Symmetric Poisson structures and where to find them

Filip Moučka (joint work with Roberto Rubio)

Student Colloquium and School on Mathematical Physics, Stará Lesná

August 25, 2025

Recalling Poisson geometry

In mechanics, we assign dynamics to a Hamiltonian function

$$(\star) \qquad \begin{array}{c} \mathcal{C}^{\infty}(M) \to \mathfrak{X}(M) \\ f \mapsto \pi(\mathrm{d}f), \end{array}$$

for a skew-symmetric bivector $\pi \in \mathfrak{X}^2(M)$, which also gives the bracket on $\mathcal{C}^{\infty}(M)$:

$${f,g} := \pi(\mathrm{d}f,\mathrm{d}g).$$

Jacobi identity for { , } gives the definition:

$$\pi \in \mathfrak{X}^2(M)$$
 is a Poisson structure if
$$[\pi,\pi] = 0.$$

Equivalently, the map (\star) is an algebra morphism $(\mathcal{C}^{\infty}(M), \{,\}) \to (\mathfrak{X}(M), [,])$.

Recalling Poisson geometry

Geometrically, a Poisson structure π gives a distribution $\operatorname{im} \pi \subseteq TM$ that integrates to a singular partition of M with symplectic leaves.

$$\pi = z \,\partial_x \wedge \partial_y + x \,\partial_y \wedge \partial_z + y \,\partial_z \wedge \partial_x$$

What geometry is encoded by symmetric bivector fields?

Integrability condition for a symmetric bivector field $\boldsymbol{\vartheta}$

If a symmetric bivector field $\vartheta \in \mathfrak{X}^2_{\operatorname{sym}}(M) := \Gamma(\operatorname{Sym}^2 TM)$ is non-degenerate, $a := \vartheta^{-1}$

is a (pseudo-)Riemannian metric.

A non-degenerate 2-form $\omega \in \Omega^2(M)$ is symplectic if and only if $\pi := \omega^{-1}$ is Poisson.

Following the Poisson geometry approach, every $\vartheta\in\mathfrak{X}^2_{\mathrm{sym}}(M)$ gives

$$\{f,\mathbf{g}\}:=\vartheta(\mathrm{d}f,\mathrm{d}\mathbf{g}), \qquad \qquad \mathrm{grad}:\mathcal{C}^\infty(M)\to\mathfrak{X}(M)$$

$$f\mapsto\vartheta(\mathrm{d}f).$$

Jacobi identity for $\{,\}$ gives that $\vartheta = 0$.

Trying the other two:

$$\operatorname{grad}: (\mathcal{C}^{\infty}(M),\{\,,\}) \to (\mathfrak{X}(M),[\,,\,])$$

$$[\vartheta,\vartheta] = 0 \qquad \qquad \text{is an algebra morphism.}$$
 is a void condition.
$$\Leftrightarrow \ \vartheta = 0.$$

We resort to symmetric Cartan calculus!

exterior derivative d on $\Omega^{\bullet}(M)$	symmetric derivative ∇^s on $\Gamma(\operatorname{Sym}^{\bullet} T^*M)$	
$d\psi = (r+1)\operatorname{skew}(\nabla\psi)$	$\nabla^{s} \varphi = (r+1) \operatorname{sym} (\nabla \varphi)$	
canonical	depending on the choice of $ abla$	

The symmetric bracket:

$$[X,Y]_s := \nabla_X Y + \nabla_Y X.$$

It is actually determined by ∇^s :

$$\iota_{[X,Y]_s} = [[\iota_X, \nabla^s], \iota_Y].$$

exterior derivative d on $\Omega^{ullet}(M)$	symmetric derivative $ abla^s$ on $\Gamma(\operatorname{Sym}^{ullet} T^*M)$
$d\psi = (r+1) \operatorname{skew} (\nabla \psi)$	$\nabla^{s} \varphi = (r+1) \operatorname{sym} (\nabla \varphi)$
canonical	depending on the choice of $ abla$

The symmetric bracket:

$$[X,Y]_s := \nabla_X Y + \nabla_Y X.$$

It is actually determined by $\nabla^s\colon$

$$\iota_{[X,Y]_s} = [[\iota_X, \nabla^s], \iota_Y].$$

 \rightsquigarrow A natural extension to $\mathfrak{X}^{\bullet}_{\text{sym}}(M)$ the symmetric Schouten bracket $[\ ,\]_s$.

Integrability condition for a pair (ϑ,∇)

$$\pi \in \mathfrak{X}^2(M)$$
 is a Poisson structure if $[\pi, \pi] = 0$.

Equivalently, the map
$$(\star)$$
 is an algebra morphism $(\mathcal{C}^{\infty}(M), \{\ ,\ \}) \to (\mathfrak{X}(M), [\ ,\]).$

 $\operatorname{grad}: (\mathcal{C}^{\infty}(M), \{,\}) \to (\mathfrak{X}(M), [,]_s)$

$$[\vartheta,\vartheta]_s=0.$$

is an algebra morphism.

Integrability condition for a pair (ϑ,∇)

$$\pi \in \mathfrak{X}^2(M)$$
 is a Poisson structure if $[\pi, \pi] = 0$.

 (ϑ, ∇) is a symmetric Poisson structure if

$$[\vartheta,\vartheta]_s=0.$$

Equivalently, the map (\star) is an algebra morphism $(\mathcal{C}^{\infty}(M), \{\ ,\ \}) \to (\mathfrak{X}(M), [\ ,\]).$

Equivalently, the map

$$\operatorname{grad}: (\mathcal{C}^{\infty}(M),\{\,,\}) \to (\mathfrak{X}(M),[\,\,,\,]_s)$$
 is an algebra morphism.

Integrability condition for a pair (ϑ,∇)

$$\pi \in \mathfrak{X}^2(M) \text{ is a Poisson} \\ \textbf{structure if } [\pi,\pi] = 0.$$

Equivalently, the map (*) is an algebra morphism $(\mathcal{C}^{\infty}(M),\{\ ,\ \}) \to (\mathfrak{X}(M),[\ ,\]).$

 (ϑ, ∇) is a symmetric Poisson structure if $[\vartheta, \vartheta]_s = 0.$

 (ϑ,∇) is a strong symmetric Poisson structure if the map

$$\operatorname{grad}: (\mathcal{C}^{\infty}(M),\{\,,\}) \to (\mathfrak{X}(M),[\,\,,\,]_s)$$
 is an algebra morphism.

For ϑ is non-degenerate and $g := \vartheta^{-1}$ we have:

$$(\vartheta, \nabla)$$
 is symmetric Poisson

$$(\vartheta, \nabla)$$
 is strong symmetric Poisson

$$\Leftrightarrow$$

$$\nabla^s g = 0,$$

$$\nabla$$
 is the Levi-Civita connection of g ,

i.e., g is a Killing 2-tensor for ∇ .

i.e., the information is all contained in $\vartheta.$

The characteristic distribution, module and metric

The characteristic distribution

The characteristic module

 $\operatorname{im} \vartheta := \{\vartheta(\zeta) \mid \zeta \in T^*M\} \subseteq TM$

 $\mathcal{F}_{\vartheta} := \{\vartheta(\alpha) \,|\, \alpha \in \Omega^1(M)\} \subseteq \mathfrak{X}(M)$

Extra structure at each point $m \in M$: the characteristic metric on $\operatorname{im} \vartheta_m \leq T_m M$ $q_{\vartheta_m}(\vartheta(\zeta), \vartheta(\eta)) := \vartheta(\zeta, \eta).$

Example:
$$\vartheta = y \, \partial_x \otimes \partial_x \in \mathfrak{X}^2_{\operatorname{sym}}(\mathbb{R}^2)$$

$$\operatorname{im} \vartheta_m = \begin{cases} \operatorname{span} \{ \left. \partial_x \right|_m \} & y \neq 0, \\ \{ 0 \} & y = 0 \end{cases}$$

$$\mathcal{F}_{\vartheta} = \mathcal{C}^{\infty}(\mathbb{R}^2) \operatorname{-span}\{y \, \partial_x\}$$

$$g_{\vartheta_m} = \begin{cases} \frac{1}{y} \, \mathrm{d}x|_m \otimes \mathrm{d}x|_m & y \neq 0, \\ 0 & y = 0 \end{cases}$$

Involutive symmetric Poisson structures

 (ϑ, ∇) is symmetric Poisson

 $\Rightarrow \mathcal{F}_{\vartheta}$ is not necessarily Lie involutive, but it is preserved by the symmetric braket

$$[\mathcal{F}_{\vartheta},\mathcal{F}_{\vartheta}]_s\subseteq\mathcal{F}_{\vartheta}.$$

 (ϑ, ∇) is strong symmetric Poisson

 $\Rightarrow \mathcal{F}_{artheta}$ is Lie involutive

$$[\mathcal{F}_{\vartheta},\mathcal{F}_{\vartheta}]\subseteq\mathcal{F}_{\vartheta},$$

 $\Rightarrow \operatorname{im} \vartheta$ integrates to a singular partition.

This motivates an a priori intermediate class

$$\left\{\begin{array}{l} \text{strong symmetric} \\ \text{Poisson structures} \\ \nabla_{\vartheta(\,)}\vartheta = 0 \end{array}\right\} \subseteq \left\{\begin{array}{l} \text{involutive symmetric} \\ \text{Poisson structures} \\ [\mathcal{F}_{\vartheta},\mathcal{F}_{\vartheta}] \subseteq \mathcal{F}_{\vartheta} \end{array}\right\} \subseteq \left\{\begin{array}{l} \text{symmetric} \\ \text{Poisson structures} \\ [\vartheta,\vartheta]_s = 0 \end{array}\right\}.$$

Geometric interpretation: symmetric Poisson structures

Given a connection on M, we call a distribution $\Delta\subseteq TM$ locally geodesically invariant if for every geodesic $\gamma:I\to M$ satisfying $\dot{\gamma}(t_0)\in\Delta_{\gamma(t_0)}$ for some $t_0\in I$, there is a subinterval I' containing t_0 such that $\dot{\gamma}(t)\in\Delta_{\gamma(t)}$ for all $t\in I'$.

Given $\vartheta\in\mathfrak{X}^2_{\operatorname{sym}}(M)$, we call a curve $\gamma:I\to M$ ϑ -admissible if there is a curve $a:I\to T^*M$ such that $\vartheta(a(t))=\dot{\gamma}(t).$

Theorem 1. The characteristic distribution of a symmetric Poisson structure (ϑ, ∇) is locally geodesically invariant.

Moreover, $g_{\vartheta}(\dot{\gamma},\dot{\gamma})$, is constant along ϑ -admissible geodesics.

Geometric interpretation: involutive and strong symmetric Poisson structures

An involutive symmetric Poisson structure (ϑ,∇) gives the singular partition of M into leaves such that every leaf $N\subseteq M$ satisfies

$$\operatorname{im} \vartheta|_{N} = TN.$$

Moreover, every leaf N acquires:

- the leaf connection ∇^N given by the restriction of ∇ .
- the leaf metric g_N given by the metrics g_{ϑ_m} .

Given a connection on M, a submanifold $N\subseteq M$ is **totally geodesic** if for every geodesic $\gamma:I\to M$ satisfying $\dot{\gamma}(t_0)\in T_{\gamma(t_0)}N$ for some $t_0\in I$, there is a subinterval I' containing t_0 such that $\dot{\gamma}(t)\in T_{\gamma(t)}N$ for all $t\in I'$.

Theorem 2. The characteristic partition of an involutive symmetric Poisson structure (ϑ, ∇) is totally geodesic.

Moreover, on any leaf N, (g_N^{-1}, ∇^N) is non-degenerate symmetric Poisson. In addition, if (ϑ, ∇) is strong, ∇^N is the Levi-Civita connection of q_N .

invalution commelies	Paissan Charalinas Fr ~ 1.~	
involutive symmetric Poisson Structures [For, For] = For		_
Strong symmetric Poisson structures 700,10=0		
Parallel symmetric bivector fields Vion=0		1
, ,	****	Non-degenera
	(and I spanis	
	(pseudo-)Riemannian metrics	non-degenerate
		non-degenerate Killing 2-tensors (9-1,7) Psq=0

As autoparallel vector fields

Every $X \in \mathfrak{X}(M)$ gives a symmetric bivector field $X \otimes X$.

$$(X \otimes X, \nabla)$$
 is symmetric Poisson \Leftrightarrow it is strong symmetric Poisson,

$$\Leftrightarrow$$
 X is autoparallel, that is, $\nabla_X X = 0$,

$$\Leftrightarrow$$
 integral curves of X are geodesics.

Example: The punctured plane $M:=\mathbb{R}^2\setminus\{0\}$ admits nowhere vanishing vector fields

$$R := x \,\partial_x + y \,\partial_y, \qquad S := -y \,\partial_x + x \,\partial_y, \qquad H := x \,\partial_x - y \,\partial_y.$$

We can made them autoparallel by choosing the connection:

$$\nabla_{\partial_x} \partial_x = \nabla_{\partial_y} \partial_y := \pm \frac{1}{x_2 + y^2} R, \qquad \nabla_{\partial_x} \partial_y := 0.$$

On a Lie group

A Lie group G carries the natural connection $\dot{\nabla}$ given by its values on $X,Y\in\mathfrak{X}_{\mathsf{L}}(G)$:

$$\dot{\nabla}_X Y = \frac{1}{2} [X, Y].$$

 $(\vartheta,\dot{\nabla})$ is symmetric Poisson for every $\vartheta\in\mathfrak{X}^2_{\mathsf{sym},\mathsf{L}}(G).$

Example: For the Heisenberg group H_3 ,

$$\vartheta = Q \otimes Q + P \otimes P$$

together with $\dot{\nabla}$ is symmetric Poisson that is not involutive as

$$\mathcal{F}_{\vartheta} = \mathcal{C}^{\infty}(H_3)\operatorname{-span}\{Q, P\}$$

and

[Q, P] = I.

Example: For $G = S^3$ seen as unit quaternions.

The vector field X given by right-multiplication by i is left-invariant,

hence $(X \otimes X, \dot{\nabla})$ is strong symmetric Poisson.

The characteristic partition of S^3 is that of $\textit{Hopf fibration }S^3\to S^2$ into great circles.

On a vector space

In classical Poisson geometry,

$$\left\{\begin{array}{c} \text{linear Poisson} \\ \text{structures on } V^* \end{array}\right\} \stackrel{\sim}{\longleftrightarrow} \left\{\begin{array}{c} \text{Lie algebra} \\ \text{structures on } V \end{array}\right\}.$$

$$\vartheta \in \mathfrak{X}^2_{\mathrm{sym}}(V^*) \text{ is called linear if } \quad \{\mathcal{C}^\infty_{\mathrm{lin}}(V^*), \mathcal{C}^\infty_{\mathrm{lin}}(V^*)\} \subseteq \mathcal{C}^\infty_{\mathrm{lin}}(V^*).$$

As $\mathcal{C}^{\infty}_{\text{lin}}(V^*)\cong V$, a linear ϑ is equivalent to a commutative algebra structure on V.

 V^* is an abelian Lie group, $\dot{
abla}$ is usually referred to as the **Euclidean connection** $abla^{\sf Euc}$.

$$\left\{\begin{array}{c} \text{linear symmetric Poisson} \\ \text{structures } (\vartheta, \nabla^{\mathsf{Euc}}) \text{ on } V^* \end{array}\right\} \overset{\sim}{\longleftrightarrow} \left\{\begin{array}{c} \text{Jacobi-Jordan algebra} \\ \text{structures} \cdot \text{ on } V \end{array}\right\}.$$

[Burde-Fialowski '14] A commutative algebra (\mathcal{J},\cdot) is called **Jacobi-Jordan** if

$$u \cdot (v \cdot w) + v \cdot (w \cdot u) + w \cdot (u \cdot v) = 0.$$

In particular, Jacobi-Jordan algebras are Jordan algebras.

On a vector space

In classical Poisson geometry,

$$\left\{\begin{array}{c} \text{linear Poisson} \\ \text{structures on } V^* \end{array}\right\} \stackrel{\sim}{\longleftrightarrow} \left\{\begin{array}{c} \text{Lie algebra} \\ \text{structures on } V \end{array}\right\}.$$

$$\vartheta \in \mathfrak{X}^2_{\mathrm{sym}}(V^*) \text{ is called linear if } \quad \{\mathcal{C}^\infty_{\mathrm{lin}}(V^*), \mathcal{C}^\infty_{\mathrm{lin}}(V^*)\} \subseteq \mathcal{C}^\infty_{\mathrm{lin}}(V^*).$$

As $\mathcal{C}^\infty_{\mathrm{lin}}(V^*)\cong V$, a linear ϑ is equivalent to a commutative algebra structure on V.

 V^* is an abelian Lie group, $\dot{
abla}$ is usually referred to as the **Euclidean connection** $abla^{\sf Euc}$.

$$\left\{\begin{array}{c} \text{linear (strong) symmetric Poisson} \\ \text{structures } (\vartheta, \nabla^{\mathsf{Euc}}) \text{ on } V^* \end{array}\right\} \xleftarrow{\sim} \left\{\begin{array}{c} \text{(associative) Jacobi-Jordan algebra} \\ \text{structures } \cdot \text{ on } V \end{array}\right\}.$$

[Burde-Fialowski '14] A commutative algebra (\mathcal{J},\cdot) is called **Jacobi-Jordan** if

$$u \cdot (v \cdot w) + v \cdot (w \cdot u) + w \cdot (u \cdot v) = 0.$$

In particular, Jacobi-Jordan algebras are Jordan algebras.

[BF '14]: Jacobi-Jordan algebras are associative if $\dim V \leq 4$. \Rightarrow Linear symmetric Poisson structures $(\vartheta, \nabla^{\mathsf{Euc}})$ on V^* are strong if $\dim V \leq 4$.

$\dim V$	ϑ	leaf dim.	leaf metric signatures
2	$y\partial_x\otimes\partial_x$	0,1	(1,0),(0,1)
3	$z\partial_x\otimes\partial_x$	0, 1	(1,0),(0,1)
	$z\left(\partial_x\otimes\partial_x+\partial_y\otimes\partial_y\right)$	0, 2	(2,0),(0,2)
4	$t\partial_x\otimes\partial_x$	0,1	(1,0),(0,1)
	$t\left(\partial_x\otimes\partial_x+\partial_y\otimes\partial_y\right)$	0, 2	(2,0),(0,2)
	$t\partial_x\otimes\partial_x+z\partial_y\otimes\partial_y$	0, 1, 2	(1,0),(0,1),(2,0),(0,2),(1,1)
	$t\partial_x\otimes\partial_x+z\partial_x\odot\partial_y$	0, 1, 2	(1,0),(0,1),(1,1)
	$t\left(\partial_x\otimes\partial_x+\partial_y\odot\partial_z\right)$	0,3	(2,1),(1,2)

A non-strong involutive symmetric Poisson structure

[BF '14]: There is a unique non-associative Jacobi-Jordan algebra for $\dim V=5$. \Rightarrow The unique linear symmetric Poisson structure for $\dim V=5$ and it is non-strong:

$$\vartheta = x_2 \, \partial_{x_1} \otimes \partial_{x_1} + x_5 \, \partial_{x_1} \odot \partial_{x_4} - \frac{1}{2} x_3 \, \partial_{x_1} \odot \partial_{x_5} + x_3 \, \partial_{x_2} \odot \partial_{x_4}.$$

Its characteristic module \mathcal{F}_{ϑ} is generated by

$$X_1 := x_2 \, \partial_{x_1} + x_5 \, \partial_{x_4} - \frac{1}{2} x_3 \, \partial_{x_5},$$
 $X_2 := x_3 \, \partial_{x_4},$ $X_3 := x_5 \, \partial_{x_1} + x_3 \, \partial_{x_2},$ $X_4 := x_3 \, \partial_{x_1}.$

The only non-trivial commutator is $[X_1, X_3] = \frac{1}{2}X_4$, hence it is **involutive!**

Dimensions of the leaves are 0,1,2,4 with the signatures: (1,0),(0,1),(1,1),(2,2).

All of the leaves (except for the 4-dimensional ones) inherit a strong symmetric Poisson structure, that is, ∇^N is the Levi-Civita connection of g_N .

The leaf metric on a 4-dimensional leaf N_c given by $x_3=c$, $c\neq 0$:

$$g_{N_c} = -\frac{2}{c} dx_1 \odot dx_5 + \frac{1}{c} dx_2 \odot dx_4 + \frac{2x_5}{c^2} dx_2 \odot dx_1 - \frac{4x_2}{c^2} dx_5 \otimes dx_5.$$

It just appeared on arXiv this morning:

M., Rubio
Symmetric Poisson geometry,
totally geodesic foliations
and Jacobi-Jordan algebras.
arXiv: 2508.15890

The third part of the story is coming...

Thank you for your attention!