Abstract. Dirac structures are a geometric object generalizing symplectic and Poisson structures. From a physics viewpoint, they describe mechanical systems with both symmetries and constraints. Their deformation theory tells us what nearby Dirac structures look like and can suggest new invariants. The deformation of a Dirac structure involves choosing a complementary 'almost Dirac' structure, which gives an $L_3[1]$ algebra (a 'Lie algebra up to homotopy') controlling the deformations. When the 'almost Dirac' structure is Dirac, the $L_3[1]$ algebra reduces to the simpler structure of a differential grade Lie algebra.

Goal: In a given Courant algebroid, characterize which Dirac structures admit Dirac complements.

Main result: We give topological and algebraic obstructions to the existence of a Dirac complement.

Obstructions to the existence of a Dirac complement

Tom Ariel (with Dr. Roberto Rubio (UAB) and Prof. Marco Zambon (KUL))

Why Dirac structures?

So... What is a Dirac structure?

A geometric object which generalizes both Poisson and symplectic structures. Formally, it is given by subbundle of $TX \oplus T^*X$ over a manifold X which is: • Lagrangian at every point for the pairing: $\langle V + \alpha, W + \beta \rangle = \alpha(V) + \beta(W)$. • Involutive under the Courant bracket: $[V + \alpha, W + \beta] = [V, W] + L_V\beta - i_W d\alpha$.

How does that generalize Poisson and symplectic structures?

Deforming Dirac structures

A Courant algebroid over a manifold X, briefly, is given by a vector bundle E, along with:

A pairing $\langle \cdot, \cdot \rangle : \Gamma(E) \otimes \Gamma(E) \to C^{\infty}(X)$ **An anchor map** $\rho : E \to TX$ **A bracket** $[\cdot, \cdot] : \Gamma(E) \otimes \Gamma(E) \to \Gamma(E)$

such that the pairing, bracket, and anchor, all satisfy natural compatibility conditions between them, similar to those satisfied by $TX \oplus T^*X$.

Let $L \subseteq E$ be a Dirac structure. Choosing another Lagrangian subbundle M such that $M \oplus L$ allows us to identify small Lagrangian deformations of Lwith sections of $\Gamma(\bigwedge^2 M)$.

The decomposition $E = M \oplus L$ endows $\Gamma(\bigwedge^{\bullet} M)$ with the structure of an $L_3[1]$ algebra. The deformations of L that remain Dirac are given by solutions to the **Maurer-Cartan equation** in that algebra:

A Dirac structure in $TX \oplus T^*X$ also has a representation as a singular foliation E along with a closed 2-form ϵ on the leaves of E. Geometrically, finding a complement is equivalent to finding a transverse singular foliation E' along with a closed 2-form ϵ' on E' such that $i_{E\cap E'}^*(\epsilon - \epsilon')$ is symplectic on the leaves of $E \cap E'$.

A cohomological obstruction

In a given Courant algebroid, for a given Dirac structure *L*, we construct a cohomology class that vanishes whenever *L* admits a **Dirac complement**. This class is calculated through the Nijenhuis tensor of any Lagrangian complement. Explicitly, this is the class of an element in:

$\Gamma(\wedge^{\bullet}L) \ / \ [\ \Gamma(\wedge^{\bullet}L) \ , \ \Gamma(\wedge^{\bullet}L) \]$

which carries a canonical differential. We denote

Through their graphs! The graphs of Poisson or symplectic structures, as subbundles of $TX \oplus T^*X$, are both Dirac structures.

So how are these more flexible than just using Poisson or symplectic structures?

> Well, they have the extra advantage of admitting both pushforwards and pullbacks! For example, in mechanics, this allows us to deal with both symmetries and constraints.

Is there a way to generalize Dirac structures to other settings?

Sure! We can twist the Courant bracket by a closed 3-form *H* giving us twisted Dirac structures, which encapsulate **twisted Poisson** or **twisted presymplectic** geometry. Complexifying, we can also find **generalized complex structures**, or work in the more general setting of a Courant algebroid. $\mathsf{d}_L \omega + \frac{1}{2} [\omega, \omega]_M + \frac{1}{3!} I_3(\omega, \omega, \omega) = 0.$

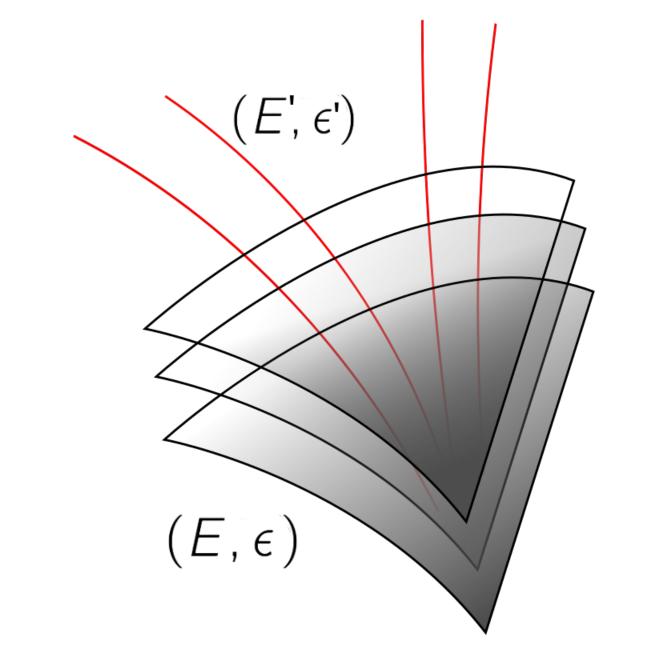
In the case where M is not only Lagrangian but also Dirac, the above $L_3[1]$ algebra structure reduces to a differential graded Lie algebra. Deformations are now governed by the simpler equation:

 $\mathsf{d}_L\omega+\tfrac{1}{2}[\omega,\omega]=0.$

Switching the roles of M and L, we also have the structure of a curved $L_2[1]$ algebra on $\Gamma(\bigwedge^{\bullet} L)$. Finding a **Dirac complement** for L is equivalent to solving the curved Maurer-Cartan equation:

 $N_M + d_M \zeta + \frac{1}{2} [\zeta, \zeta]_L = 0,$

where N_M is the Nijenhuis tensor of M, given by $N_M(m_1, m_2, m_3) = \langle [m_1, m_2], m_3 \rangle$. Note that M is Dirac $\leftrightarrow N_M = 0$.



this class by N(L).

Theorem • The class N(L) is independent of choice of complement M.
• If L has a Dirac complement, N(L) = 0.

In the case of $TX \oplus T^*X$ twisted by a closed 3-form *H*, we have the following:

Example Let π be a twisted Poisson structure vanishing on a submanifold $X' \subseteq X$ such that

 $0 \neq [i_{X'}H] \in H^3_{dR}(X').$

Then $N(graph(\pi)) \neq 0$, and hence, $graph(\pi)$ has no Dirac complement.

For a Lie algebra \mathfrak{g} , in the case of the Courant algebroid given by the double $\mathfrak{g} \oplus \mathfrak{g}^*$ with bracket twisted by a closed $H \in \bigwedge^3 \mathfrak{g}^*$ and $\rho = 0$, we find:

Example Let $E \leq \mathfrak{g}$ be an ideal such that $H \in \bigwedge^3 E^0$ and the cohomology class of the reduction of H to \mathfrak{g}/E is nonzero. Then $N(E \oplus Ann(E)) \neq 0$, and hence, $E \oplus Ann(E)$ has no Dirac complement.

And you say some of these don't have Dirac complements?

Yes, for example, if *H* has a nonzero de Rham cohomology class, the Dirac structure T^*X has no Dirac complement.

Figure 1: Transverse Dirac structures

For example, for $\mathfrak{g}_{4,1} = \langle e_1, e_2, e_3, e_4 | [e_2, e_4] = e_1, [e_3, e_4] = e_2 \rangle$ and $H = \alpha_2 \wedge \alpha_3 \wedge \alpha_4$, we have that $\langle e_1 \rangle + Ann(\langle e_1 \rangle)$ has no Dirac complement.

KU LEUVEN

UAB Universitat Autònoma de Barcelona