d}f) = \{f, \}.$

What is a natural integrability condition?

1. $[\vartheta, \vartheta] = 0$ (The Schouten bracket on $\mathfrak{X}^{\bullet}_{sym}(M)$ is skew-symmetric)	$\sim \rightarrow$	void condition
2. The map grad : $(\mathcal{C}^{\infty}(M), \{,\}) \to (\mathfrak{X}(M), [,])$ is an algebra morphism	$\sim \rightarrow$	$\{ \ , \ \} = 0$
3. $Jac(f, g, h) := \{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0$	$\sim \rightarrow$	$\{ \ , \ \} = 0$

4. Geometrical interpretation

Every $\vartheta \in \mathfrak{X}^2_{sym}(M)$ determines:

ture (ϑ, ∇) is locally geodesically invariant.

stant 'square of the speed' $g_{\vartheta}(\dot{\gamma}, \dot{\gamma})$.

• the characteristic distribution im $\vartheta \subseteq TM$, a smooth (possibly singular) distribution, defined by

 $(\operatorname{im}\vartheta)_m := \{\vartheta(\alpha) \mid \alpha \in T_m^*M\},\$

• the characteristic metric $\{g_{\vartheta}\}$, a family of linear (pseudo-)Riemannian metrics on im ϑ , given by

 $q_{\vartheta}(\vartheta(\alpha), \vartheta(\beta)) := \vartheta(\alpha, \beta).$

• We call a distribution Δ **locally geodesically** The characteristic distribution of a symmetric Poisson struc**invariant** if for every geodesic $\gamma : I \to M$ satisfying $\dot{\gamma}(t_0) \in \Delta_{\gamma(t_0)}$ for some $t_0 \in I$, there is a subinterval I' such that $\dot{\gamma}(t) \in \Delta_{\gamma(t)}$ for all $t \in I'$. Moreover, every ϑ -admissible geodesic $\gamma: I \to M$ has con-• A curve $\gamma: I \to M$ is called ϑ -admissible if there is a curve $a: I \to T^*M$ such that $\vartheta(a(t)) = \dot{\gamma}(t)$.

Every strong symmetric Poisson structure (ϑ, ∇) on M gives the smooth partition of M into leaves such that every leaf $N \subseteq M$ satisfies

2. Symmetric Cartan calculus

For a torsion-free connection ∇ on M, we introduce the symmetric derivative on the space of symmetric forms $\Upsilon^{\bullet}(M)$: $\nabla^s : \Upsilon^r(M) \to \Upsilon^{r+1}(M),$ $\varphi \mapsto (r+1) \operatorname{sym}(\nabla \varphi).$

Equivalently, using the correspondence

 $\left\{ \begin{array}{c} \text{symmetric forms} \\ \varphi \in \Upsilon^r(M) \end{array} \right\} \xleftarrow[[\varphi(u):=\frac{1}{r!}\varphi(u,...,u)]{} \left\{ \begin{array}{c} \text{degree-}r \text{ polynomials in velocities on } M \text{, that is,} \\ \xi \in \mathcal{C}^{\infty}(TM) \text{ such that } \xi(\lambda u) = \lambda^r \xi(u) \end{array} \right\},$

the symmetric derivative corresponds to the geodesic spray $X_{\nabla} \in \mathfrak{X}(TM)$: $\widetilde{\nabla^s \varphi} = X_{\nabla} \widetilde{\varphi}$.

Classical Cartan calculus	Symmetric Cartan calculus			
differentials				
exterior derivative d	symmetric derivative $ abla^s$			
$d\psi = (r+1) \operatorname{skew} (\nabla \psi)$	$\nabla^{s}\varphi = (r+1)\operatorname{sym}\left(\nabla\varphi\right)$			
canonical	depending on the choice of $ abla$			
$(\mathrm{d}f)(X) = Xf$, $\mathrm{d} \in \mathrm{gDer}_1(\Omega^{ullet}(M))$	$(\nabla^s f)(X) = Xf, \nabla^s \in \mathrm{Der}_1(\Upsilon^{\bullet}(M))$			
Lie derivatives				
Lie derivative $L_X := [\iota_X, d]_g$	symmetric Lie derivative $L^s_X := [\iota_X, \nabla^s]$			
$L_X = \frac{\mathrm{d}}{\mathrm{d}t} (\Psi_t^X)^*$	$L_X^s = \frac{\mathrm{d}}{\mathrm{d}t} (P_{2t,0}^\gamma \circ (\Psi_{-t}^X)^*)$			
brackets				
Lie bracket $[X, Y] := X \circ Y - Y \circ X$	symmetric bracket $\langle X:Y angle_s:= abla_XY+ abla_YX$			
$\iota_{[X,Y]} = [L_X, \iota_Y]_{\mathbf{g}}$	$\iota_{\langle X:Y\rangle_S} = [L^s_X, \iota_Y]$			

Moreover, every leaf $N \subseteq M$ acquires:

• the leaf connection ∇^N , a torsion-free connection on N whose parallel transport coincides with that of ∇ .

• the leaf metric g_N , a (pseudo-)Riemannian metric on N given by g_{ϑ} .

Theorem

Theorem

The smooth partition induced by a strong symmetric Poisson structure (ϑ, ∇) is totally geodesic. Moreover, for every leaf of the partition, the leaf connection is the Levi-Civita connection of the leaf metric.

- A submanifold $N \subseteq M$ is called **totally geodesic** if for every geodesic $\gamma: I \to M$ satisfying $\dot{\gamma}(t_0) \in T_{\gamma(t_0)}N$ for some $t_0 \in I$, there is a subinterval I' such that $\dot{\gamma}(t) \in T_{\gamma(t)}N$ for all $t \in I'$.
- A partition is called **totally geodesic** if every leaf is a totally geodesic submanifold.

Example 1: Heisenberg group and SO(3)

The Heisenberg group H_3 is the 3-dimensional non-compact Lie group of 3×3 upper triangular matrices. The standard basis for the space of left-invariant vector fields (Q, P, I) satisfies

[Q, P] = I,	[Q,I] = 0,	[P, I] = 0.
The regular distribution generated by Q and	l P is non-integrable. In fa	act, it is bracket-generating.
This structure can naturally be described us	ing the non-strong symme	tric Poisson structure (ϑ, ∇)

	$\vartheta := Q \otimes Q + P \otimes P,$	$\nabla_Q P := \frac{1}{2}I,$	$\nabla_Q I := 0,$	$\nabla_P I := 0.$
--	---	-------------------------------	--------------------	--------------------

There is a similar compact example of a non-strong symmetric Poisson structure on the Lie group SO(3). In the standard basis (X_1, X_2, X_3) for the space of left-invariant vector fields satisfying

 $[X_i, X_j] = \varepsilon_{ijk} X_k,$

it is described by the pair (ϑ, ∇) given by

 $\vartheta := X_1 \otimes X_1 + X_2 \otimes X_2,$

Moučka, Rubio. Symmetric Cartan calculus, the Patterson-Walker metric and symmetric cohomology. arXiv:2501.12442

For a torsion-free connection ∇ on M, we introduce the symmetric Schouten bracket on the space of symmetric multivector fields $\mathfrak{X}^{\bullet}_{sym}(M)$ as the unique map $[,]_s : \times^2 \mathfrak{X}^{\bullet}_{sym}(M) \to \mathfrak{X}^{\bullet}_{sym}(M)$ such that

(i) $[X, f]_s = Xf$ and $[X, Y]_s = \langle X : Y \rangle_s$, $(ii) \ [\mathcal{X},]_s \in \mathrm{Der}_{r-1}(\mathfrak{X}^{\bullet}_{\mathsf{sym}}(M)) \text{ for } \mathcal{X} \in \mathfrak{X}^r_{\mathsf{sym}}(M),$ $(iii) \ [\mathcal{X}, \mathcal{Y}]_s = [\mathcal{Y}, \mathcal{X}]_s.$

It can be also derived: $[[\iota_{\mathcal{X}}, \nabla^s], \iota_{\mathcal{Y}}] = \iota_{[\mathcal{X}, \mathcal{Y}]_s}.$

3. Symmetric Poisson structures

A pair (ϑ, ∇) is called a symmetric Poisson structure if

 $[\vartheta, \vartheta]_s = 0.$

 $\operatorname{Jac}(f, g, h) = \operatorname{d}h(\langle f : g \rangle_s) + \operatorname{cyc}(f, g, h).$ $\left\{ \begin{array}{c} \text{non-degenerate symmetric} \\ \text{Poisson structures } (\vartheta, \nabla) \text{ on } M \end{array} \right\} \xleftarrow[g=\vartheta^{-1}]{\sim} \left\{ \begin{array}{c} \text{non-degenerate Killing 2-tensors } (g, \nabla) \\ g\in\Upsilon^2(M) \text{ is non-degenerate and } \nabla^s g=0 \end{array} \right\}$

Equivalently:

A pair (ϑ, ∇) is called a **strong symmetric Poisson structure** if

Example 2: Totally geodesic foliation by circles

Consider the punctured cartesian plane $M := \mathbb{R}^2 \setminus \{(0,0)\}$ and $\vartheta \in \mathfrak{X}^2_{sym}(M)$:

 $\vartheta := (-y \,\partial_x + x \,\partial_y) \otimes (-y \,\partial_x + x \,\partial_y).$

The torsion-free connection ∇ on M, given by

 $\nabla_{\partial_x} \partial_x = \nabla_{\partial_y} \partial_y := \frac{1}{x^2 + y^2} (x \,\partial_x + y \,\partial_y), \qquad \nabla_{\partial_x} \partial_y := 0,$

makes (ϑ, ∇) strong symmetric Poisson. Each leaf \mathbb{S}^1 inherits the round metric as its leaf metric.

grad : $(\mathcal{C}^{\infty}(M), \{,\}) \to (\mathfrak{X}(M), \langle : \rangle_s)$

is an algebra morphism.

Since it is associative, $(\vartheta, \nabla^{\mathsf{Euc}})$ forms a strong symmetric Poisson structure.

The lowest dimension admitting a non-associative Jacobi-Jordan algebra is $\dim V = 5$. There is only one such algebra. The corresponding non-strong symmetric Poisson structure is:

 $\vartheta := x^2 \partial_{x^1} \otimes \partial_{x^1} + x^5 \partial_{x^1} \odot \partial_{x^4} - \frac{1}{2} x^3 \partial_{x^1} \odot \partial_{x^5} + x^3 \partial_{x^2} \odot \partial_{x^4}.$

Remark: symmetric Poisson structures and Lie algebroids A pair (ϑ, ∇) gives the skew-symmetric bracket on $\Omega^1(M)$: $[\alpha,\beta] := \nabla_{\vartheta(\alpha)}\beta - \nabla_{\vartheta(\beta)}\alpha.$ If (ϑ, ∇) is a strong symmetric Poisson structure, the triple $(T^*M, \vartheta, [,])$ is a Lie algebroid if and only if $R_{\nabla}(\vartheta(\alpha), \vartheta(\beta))\eta + \operatorname{cyc}(\alpha, \beta, \eta) = 0.$

Soon on the arXiv!

This research has been supported by the Spanish State Research Agency under grant PID2022-137667NA-I00.

Interactions of Poisson Geometry, Lie Theory and Symmetry; Lisbon, Portugal

June 30 - July 4, 2025

filip.moucka@autonoma.cat