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Recalling Poisson geometry

In mechanics, we assign dynamics to a Hamiltonian function

C∞(M)→ X(M)

f 7→ π(df),
(⋆)

for a skew-symmetric bivector π ∈ X2(M), which also gives the bracket on C∞(M):

{f, g} := π(df,dg).

Jacobi identity for { , } gives the definition:

π ∈ X2(M) is a Poisson structure if

[π, π] = 0.

Equivalently, the map (⋆) is an algebra morphism (C∞(M), { , })→ (X(M), [ , ]).

[ , ] is the Schouten bracket – a natural extension of the Lie bracket of vector fields.



Recalling Poisson geometry

Geometrically, a Poisson structure π gives a distribution imπ ⊆ TM that integrates to
a singular partition of M with symplectic leaves.

π = z ∂x ∧ ∂y + x ∂y ∧ ∂z + y ∂z ∧ ∂x

What geometry is encoded by symmetric bivector fields?



Integrability condition for a symmetric bivector field ϑ

If a symmetric bivector field ϑ ∈ X2
sym(M) := Γ(Sym2 TM) is non-degenerate,

g := ϑ−1

is a (pseudo-)Riemannian metric.

A non-degenerate 2-form ω ∈ Ω2(M) is symplectic if and only if π := ω−1 is Poisson.

Following the Poisson geometry approach, every ϑ ∈ X2
sym(M) gives

{f, g} := ϑ(df,dg), grad : C∞(M)→ X(M)

f 7→ ϑ(df).

Jacobi identity for { , } gives that ϑ = 0.

Trying the other two:

[ϑ, ϑ] = 0

is a void condition.

grad : (C∞(M), { , })→ (X(M), [ , ])

is an algebra morphism.

⇔ ϑ = 0.

We resort to symmetric Cartan calculus!



Symmetric Cartan calculus M., Rubio. Symmetric Cartan calculus, the Patterson-Walker metric

and symmetric cohomology, January 2025. arXiv:2501.12442

exterior derivative d on Ω•(M) symmetric derivative ∇s on Γ(Sym• T ∗M)

dψ = (r + 1) skew (∇ψ) ∇sφ = (r + 1) sym (∇φ)

canonical depending on the choice of ∇

The symmetric bracket:

[X,Y ]s := ∇XY +∇YX.

It is actually determined by ∇s:

ι[X,Y ]s = [[ιX ,∇s], ιY ].

⇝ A natural extension to X•
sym(M)

the symmetric Schouten bracket [ , ]s.

Compare with: [X,Y ] := X ◦ Y − Y ◦ X = ∇XY − ∇Y X and ι[X,Y ] = [[ιX , d]g, ιY ]g.
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Integrability condition for a pair (ϑ,∇)

π ∈ X2(M) is a Poisson
structure if [π, π] = 0.

Equivalently, the map (⋆) is
an algebra morphism

(C∞(M), { , })→ (X(M), [ , ]).

(ϑ,∇) is a symmetric
Poisson structure if

[ϑ, ϑ]s = 0.

((((((
Equivalently, the map

grad : (C∞(M), { , })→ (X(M), [ , ]s)

is an algebra morphism.

For ϑ is non-degenerate and g := ϑ−1 we have:

(ϑ,∇) is symmetric Poisson

⇔

∇sg = 0,

i.e., g is a Killing 2-tensor for ∇.

(ϑ,∇) is strong symmetric Poisson

⇔

∇ is the Levi-Civita connection of g,

i.e., the information is all contained in ϑ.
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The characteristic distribution, module and metric

The characteristic distribution

imϑ := {ϑ(ζ) | ζ ∈ T ∗M} ⊆ TM

The characteristic module

Fϑ := {ϑ(α) |α ∈ Ω1(M)} ⊆ X(M)

Extra structure at each point m ∈M : the characteristic metric on imϑm ≤ TmM

gϑm(ϑ(ζ), ϑ(η)) := ϑ(ζ, η).

Example: ϑ = y ∂x ⊗ ∂x ∈ X2
sym(R2)

imϑm =

{
span{∂x|m} y ̸= 0,

{0} y = 0

Fϑ = C∞(R2)-span{y ∂x}

gϑm =

{
1
y
dx|m ⊗ dx|m y ̸= 0,

0 y = 0



Involutive symmetric Poisson structures

(ϑ,∇) is symmetric Poisson

⇒ Fϑ is not necessarily Lie involutive,

but it is preserved by the symmetric braket

[Fϑ,Fϑ]s ⊆ Fϑ.

(ϑ,∇) is strong symmetric Poisson

⇒ Fϑ is Lie involutive

[Fϑ,Fϑ] ⊆ Fϑ,

⇒ imϑ integrates to a singular
partition.

This motivates an a priori intermediate class


strong symmetric
Poisson structures

∇ϑ( )ϑ = 0

 ⊆


involutive symmetric
Poisson structures

[Fϑ,Fϑ] ⊆ Fϑ

 ⊆


symmetric
Poisson structures

[ϑ, ϑ]s = 0

 .



Geometric interpretation: symmetric Poisson structures

Given a connection on M ,
we call a distribution ∆ ⊆ TM locally geodesically invariant
if for every geodesic γ : I →M satisfying γ̇(t0) ∈ ∆γ(t0) for some t0 ∈ I,
there is a subinterval I ′ containing t0 such that γ̇(t) ∈ ∆γ(t) for all t ∈ I ′.

Given ϑ ∈ X2
sym(M),

we call a curve γ : I →M ϑ-admissible if there is a curve a : I → T ∗M such that

ϑ(a(t)) = γ̇(t).

Theorem 1. The characteristic distribution of a symmetric Poisson structure
(ϑ,∇) is locally geodesically invariant.

Moreover, gϑ(γ̇, γ̇), is constant along ϑ-admissible geodesics.



Geometric interpretation: involutive and strong symmetric Poisson structures

An involutive symmetric Poisson structure (ϑ,∇) gives the singular partition of M into
leaves such that every leaf N ⊆M satisfies

imϑ|N = TN.

Moreover, every leaf N acquires:

• the leaf connection ∇N given by the restriction of ∇.

• the leaf metric gN given by the metrics gϑm .

Given a connection on M ,
a submanifold N ⊆M is totally geodesic
if for every geodesic γ : I →M satisfying γ̇(t0) ∈ Tγ(t0)N for some t0 ∈ I,
there is a subinterval I ′ containing t0 such that γ̇(t) ∈ Tγ(t)N for all t ∈ I ′.

Theorem 2. The characteristic partition of an involutive symmetric Poisson
structure (ϑ,∇) is totally geodesic.

Moreover, on any leaf N , (g−1
N ,∇N ) is non-degenerate symmetric Poisson.

In addition, if (ϑ,∇) is strong, ∇N is the Levi-Civita connection of gN .



Where to find them?











As autoparallel vector fields

Every X ∈ X(M) gives a symmetric bivector field X ⊗X.

(X ⊗X,∇) is symmetric Poisson ⇔ it is strong symmetric Poisson,

⇔ X is autoparallel, that is, ∇XX = 0,

⇔ integral curves of X are geodesics.

Example: The punctured plane M := R2 \ {0} admits nowhere vanishing vector fields

R := x ∂x + y ∂y, S := −y ∂x + x ∂y, H := x ∂x − y ∂y.

We can made them autoparallel by choosing the connection:

∇∂x∂x = ∇∂y∂y := ± 1

x2 + y2
R, ∇∂x∂y := 0.



On a Lie group

A Lie group G carries the natural connection ∇̇ given by its values on X,Y ∈ XL(G):

∇̇XY =
1

2
[X,Y ].

(ϑ, ∇̇) is symmetric Poisson for every ϑ ∈ X2
sym,L(G).

Example: For the Heisenberg group H3,

ϑ = Q⊗Q+ P ⊗ P

together with ∇̇ is symmetric Poisson that is not involutive as

Fϑ = C∞(H3)-span{Q,P} and [Q,P ] = I.

Example: For G = S3 seen as unit quaternions.

The vector field X given by right-multiplication by i is left-invariant,

hence (X ⊗X, ∇̇) is strong symmetric Poisson.

The characteristic partition of S3 is that of Hopf fibration S3 → S2 into great circles.



On a vector space

In classical Poisson geometry,{
linear Poisson

structures on V ∗

}
∼←→

{
Lie algebra

structures on V

}
.

ϑ ∈ X2
sym(V

∗) is called linear if {C∞lin (V ∗), C∞lin (V ∗)} ⊆ C∞lin (V ∗).

As C∞lin (V ∗) ∼= V , a linear ϑ is equivalent to a commutative algebra structure on V .

V ∗ is an abelian Lie group, ∇̇ is usually referred to as the Euclidean connection ∇Euc.{
linear symmetric Poisson
structures (ϑ,∇Euc) on V ∗

}
∼←→

{
Jacobi-Jordan algebra
structures · on V

}
.

[Burde-Fialowski ’14] A commutative algebra (J , ·) is called Jacobi-Jordan if

u · (v · w) + v · (w · u) + w · (u · v) = 0.

In particular, Jacobi-Jordan algebras are Jordan algebras.
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[BF ’14]: Jacobi-Jordan algebras are associative if dimV ≤ 4.
⇒ Linear symmetric Poisson structures (ϑ,∇Euc) on V ∗ are strong if dimV ≤ 4.

dimV ϑ leaf dim. leaf metric signatures

2 y ∂x ⊗ ∂x 0, 1 (1, 0), (0, 1)

3
z ∂x ⊗ ∂x 0, 1 (1, 0), (0, 1)

z (∂x ⊗ ∂x + ∂y ⊗ ∂y) 0, 2 (2, 0), (0, 2)

4

t ∂x ⊗ ∂x 0, 1 (1, 0), (0, 1)

t (∂x ⊗ ∂x + ∂y ⊗ ∂y) 0, 2 (2, 0), (0, 2)

t ∂x ⊗ ∂x + z ∂y ⊗ ∂y 0, 1, 2 (1, 0), (0, 1), (2, 0), (0, 2), (1, 1)

t ∂x ⊗ ∂x + z ∂x ⊙ ∂y 0, 1, 2 (1, 0), (0, 1), (1, 1)

t (∂x ⊗ ∂x + ∂y ⊙ ∂z) 0, 3 (2, 1), (1, 2)



A non-strong involutive symmetric Poisson structure

[BF ’14]: There is a unique non-associative Jacobi-Jordan algebra for dimV = 5.
⇒ The unique linear symmetric Poisson structure for dimV = 5 and it is non-strong:

ϑ = x2 ∂x1 ⊗ ∂x1 + x5 ∂x1 ⊙ ∂x4 −
1

2
x3 ∂x1 ⊙ ∂x5 + x3 ∂x2 ⊙ ∂x4 .

Its characteristic module Fϑ is generated by

X1 := x2 ∂x1 + x5 ∂x4 −
1

2
x3 ∂x5 , X2 := x3 ∂x4 ,

X3 := x5 ∂x1 + x3 ∂x2 , X4 := x3 ∂x1 .

The only non-trivial commutator is [X1, X3] =
1
2
X4, hence it is involutive!

Dimensions of the leaves are 0, 1, 2, 4 with the signatures: (1, 0), (0, 1), (1, 1), (2, 2).

All of the leaves (except for the 4-dimensional ones) inherit a strong symmetric
Poisson structure, that is, ∇N is the Levi-Civita connection of gN .

The leaf metric on a 4-dimensional leaf Nc given by x3 = c, c ̸= 0:

gNc = −2

c
dx1 ⊙ dx5 +

1

c
dx2 ⊙ dx4 +

2x5
c2

dx2 ⊙ dx1 −
4x2
c2

dx5 ⊗ dx5.





It just appeared on arXiv this morning:

M., Rubio
Symmetric Poisson geometry,
totally geodesic foliations

and Jacobi-Jordan algebras.
arXiv: 2508.15890

The third part of the story is coming...

Thank you for your attention!


