
Abstract. Dirac structures are a geometric object generalizing symplectic and Poisson structures.From a physics viewpoint, they describe mechanical systems with both symmetries and constraints.Their deformation theory tells us what nearby Dirac structures look like and can suggest newinvariants. The deformation of a Dirac structure involves choosing a complementary ‘almost Dirac’structure, which gives an L3[1] algebra (a ‘Lie algebra up to homotopy’) controlling the deformations.When the ‘almost Dirac’ structure is Dirac, the L3[1] algebra reduces to the simpler structure of adifferential grade Lie algebra.
Goal: In a given Courant algebroid, characterize which Dirac structures admit Dirac complements.
Main result: We give topological and algebraic obstructions to the existence of a Dirac complement.

Obstructions to the existenceof aDirac complement
Tom Ariel (with Dr. Roberto Rubio (UAB) and Prof. Marco Zambon (KUL))

Why Dirac structures?

So... What is a Dirac structure?

A geometric object which generalizes bothPoisson and symplectic structures. Formally,it is given by subbundle of TX ⊕ T ∗X over amanifold X which is:• Lagrangian at every point for the pairing:
⟨V + α,W + β⟩ = α(V ) + β(W ).

• Involutive under the Courant bracket:
[V + α,W + β] = [V,W ] + LV β − iWdα.

How does that generalize Poisson andsymplectic structures?

Through their graphs! The graphs of Poissonor symplectic structures, as subbundles of
TX ⊕ T ∗X, are both Dirac structures.

So how are these more flexible thanjust using Poisson or symplecticstructures?

Well, they have the extra advantage ofadmitting both pushforwards and pullbacks!For example, in mechanics, this allows us todeal with both symmetries and constraints.

Is there a way to generalize Diracstructures to other settings?

Sure! We can twist the Courant bracketby a closed 3-form H giving us twistedDirac structures, which encapsulate twisted
Poisson or twisted presymplectic geometry.Complexifying, we can also find generalized
complex structures, or work in the moregeneral setting of a Courant algebroid.

And you say some ofthese don’t have Diraccomplements?

Yes, for example, if H has a nonzero de Rhamcohomology class, the Dirac structure T ∗Xhas no Dirac complement.

Deforming Dirac structures
A Courant algebroid over a manifold X, briefly, isgiven by a vector bundle E, along with:

A pairing ⟨ · , · ⟩ : Γ(E)⊗ Γ(E)→ C∞(X)
An anchor map ρ : E → TX
A bracket [ · , · ] : Γ(E)⊗ Γ(E)→ Γ(E)

such that the pairing, bracket, and anchor, allsatisfy natural compatibility conditions betweenthem, similar to those satisfied by TX ⊕ T ∗X.
Let L ⊆ E be a Dirac structure. Choosing anotherLagrangian subbundle M such that M ⊕ L allowsus to identify small Lagrangian deformations of Lwith sections of Γ(∧2M).
The decomposition E = M ⊕ L endows Γ(∧•M)with the structure of an L3[1] algebra. Thedeformations of L that remain Dirac are given bysolutions to the Maurer-Cartan equation in thatalgebra:

dLω + 12[ω,ω]M + 1
3!l3(ω,ω, ω) = 0.In the casewhereM is not only Lagrangian but alsoDirac, the above L3[1] algebra structure reduces toa differential graded Lie algebra. Deformations arenow governed by the simpler equation:

dLω + 12[ω,ω] = 0.Switching the roles of M and L, we also havethe structure of a curved L2[1] algebra on Γ(∧•L).Finding a Dirac complement for L is equivalent tosolving the curved Maurer-Cartan equation:
NM + dMζ + 12[ζ, ζ]L = 0,where NM is the Nijenhuis tensor of M , given by

NM(m1, m2, m3) = ⟨[m1, m2], m3⟩. Note that M isDirac↔ NM = 0.

Figure 1: Transverse Dirac structures

A Dirac structure in TX ⊕ T ∗X also has arepresentation as a singular foliation E alongwith a closed 2-form ϵ on the leaves of E.Geometrically, finding a complement is equivalentto finding a transverse singular foliation E ′ alongwith a closed 2-form ϵ′ on E ′ such that i∗E∩E ′(ϵ− ϵ′)is symplectic on the leaves of E ∩ E ′.

A cohomological obstruction
In a given Courant algebroid, for a given Diracstructure L, we construct a cohomology class thatvanishes whenever L admits a Dirac complement.This class is calculated through the Nijenhuistensor of any Lagrangian complement. Explicitly,this is the class of an element in:

Γ(∧•L) / [ Γ(∧•L) , Γ(∧•L) ]
which carries a canonical differential. We denotethis class by N(L).
Theorem • The class N(L) is inde-pendent of choice of complement M.
• If L has a Dirac complement, N(L) = 0.

In the case ofTX⊕T ∗X twisted by a closed 3-form
H, we have the following:
Example Let π be a twisted Poissonstructure vanishing on a submanifold
X ′ ⊆ X such that

0 ̸= [iX ′H] ∈ H3dR(X ′).Then N(graph(π)) ̸= 0, and hence,
graph(π) has no Dirac complement.

For a Lie algebra g, in the case of the Courantalgebroid given by the double g ⊕ g∗ with brackettwisted by a closed H ∈ ∧3 g∗ and ρ = 0, we find:
Example Let E ≤ g be an ideal suchthat H ∈ ∧3

E0 and the cohomologyclass of the reduction of H to g/E isnonzero. Then N(E ⊕ Ann(E)) ̸= 0,and hence, E ⊕ Ann(E) has no Diraccomplement.
For example, for g4,1 = ⟨e1, e2, e3, e4 | [e2, e4] =
e1, [e3, e4] = e2⟩ and H = α2 ∧ α3 ∧ α4, we havethat ⟨e1⟩+ Ann(⟨e1⟩) has no Dirac complement.


