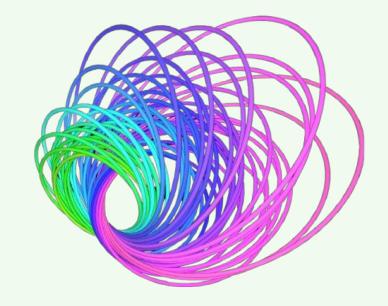
## Gugenheim's A∞ de-Rham theorem and higher holonomies

GENTLE Seminar December 2025

Camilo Arias Abad Departamento de Matemáticas Universidad Nacional de Colombia



## The signature of a path

Given a path  $\gamma:[0,1]\to\mathbb{R}^n$ 

The signature is the formal noncommutative power series

$$S(\gamma) = \sum_{I} \int_{0 \le t_1 \le \dots \le t_k \le 1} dx_{t_1}^{i_1} \wedge \dots \wedge dx_{t_k}^{i_k} e^{i_1} \otimes \dots \otimes e^{i_k}.$$

Goal Explain how Chen's iterated integrals arise in algebraic topology, in relation to differential forms on path spaces higher dimensional holonomy

## The signature as a holonomy

Any vector space V comes with a tautological connection on the free Lie algebra on V:

$$id_V \in Hom(V, V) \simeq V^* \otimes V \subseteq \Omega(V, FreeLie(V))$$

This connection is universal with respect to translation invariant connections on any Lie algebra.

The holonomy of this tautological connection is the signature.

## The coefficients of the signature

The coefficients of the signature are given by an iterated integration of one forms on V.

The iterated iteration produces a function on the path space associated to a sequence of one forms on V.

Goal: Show that this construction that assigns functions on path spaces to sequences of one forms is very tautological and has natural and interesting generalizations

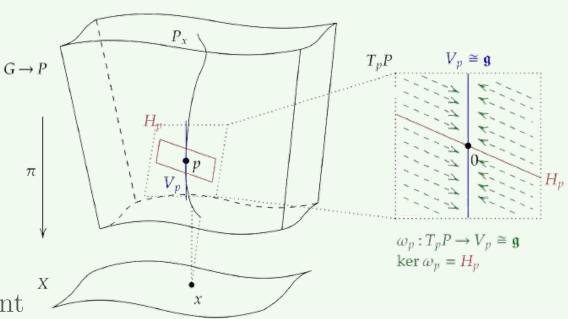
## Geometric description of connections

A connection is a horizontal distribution on the total space of a principal G bundle

$$\omega \in \Omega(P, \mathfrak{g})$$

$$\omega(X_v) = v$$

 $\omega: T^*P \to \mathfrak{g}$  is equivariant



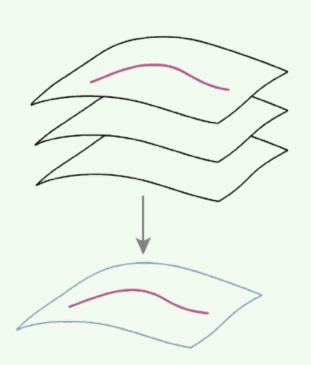
#### Flat connections and holonomies

The Maurer  $d\omega + \frac{1}{2}[\omega,\omega] = 0$  Cartan Equation

The topology of the principal bundle can be changed so that the projection becomes a local diffeomorphism...

Holonomy becomes the lifting property for paths in covering spaces.

Flat connections correspond to representations of the fundamental groupoid



## Higher holonomies

There is a higher dimensional version of this correspondence

Connections are replaced by superconnections

The fundamental groupoid is replaced by the infinity groupoid of a space...

An instance of Lie theory!

#### Idea

Assign holonomies to simplices of all dimensions...

$$[\partial, \longrightarrow] = 0$$

$$[\partial, \triangle] = \wedge - \bigcirc$$

$$[\partial, \, \diamondsuit] = \diamondsuit - \smile + \diamondsuit - \diamondsuit$$

## Chen's iterated integrals

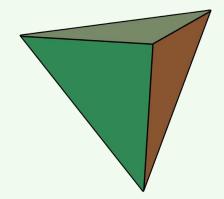
For any manifold M there is a tautological map

eval : 
$$\Delta_k \times PM \mapsto M^k$$

$$((t_1, \dots, t_k), \gamma) \mapsto (\gamma(t_1), \dots, \gamma(t_k))$$

where:

$$\Delta_k = \{(t_1, \dots, t_k) \in \mathbb{R}^k : 0 \le t_1 \le t_2 \dots \le t_k \le 1\}$$



## Chen's iterated integrals

Chen's map is given by the following composition

Where

$$\iota(\omega_1\otimes\cdots\wedge\omega_k)=\pi_1^*(\omega_1)\wedge\cdots\wedge\pi_k^*(\omega_k)$$

## The based loop space of M

Given a point x in M we consider:

$$P_x(M) = \{ \gamma \in PM \mid \gamma(0) = \gamma(1) = x \}$$

This space wants to be a group. It has a natural binary operation given by composition of loops:

$$(\gamma * \theta)(t) = \begin{cases} \theta(2t) & 0 \le t \le \frac{1}{2}, \\ \gamma(2t - 1) & \frac{1}{2} \le t \le 1. \end{cases}$$

## Composition of loops is not quite associative...



But different results are homotopic

## A different version of based loops

This issue is resolved by Moore's version of the loop space

$$\tilde{P}_x(M) = \{ (\gamma, t) \mid \gamma : [0, t] \to M, \gamma(0) = \gamma(t) = x, t \ge 0 \}$$

The Moore loop space of M is a topological monoid.

This monoid structure gives the space of singular chains special algebraic structure

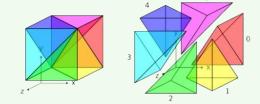
## Singular chains on groups

The group structure on G gives the space of singular chains the structure of an algebra with product given by the composition:

$$C_{\bullet}(G) \otimes C_{\bullet}(G) \xrightarrow{\mathsf{EZ}} C_{\bullet}(G \times G) \xrightarrow{\mu_{*}} C_{\bullet}(G)$$

where the Eilenberg-Zilber map is defined by:

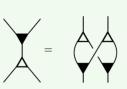
$$\mathsf{EZ}(\sigma \otimes \nu) = \sum_{\chi \in \mathfrak{S}_{r,s}} (-1)^{|\chi|} (\sigma \times \nu) \circ \chi_*,$$



and

$$\chi_* : \Delta_{r+s} \to \Delta_r \times \Delta_s, \quad \chi_*(t_1, \dots, t_{r+s}) = ((t_{\chi(1)}, \dots, t_{\chi(r)}), (t_{\chi(r+1)}, \dots, t_{\chi(r+s)})).$$

These operations give C(G) the structure of a dg-Hopf algebra



#### The Bar construction

Let A be a commutative differential graded algebra.

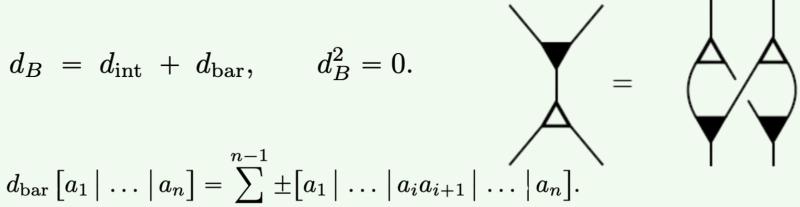
The Bar construction of A, is the differential graded Hopf algebra:

$$B(A) = \bigoplus_{k} A^{\otimes k}$$

With product and coproduct given by:

$$[a_{1} \mid \dots \mid a_{p}] \diamond [b_{1} \mid \dots \mid b_{q}] = \sum_{\sigma \in S(p,q)} (-1)^{\varepsilon(\sigma;a,b)} [c_{\sigma^{-1}(1)} \mid c_{\sigma^{-1}(2)} \mid \dots \mid c_{\sigma^{-1}(p+q)}]$$
$$\Delta[a_{1} \mid a_{2} \mid \dots \mid a_{n}] = \sum_{i=0}^{n} [a_{1} \mid \dots \mid a_{i}] \otimes [a_{i+1} \mid \dots \mid a_{n}]$$

#### The differentials on the Bar construction

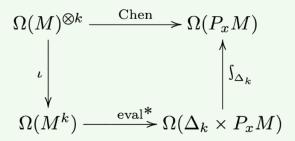


$$d_B = d_{\text{int}} + d_{\text{bar}}, \qquad d_B^2 = 0.$$

$$d_{ ext{int}} \left[ a_1 \, \middle| \, \ldots \, \middle| \, a_n \right] = \sum_{i=1}^n \pm \left[ a_1 \, \middle| \, \ldots \, \middle| \, d_A(a_i) \, \middle| \, \ldots \, \middle| \, a_n \right].$$

#### Chen's de Rham theorem

Let M be a simply connected manifold. The map



gives a homomorphism of differential graded algebras which induces an isomorphism of Hopf algebras in cohomology.

#### Adams' Cobar construction

Let C be a differential graded coalgebra. The Cobar construction of C, is the free graded associative algebra on C:

$$F(C) = \bigoplus_{k} C^{\otimes k}$$

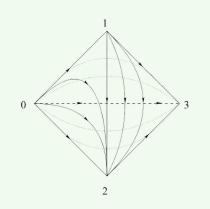
with differential given by  $d = d_{\rm int} + d_{\rm ext}$ 

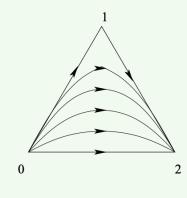
$$d_{\text{ext}}(c_1 \otimes \cdots \otimes c_n) = \sum_{i=1}^n \pm \sum_{(c_i)} c_1 \otimes \cdots \otimes c_i' \otimes c_i'' \otimes \cdots \otimes c_n$$
$$d_{\text{int}}(c_1 \otimes \cdots \otimes c_n) = \sum_{i=1}^n \pm c_1 \otimes \cdots \otimes (dc_i) \otimes \cdots \otimes c_n$$

#### Adams' Construction

Adams constructed a sequence of maps

$$\theta_n: I^{n-1} \to P\Delta_n$$





which naturally defines a linear map:

Adams: 
$$C(M) \mapsto C_{\square}(PM)$$
  
$$\sigma \mapsto P\sigma \circ \theta_n$$

#### Adams' theorem

The linear map

Adams: 
$$C(M) \mapsto C_{\square}(P_x M)$$

Extends to an algebra map

Adams:  $F(C(M)) \mapsto C_{\square}(P_xM)$ 

Which induces an isomorphism of Hopf algebras in cohomology

#### De Rham's Theorem

Let M be a smooth manifold. The map

where

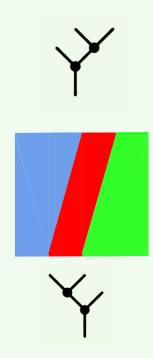
$$\varphi: \Omega(M) \to C^{\bullet}(M)$$

$$\eta \mapsto \varphi(\eta)$$

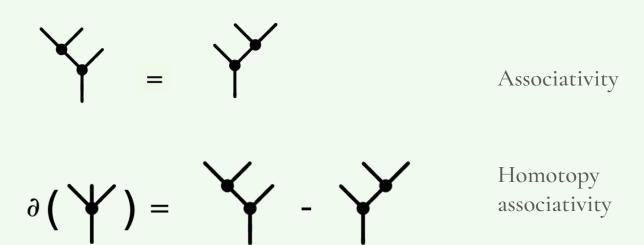
$$\varphi(\eta)(\sigma) := \int_{\Delta} \sigma^{*}(\eta)$$

Induces an isomorphism of algebras in cohomology

## Homotopy associativity



## Homotopy associativity

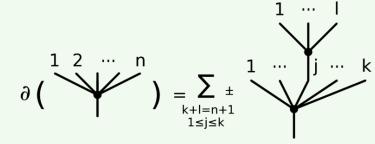


## Homotopy associative algebras

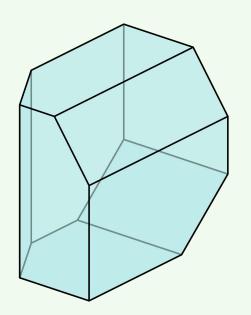
A homotopy associative algebra is a vector space A together with operations:

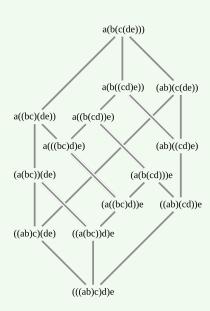
$$m_n: A^{\otimes m} \to A$$

That satisfies



#### Stasheff Associahedron





## Gugenheim's version of de Rham's theorem

The map 
$$G: B(\Omega(M)) \to C^{\bullet}(M)$$

Given by the composition

$$G = Adams^* \circ \varphi \circ Chen$$

Is an equivalence of homotopy associative algebras.

$$\begin{array}{c|c}
\Omega(M)^{\otimes k} & \xrightarrow{\text{Chen}} & \Omega(PM) \\
\downarrow & & & & & & \\
\downarrow & & & & & & \\
& & & & & & \\
\Omega(M^k) & \xrightarrow{\text{eval}^*} & \Omega(\Delta_k \times PM)
\end{array}$$

Adams: 
$$C(M) \mapsto C_{\square}(PM)$$

 $\varphi:\Omega(P_xM)\mapsto C^{\bullet}_{\sqcap}(P_xM)$ 

## A machine that produces holonomies....

Consider a connection

$$\omega \in \Omega(M, \mathfrak{g}) \subseteq \Omega(M, U(\mathfrak{g}))$$

By tensoring Gugenheim's map with the enveloping algebra one obtains a map:

$$G \otimes \mathrm{id}_{\mathrm{U}(\mathfrak{g})} : B(\Omega(M)) \otimes U(\mathfrak{g}) \to C^{\bullet}(M) \otimes U(\mathfrak{g})$$

## Push forward Maurer-Cartan elements....

$$G \otimes \mathrm{id}_{\mathrm{U}(\mathfrak{g})} : B(\Omega(M)) \otimes U(\mathfrak{g}) \to C^{\bullet}(M) \otimes U(\mathfrak{g})$$

This is an A-infinity map.

By pushing forward solutions to the Maurer-Cartan equation, one recovers the holonomy.

This applies to higher dimensional situations as well....

For instance one can take the dgla of endomorphisms of a chain complex...

## Higher local systems...

Assign holonomies to simplices of all dimensions...

$$[\partial, \longrightarrow] = 0$$

$$[\partial, \triangle] = \wedge - \bigcirc$$

$$[\partial, \, \bigcirc] = \bigcirc - - - + \bigcirc - \triangle$$

These are the equations for a representation (up to homotopy) of the infinity groupoid.

## Lie theory

Consider a Lie algebroid  $\pi:A o M$ 

The infinity groupoid of A is the simplicial set whose space of k-simplices is

$$(\Pi_{\infty}(A))_k := \operatorname{Hom}_{\mathsf{DGCA}}(\Omega(A), \Omega(T\Delta_k))$$

Using the same explicit formulas as before, it becomes possible to integrate representations up to homotopy of Lie algebroids.

## Higher Riemann-Hilbert Correspondence

The following categories are A-infinity equivalent (Block-Smith, Arias-Schaetz, Holstein, Igusa...)

| Point of view         | Local systems                                             | Higher local systems              |
|-----------------------|-----------------------------------------------------------|-----------------------------------|
| Differential geometry | Flat connections                                          | Flat superconnections             |
| Topology              | Reps of fundamental group                                 | Reps of infinity groupoid         |
| Homotopy theory       | Modules over the zero-th homology of the based loop space | Modules over chains on loop space |

## Integrating representations up to homotopy...

Arias Abad - Schaetz

**Theorem.** Let  $\pi: A \to M$  be a Lie algebroid. There exists an  $A_{\infty}$ -functor:

$$\mathcal{I}: \operatorname{Rep}_{\infty}(A) \to \operatorname{Rep}_{\infty}(\pi_{\infty}(A))$$

which is constructed by computing higher holonomies.

## The story

- 1. Adams Algebraic model for the homology of the loop space
- 2. Chen Algebraic model for the cohomology of the loop space
- 3=1+2 Gugenheim Homotopy version of de Rham theorem
- 4. Stasheff Homotopy associativity
- 5. Igusa, Block-Smith, Arias-Schaetz Gugenheim's map is a machine to produce (higher dimensional) holonomies
- 6. Arias, Arias-Quintero-Pineda: Higher local systems on classifying spaces, Chern-Weil theory and the Cartan Relations...
- 7. ....

## A very incomplete list of references...

Adams J F 1956 On the cobar construction, Proc Natl Acad Sci USA 42: 409-412

Chen K-T 1973 Iterated integrals & loop-space homology, Ann Math 97: 217-246

Gugenheim V K A M 1977 On Chen's iterated integrals, III J Math 21: 703-715

Chen K-T 1977 Iterated path integrals, Bull Amer Math Soc 83: 831-879

Getzler E, Jones J D S & Petrack S 1991 Differential forms on loop spaces, Topology 30: 339-371

Igusa K 2009 Iterated integrals of superconnections, arXiv:0912.0249

Igusa K 2011 Twisting cochains & higher torsion, J Homotopy Relat Struct 6: 213-238

Block J & Smith A M 2014 Higher Riemann-Hilbert correspondence, Adv Math 252: 382-405

Arias Abad C & Schäetz F 2013 A∞ de Rham theorem & integration of reps, IMRN 2013(16): 3790-3855

**Medina-Mardones A M** & **Rivera M** 2024 Adams' cobar construction as a monoidal E∞-coalgebra model, *Forum Math Sigma* 12:e3.

# Thank you for your attention!

