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1. Symmetric bivector fields

{
symmetric bivector fields

ϑ ∈ X2
sym(M)

}
∼←−−−−−−−−−→

ϑ(df,dg)={f, g}

{
R-bilinear maps { , } : ×2 C∞(M)→ C∞(M)

{f, g} = {g, f}, {f, gh} = {f, g}h + g{f, h}

}

Every ϑ ∈ X2
sym(M) has associated the gradient map grad : C∞(M)→ X(M),

f 7→ ϑ(df ) = {f, }.

What is a natural integrability condition?

1. [ϑ, ϑ] = 0 (The Schouten bracket on X•sym(M) is skew-symmetric)

2. The map grad : (C∞(M), { , })→ (X(M), [ , ]) is an algebra morphism

3. Jac(f, g, h) := {f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0

⇝

⇝

⇝

void condition

{ , } = 0

{ , } = 0

2. Symmetric Cartan calculus

For a torsion-free connection ∇ on M , we introduce the
symmetric derivative on the space of symmetric forms Υ•(M):

∇s : Υr(M)→ Υr+1(M),

φ 7→ (r + 1) sym (∇φ).

Equivalently, using the correspondence{
symmetric forms
φ ∈ Υr(M)

}
∼←−−−−−−−−−−→

φ̃(u):= 1
r!φ(u,...,u)

{
degree-r polynomials in velocities on M , that is,

ξ ∈ C∞(TM) such that ξ(λu) = λrξ(u)

}
,

the symmetric derivative corresponds to the geodesic spray X∇ ∈ X(TM): ∇̃sφ = X∇φ̃.

Classical Cartan calculus Symmetric Cartan calculus

differentials

exterior derivative d symmetric derivative ∇s

dψ = (r + 1) skew (∇ψ) ∇sφ = (r + 1) sym (∇φ)

canonical depending on the choice of ∇

(df )(X) = Xf , d ∈ gDer1(Ω
•(M)) (∇sf )(X) = Xf , ∇s ∈ Der1(Υ

•(M))

Lie derivatives

Lie derivative LX := [ιX , d]g symmetric Lie derivative LsX := [ιX ,∇s]

LX =
d

dt
(ΨXt )∗ LsX =

d

dt
(P

γ
2t,0 ◦ (Ψ

X
−t)
∗)

brackets

Lie bracket [X, Y ] := X ◦ Y − Y ◦X symmetric bracket ⟨X : Y ⟩s := ∇XY +∇YX

ι[X,Y ] = [LX , ιY ]g ι⟨X :Y ⟩s = [LsX , ιY ]
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For a torsion-free connection ∇ on M , we introduce the symmetric Schouten bracket on the space of
symmetric multivector fields X•sym(M) as the unique map [ , ]s : ×2X•sym(M)→ X•sym(M) such that

(i) [X, f ]s = Xf and [X, Y ]s = ⟨X : Y ⟩s,

(ii) [X , ]s ∈ Derr−1(X•sym(M)) for X ∈ Xrsym(M),

(iii) [X ,Y ]s = [Y ,X ]s.

It can be also derived:

[[ιX ,∇s], ιY ] = ι[X ,Y ]s.

3. Symmetric Poisson structures

A pair (ϑ,∇) is called a symmetric Poisson structure if

[ϑ, ϑ]s = 0.

Equivalently:

Jac(f, g, h) = dh(⟨f : g⟩s) + cyc(f, g, h).

{
non-degenerate symmetric

Poisson structures (ϑ,∇) on M

}
∼←−−−→

g=ϑ−1

{
non-degenerate Killing 2-tensors (g,∇)

g ∈ Υ2(M) is non-degenerate and ∇sg = 0

}

A pair (ϑ,∇) is called a strong symmetric Poisson structure if

grad : (C∞(M), { , })→ (X(M), ⟨ : ⟩s)
is an algebra morphism.

Equivalently: ∇grad f ϑ = 0.

{
non-degenerate strong symmetric
Poisson structures (ϑ,∇) on M

}
∼←−−−→

g=ϑ−1

{
(pseudo-)Riemannian metrics (g, g∇)
(g∇ is the Levi-Civita connection of g)

}

4. Geometrical interpretation

Every ϑ ∈ X2
sym(M) determines:

• the characteristic distribution imϑ ⊆ TM , a smooth (possibly singular) distribution, defined by

(imϑ)m := {ϑ(α) |α ∈ T ∗mM},

• the characteristic metric {gϑ}, a family of linear (pseudo-)Riemannian metrics on imϑ, given by

gϑ(ϑ(α), ϑ(β)) := ϑ(α, β).

Theorem
The characteristic distribution of a symmetric Poisson struc-
ture (ϑ,∇) is locally geodesically invariant.
Moreover, every ϑ-admissible geodesic γ : I →M has con-
stant ’square of the speed’ gϑ(γ̇, γ̇).

• We call a distribution ∆ locally geodesically
invariant if for every geodesic γ : I →M
satisfying γ̇(t0) ∈ ∆γ(t0) for some t0 ∈ I , there is
a subinterval I ′ such that γ̇(t) ∈ ∆γ(t) for all t ∈ I ′.

• A curve γ : I →M is called ϑ-admissible if there is
a curve a : I → T ∗M such that ϑ(a(t)) = γ̇(t).

Every strong symmetric Poisson structure (ϑ,∇) on M gives the smooth partition of M into leaves such that
every leaf N ⊆M satisfies

imϑ|N = TN.

Moreover, every leaf N ⊆M acquires:

• the leaf connection ∇N , a torsion-free connection on N whose parallel transport coincides with that of ∇.

• the leaf metric gN , a (pseudo-)Riemannian metric on N given by gϑ.

Theorem
The smooth partition induced by a strong symmetric Pois-
son structure (ϑ,∇) is totally geodesic.
Moreover, for every leaf of the partition, the leaf connection
is the Levi-Civita connection of the leaf metric.

• A submanifold N ⊆M is called totally geodesic if
for every geodesic γ : I →M satisfying
γ̇(t0) ∈ Tγ(t0)N for some t0 ∈ I , there is a
subinterval I ′ such that γ̇(t) ∈ Tγ(t)N for all t ∈ I ′.

• A partition is called totally geodesic if every leaf
is a totally geodesic submanifold.

Example 1: Heisenberg group and SO(3)

The Heisenberg group H3 is the 3-dimensional non-compact Lie group of 3× 3 upper triangular matrices.
The standard basis for the space of left-invariant vector fields (Q,P, I) satisfies

[Q,P ] = I, [Q, I ] = 0, [P, I ] = 0.

The regular distribution generated by Q and P is non-integrable. In fact, it is bracket-generating.
This structure can naturally be described using the non-strong symmetric Poisson structure (ϑ,∇):

ϑ:= Q⊗Q + P ⊗ P , ∇QP :=
1

2
I, ∇QI := 0, ∇P I := 0.

There is a similar compact example of a non-strong symmetric Poisson structure on the Lie group SO(3).
In the standard basis (X1, X2, X3) for the space of left-invariant vector fields satisfying

[Xi, Xj] = εijkXk,

it is described by the pair (ϑ,∇) given by

ϑ:= X1 ⊗X1 +X2 ⊗X2, ∇XiXj:=
1

2
εijkXk.

Example 2: Totally geodesic foliation by circles

Consider the punctured cartesian plane M := R2 \ {(0, 0)} and ϑ ∈ X2
sym(M):

ϑ := (−y ∂x + x ∂y)⊗ (−y ∂x + x ∂y).

The torsion-free connection ∇ on M , given by

∇∂x∂x= ∇∂y∂y :=
1

x2 + y2
(x ∂x + y ∂y), ∇∂x∂y:= 0,

makes (ϑ,∇) strong symmetric Poisson. Each leaf S1 inherits the round metric as its leaf metric.

Example 3: Jacobi-Jordan algebras

A symmetric Poisson structure ({ , },∇) on V ∗ is called linear if

{C∞lin (V
∗), C∞lin (V

∗)} ⊆ C∞lin (V
∗).


linear (strong) symmetric

Poisson structures

({ , },∇Euc) on V ∗

 ∼←−−−−−−−→
u · v:={ιu,ιv}

{
(associative) Jacobi-Jordan
algebra structures · on V

}

• The Euclidean connection on
V ∗ is given by

∇Euc
∂
xi
∂xj = 0,

where {xi} is any set of linear
global coordinates on V ∗.

• A commutative algebra is called
Jacobi-Jordan if

Jac(u, v, w) = 0.

(I) If dimV = 2, there is only one non-trivial Jacobi-Jordan algebra:

e2 · e2 = e1
∼←→ ϑ = x ∂y ⊗ ∂y

Since it is associative, (ϑ,∇Euc) forms a strong symmetric Poisson structure.

(II) The lowest dimension admitting a non-associative Jacobi-Jordan algebra is dimV = 5. There is only
one such algebra. The corresponding non-strong symmetric Poisson structure is:

ϑ := x2∂x1 ⊗ ∂x1 + x5 ∂x1 ⊙ ∂x4 −
1

2
x3 ∂x1 ⊙ ∂x5 + x3 ∂x2 ⊙ ∂x4.

Remark: symmetric Poisson structures and Lie algebroids

A pair (ϑ,∇) gives the skew-symmetric bracket on Ω1(M):

[α, β] := ∇ϑ(α)β −∇ϑ(β)α.

If (ϑ,∇) is a strong symmetric Poisson structure, the triple (T ∗M,ϑ, [ , ]) is a Lie algebroid if and only if

R∇(ϑ(α), ϑ(β))η + cyc(α, β, η) = 0.
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