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Recalling Poisson geometry

In mechanics, we assign dynamics to a Hamiltonian function
C®(M) — X(M)
[ m(df),

for a skew-symmetric bivector = € X?(M), which also gives the bracket on C>(M):

{f,g} == m(df,dg).

(*)

Jacobi identity for {, } gives the definition:

7 € ¥*(M) is a Poisson structure if

[m, 7] = 0.

Equivalently, the map (%) is an algebra morphism (C*°(M),{,}) — (X(M), [, ]).

[, ] is the Schouten bracket — a natural extension of the Lie bracket of vector fields.



Recalling Poisson geometry

Geometrically, a Poisson structure 7 gives a distribution im 7 C T'M that integrates to
a singular partition of M with symplectic leaves.

szaz/\ay+$ay/\82+yaz/\az

R?)

What geometry is encoded by symmetric bivector fields?



Integrability condition for a symmetric bivector field 1
If a symmetric bivector field ¥ € X2, (M) := T'(Sym® TM) is non-degenerate,
g:= 9!
is a (pseudo-)Riemannian metric.
A non-degenerate 2-form w € Q?(M) is symplectic if and only if 7 := w™' is Poisson.
Following the Poisson geometry approach, every ¥ € %fym(]W) gives

{f, g} :=v(df,dg), grad : C™° (M) — X(M)
f = 9(df).

Jacobi identity for {, } gives that ¢ = 0.

Trying the other two:

grad : (C™(M),{,}) = (X(M),[,])

[9,9] =0 is an algebra morphism.
is a void condition. < U =0.

We resort to symmetric Cartan calculus!



Sym metric Cartan calculus M., Rubio. Symmetric Cartan calculus, the Patterson-Walker metric
and symmetric cohomology, January 2025. arXiv:2501.12442

exterior derivative d on Q°(M) symmetric derivative V° on I'(Sym® T M)
dy = (r + 1) skew (V) Vo = (r+1)sym (Vo)
canonical depending on the choice of V
The symmetric bracket: It is actually determined by V*:
[X,Y]S =VxY + Vy X. LIX,Y]s = HLX,VSLLY]'

Compare with: [X,Y]:= X oY —Y oX =VxY — Vy X and v[x yv] = [[tx,d]g, tv]e.



Sym metric Cartan calculus M., Rubio. Symmetric Cartan calculus, the Patterson-Walker metric
and symmetric cohomology, January 2025. arXiv:2501.12442

exterior derivative d on Q°(M) symmetric derivative V* on T'(Sym*® 7™ M)
dyp = (r + 1) skew (V) Vi = (r+1)sym (Vo)
canonical depending on the choice of V
The symmetric bracket: It is actually determined by V°:
[X,Y]s :==VxY + VyX. tx,y). = [tx, Vo], v].

~~> A natural extension to X,,,(M)
the symmetric Schouten bracket [, ..

Compare with: [X,Y]:= X oY —Y o X = VxY — Vy X ~> the Schouten bracket [ , ] on X*(M).



Integrability condition for a pair (9, V)

7 € X%(M) is a Poisson
structure if [, 7] = 0.

[9,9]s = 0.

Equivalently, the map (%) is
an algebra morphism

€=, {, }) = (X(M), [, ]).

grad : (C™(M),{,}) = (X(M), [, ]s)

is an algebra morphism.



Integrability condition for a pair (9, V)

7 € X2(M) is a Poisson Equivalently, the map (%) is
an algebra morphism

structure if [7, 7] = 0. (M), {,}) = (X(M),[,]).

(9, V) is a symmetric Equivatently, the map
rotssen structure grad : (€M), .}) — (XM [ ].)

[9,9]s = 0. is an algebra morphism.




Integrability condition for a pair (9, V)

7 € X2(M) is a Poisson Equivalently, the map (%) is
an algebra morphism

structure if [7, 7] = 0. €M), {,}) = EWM),[,].

(9, V) is a strong symmetric Poisson
(9, V) is a symmetric structure if the map
Poisson structure if
grad : (C*(M),{,}) = (X(M), [, ]s)
[9,9]s = 0.

is an algebra morphism.

For ¥ is non-degenerate and g := 9~ we have:

(9, V) is symmetric Poisson (9, V) is strong symmetric Poisson
g =
Vig=0, V is the Levi-Civita connection of g,

i.e., g is a Killing 2-tensor for V. i.e., the information is all contained in 9.




The characteristic distribution, module and metric

The characteristic distribution The characteristic module

imd:={3C)|CeT*M} CTM Fo = {9(a)|a € Q" (M)} C X(M)

Extra structure at each point m € M: the characteristic metric on im ¥, < T,, M

90, (9(C), (n)) := 9(¢, m).-

Example: ¥ = y 0, ® 9z € Xom(R?)

RQ

g, — Jspan{d:l,.} y#0,
{0} y=0

Fo = C>®(R*)-span{y 9, }

Gom =97
0 y=0




Involutive symmetric Poisson structures

(¢, V) is symmetric Poisson

= Fy is not necessarily Lie involutive,

but it is preserved by the symmetric braket

(¢, V) is strong symmetric Poisson

= Fy is Lie involutive

[Fo, Fo] C Fo,
[Fo, Fols © Fo. = im4 integrates to a singular
partition.
This motivates an a priori intermediate class
strong symmetric involutive symmetric symmetric

Poisson structures C Poisson structures

Poisson structures

N
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Geometric interpretation: symmetric Poisson structures

Given a connection on M,

we call a distribution A C T'M locally geodesically invariant

if for every geodesic v : I — M satisfying 4(to) € Ay ,) for some to € 1,
there is a subinterval I’ containing to such that 4(t) € A, forall ¢t € I'.

Given ¥ € X2,,(M),
we call a curve v : I — M ¥-admissible if there is a curve a : I — T* M such that

Ha(t)) = ().

Theorem 1. The characteristic distribution of a symmetric Poisson structure
(9, V) is locally geodesically invariant.

Moreover, gg(7,7), is constant along ¥-admissible geodesics.




Geometric interpretation: involutive and strong symmetric Poisson structures

An involutive symmetric Poisson structure (9, V) gives the singular partition of M into
leaves such that every leaf N C M satisfies

imd|, =TN.
Moreover, every leaf N acquires:
e the leaf connection V' given by the restriction of V.

e the leaf metric gn given by the metrics gy,, -

Given a connection on M,

a submanifold N C M is totally geodesic

if for every geodesic v : I — M satisfying §(to) € Ty (,) N for some to € I,
there is a subinterval I’ containing to such that %(t) € T, )N for all t € I'.

Theorem 2. The characteristic partition of an involutive symmetric Poisson
structure (¢, V) is totally geodesic.

Moreover, on any leaf N, (g;,l,VN) is non-degenerate symmetric Poisson.

In addition, if (99, V) is strong, V¥ is the Levi-Civita connection of gy .




Where to find them?
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As autoparallel vector fields

Every X € X(M) gives a symmetric bivector field X @ X.

(X ® X, V) is symmetric Poisson < it is strong symmetric Poisson,
& X is autoparallel, that is, Vx X =0,

& integral curves of X are geodesics.

Example: The punctured plane M :=R?\ {0} admits nowhere vanishing vector fields
R:=x0, +y0y, S = —y 0, +x0y, H:=x0, —y0y,.
We can made them autoparallel by choosing the connection:

1

Vo,0: = Vo, 0y := :I:x2 e

R, Va, 0y :=0.

N

ZS

7%
S

N2
NS




On a Lie group
A Lie group G carries the natural connection v given by its values on XY € X (G):

VxY = %[X,Y].

(0, V) is symmetric Poisson for every 9 € %fym'L(G).

Example: For the Heisenberg group Hs,
P=QRQ+PRP
together with Vis symmetric Poisson that is not involutive as

Fo = C>(Hs)-span{Q, P} and [Q,P]=1.

Example: For G = S? seen as unit quaternions.

The vector field X given by right-multiplication by ¢ is left-invariant,

hence (X ® X, V) is strong symmetric Poisson.

The characteristic partition of S is that of Hopf fibration S> — S? into great circles.



On a vector space

In classical Poisson geometry,
linear Poisson ~ Lie algebra
* .
structures on V' structures on V

9 € X2m(V™) is called linear if  {C3(V*),Cre(V*)} CCe (V™).
As Ciw(V*) 2V, a linear 9 is equivalent to a commutative algebra structure on V.
V* is an abelian Lie group, V is usually referred to as the Euclidean connection VE*.

linear symmetric Poisson ~ Jacobi-Jordan algebra
structures (¢, VE“) on V* structures - on V ’

[Burde-Fialowski '14] A commutative algebra (J,-) is called Jacobi-Jordan if
u-(v-w)+v-(w-u)+w- (u-v)=0.

In particular, Jacobi-Jordan algebras are Jordan algebras.



On a vector space

In classical Poisson geometry,
linear Poisson ~ Lie algebra
* .
structures on V structures on V

Y € Xom (V™) is called linear if  {Cig (V*),Ciw (V*)} C Cie (V™).
As Ci2 (V™) 2V, a linear ¥ is equivalent to a commutative algebra structure on V.

V™ is an abelian Lie group, Vis usually referred to as the Euclidean connection V.

linear (strong) symmetric Poisson ~ (associative) Jacobi-Jordan algebra
structures (9, V') on V* structures - on V '

[Burde-Fialowski '14] A commutative algebra (7, ) is called Jacobi-Jordan if
u-(v-w)+v-(w-u)+w-(u-v)=0.

In particular, Jacobi-Jordan algebras are Jordan algebras.



[BF "14]: Jacobi-Jordan algebras are associative if dim V' < 4.
= Linear symmetric Poisson structures (9, VE) on V* are strong if dim V < 4.

dimV || 0 | leaf dim. | leaf metric signatures
2 YOz @ O 0,1 (1,0),(0,1)
5 20z ® Oz 0,1 (1,0),(0,1)
2(0x ® Oz + 0y ® 0y) 0,2 (2,0),(0,2)
0, ® On 0,1 (1,0), (0,1)
t(0z ® Ox + 0y ® Oy) 0,2 (2,0),(0,2)
4 t10; ® 0x + 20y @ Oy 0,1,2 (1,0),(0,1),(2,0),(0,2),(1,1)
10: ® 0z +20: © 0y 0,1,2 (1,0),(0,1),(1,1)
t(0r ® 0z + 0y © 02) 0,3 (2,1),(1,2)

. R?




A non-strong involutive symmetric Poisson structure

[BF '14]: There is a unique non-associative Jacobi-Jordan algebra for dim V' = 5.
= The unique linear symmetric Poisson structure for dim V' =5 and it is non-strong:

1
9= T2 811 ®aa:1 + x5 azl @az4 - 5‘7;3 811 @azs + x3 89:2 ®8m4

Its characteristic module Fy is generated by

1
X1 =20z, + x50z, — 55033%7 Xo 1= 23 Ony,
X3 := x5 8951 —+ x3 812, X4 = Igaxl.
The only non-trivial commutator is [X1, X3] = %X4, hence it is involutive!

Dimensions of the leaves are 0, 1,2, 4 with the signatures: (1,0),(0,1),(1,1),(2,2).

All of the leaves (except for the 4-dimensional ones) inherit a strong symmetric
Poisson structure, that is, V' is the Levi-Civita connection of gx.

The leaf metric on a 4-dimensional leaf N, given by z3 = ¢, ¢ # 0:

2 1 2 4
gn, = ——dz1 © dxs + —dxs © dzs + %dwg o dzy — %d% ® dzs.
c c c c
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St rong s gmmekric Poisson  stpuctures Uy, 0'=0
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It just appeared on arXiv this morning:

M., Rubio
Symmetric Poisson geometry,
totally geodesic foliations
and Jacobi-Jordan algebras.
arXiv: 2508.15890

The third part of the story is coming...

Thank you for your attention!



