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1. Symmetric bivector fields

{ symmetric bivector fields } ~ . R-bilinear maps { , }: XQCOO<M) — C>(M)
d(df,dg)={/, g}

0 € X2, (M) ’ (.} =1{a. /Y. {figh} = {f.ath+g{f. )}

Every ¢ € %gym(M) has associated the gradient map grad :C™(M) — X(M),

fe=odf) =4f -

What is a natural integrability condition?

1. [¥,9] =0 (The Schouten bracket on %;ym(M) is skew-symmetric) s void condition
2. The map grad : (C*°(M),{, }) = (X(M), |, |) is an algebra morphism o {,1}=0
3 Jac(f,g h) = L, {e b3} + {, (o 1) + (B (o} = 0 =g

2. Symmetric Cartan calculus

Ve YT(M) — YT,
©+— (r+1)sym (Vo).

For a torsion-free connection V on M, we introduce the
symmetric derivative on the space of symmetric forms T*(M):

Equivalently, using the correspondence

{ symmetric forms } - degree-r polynomials in velocities on M, that is,
p €T(M) [ 5w | £eC®(TM) suchthat €)= \N¢€w) |

1
==70(U,...,u)

the symmetric derivative corresponds to the geodesic spray Xy € X(T'M): ﬁp = Xv.

Classical Cartan calculus Symmetric Cartan calculus

differentials

symmetric derivative V?°

Vép =(r+1)sym (V)

exterior derivative d
dyp = (r + 1) skew (V)
canonical depending on the choice of V

(df)(X) = Xf, degDer(Q*(M)) (VZAX) =Xf, V?® e Der(T*(M))

Lie derivatives

Lie derivative Lx = [tx, d|g symmetric Lie derivative L5, := [t x, V7]
d X d X
Lx =) Ly = E(P%,o o (W24)%)

brackets

symmetric bracket (X : Y)s =VxY + Vy X

Lie bracket [ X, Y] =XoY —YoX

XY = Lx, LY]g WX:Y)s = [ng'a Ly

Moucka, Rubio. Symmetric Cartan calculus, the Patterson-Walker metric and symmetric cohomology.
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For a torsion-free connection V on M, we introduce the symmetric Schouten bracket on the space of
symmetric multivector fields X¢ (M) as the unique map |, s : XZ%;ym(M) — Xgym(M) such that

(2) | X, fls=Xfand [X,Y]s= (X :Y)g,
(17) | X, |s € Derp_1(Xgym(M)) for X € X (M),

It can be also derived:

lea, VO], ey =y 9,

3. Symmetric Poisson structures

A pair (9, V) is called a symmetric Poisson structure if
[?9, ’19]3 — O

Equivalently:

Jac(f,g,h) = dh({f : g)s) + cyc(f, g, h).

{ non-degenerate symmetric } ~ non-degenerate Killing 2-tensors (g, V)
Poisson structures (v, V) on M \g:ﬁ_l/ g € T?(M) is non-degenerate and Vg = 0

A pair (9, V) is called a strong symmetric Poisson structure if

grad : (C(M),{, }) = (X(M),{ : )s) l Equivalently: Vg 9 =0.

Is an algebra morphism.

non-degenerate strong symmetric | ~ (pseudo-)Riemannian metrics (g, V)
Poisson structures (v, V)on M [ " _y-1' (

9V is the Levi-Civita connection of g)

symmetric Poisson structures

strong symmetric Poisson structures

parallel symmetric bivector fields

Torsion-free

connections

(pseudo-)Riemannian

metrics
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4. Geometrical interpretation

Every ¢ € %gym(M) determines:
e the characteristic distribution imv C T'M, a smooth (possibly singular) distribution, defined by

(im D)y, = {¥(a) | € T, M },
e the characteristic metric {gy}, a family of linear (pseudo-)Riemannian metrics on imJ, given by

g9(V(), 9(B)) == Ve, B).

~ Theorem |

The characteristic distribution of a symmetric Poisson struc-
ture (v, V) is locally geodesically invariant.

Moreover, every v/-admissible geodesic v : I — M has con-
stant 'square of the speed’ gy(7, 7).

e We call a distribution A locally geodesically
invariant if for every geodesic v : I — M
satisfying (ty) € A, for some ¢y € I, there is
a subinterval I" such that §(t) € A, forall t € I'.

e A curve v: I — M is called J-admissible if there is
acurve a: I — T*M such that ¥(a(t)) = ¥(t).

Every strong symmetric Poisson structure (¢, V) on M gives the smooth partition of M into leaves such that
every leaf N C M satisfies

Moreover, every leaf N C M acquires:

e the leaf connection V¥V, a torsion-free connection on N whose parallel transport coincides with that of V.

e the leaf metric gp, a (pseudo-)Riemannian metric on N given by gy.

~ Theorem |

The smooth partition induced by a strong symmetric Pois-
son structure (¢, V) is totally geodesic.

Moreover, for every leaf of the partition, the leaf connection
' is the Levi-Civita connection of the leaf metric.

e A submanifold N C M is called totally geodesic if
for every geodesic v : I — M satisfying
Y(to) € Ty N for some ty € I, there is a
subinterval I’ such that 4(t) € T' )N forall t € I'.

e A partition is called totally geodesic if every leaf
is a totally geodesic submanifold.

Example 1: Heisenberg group and SO(3)

The Heisenberg group Hs is the 3-dimensional non-compact Lie group of 3 X 3 upper triangular matrices.
The standard basis for the space of left-invariant vector fields (Q), P, I) satisfies

Q,Pl=1, Q, 1] =0, P, 1] = 0.

The regular distribution generated by () and P is non-integrable. In fact, it is bracket-generating.
This structure can naturally be described using the non-strong symmetric Poisson structure (9, V):

|

V=0QR0JD+ PR P, VQP:: 5], V@[::O, Vpl:=0.

There is a similar compact example of a non-strong symmetric Poisson structure on the Lie group SO(3).
In the standard basis (X1, X5, X3) for the space of left-invariant vector fields satisfying

X, Xj] = €51 X
it is described by the pair (v, V) given by
1

VXZ.X]'I: _5iijk'

V= X1 ® X1+ Xo® Xo, ;

Example 2: Totally geodesic foliation by circles

Consider the punctured cartesian plane M/ := R?\ {(0,0)} and ¢ € %gym(M): M

0= (—yOp + 0y) ® (—y O + T 9y). ?D

The torsion-free connection V on M, given by &

1

makes (¥, V) strong symmetric Poisson. Each leaf S! inherits the round metric as its leaf metric.

Example 3: Jacobi-Jordan algebras

e [he Euclidean connection on
V* is given by

Euc
Vaxi axj S O,

A symmetric Poisson structure ({ , }, V) on V* is called linear if
{Ciin (V7), Ciin (V7)} € i (V7).

where {z'} is any set of linear

linear (strong) symmetric . . lobal coordinates on V*.
Poi(sson s%c)ruc):/tures ~ { (associative) Jacobi-Jordan } ©
S ‘ e A commutative algebra is called
w-vi={iy, e} algebra structures - on V Tacobi Jordan hf?

({ 7 }7vEUC) on V*

Jac(u, v, w) = 0.

(I) If dim V' = 2, there is only one non-trivial Jacobi-Jordan algebra:

Y

€y €9 = €] —

Since it is associative, (¢, VEUS) forms a strong symmetric Poisson structure.

(IT) The lowest dimension admitting a non-associative Jacobi-Jordan algebra is dim V' = 5. There is only
one such algebra. The corresponding non-strong symmetric Poisson structure is:

1
. 2 5 3 3
¥ =z @x1 ®5’$1+x 8x1®8x4—§x (9x1®8x5+:1: 5’x2@8x4.

Remark: symmetric Poisson structures and Lie algebroids

A pair (9, V) gives the skew-symmetric bracket on Q!(M):

[CB, ﬁ] = Vﬁ(a>ﬁ — Vﬁ(ﬁ)a
If (¢, V) is a strong symmetric Poisson structure, the triple (T*M,,| , |) is a Lie algebroid if and only if

Ry (9(a), 9(8))n + cycla, ,1) = 0.

Soon on the arXiv!
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