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Srńı

January 19, 2026



Recalling Courant algebroids

The generalized tangent bundle TM := TM ⊕ T ∗M is naturally equipped with

• the canonical symmetric form

• the projection

• the Dorfman brakcet

⟨X + α, Y + β⟩+ := α(Y ) + β(X),

prTM : TM → TM ,

[X + α, Y + β] := [X,Y ]Lie + LXβ − ιY dα.

Properties of this structure motivate the definition [Liu, Weinstein, Xu 1997]:

A Courant algebroid over M is a tuple (E, ⟨ , ⟩, ρ, [ , ]) consisting of

• a vector bundle E→M ,

• a non-degenerate symmetric form ⟨ , ⟩ ∈ Γ(Sym2 E∗), (the pairing)

• a vector bundle morphism ρ : E→ TM over idM , (the anchor)

• an R-bilinear map [ , ] : Γ(E)× Γ(E)→ Γ(E). (the bracket)

satisfying, for a, b, c ∈ Γ(E) and ρ∗ := ⟨ , ⟩−1 ◦ ρt : T ∗M → E, the following:

(Ca1) [a, a] = ρ∗d⟨a, a⟩,
(Ca2) ρ(a)⟨b, c⟩ = ⟨[a, b], c⟩+ ⟨b, [a, c]⟩,
(Ca3) [a, [b, c]] = [[a, b], c] + [b, [a, c]].



Transitive Courant algebroids

A Courant algebroid is called transitive
if ρ is surjective.

⇒ ρ∗ : T ∗M → im ρ∗

is an isomorphism.

Every transitive Courant algebroid fits into the exact sequence:

0 ker ρ E TM 0
ρ ⇒ E ∼= TM ⊕ ker ρ.

As every Courant algebroid satisfies ρ ◦ ρ∗ = 0, we get another exact sequence:

0 im ρ∗ ker ρ
ker ρ

im ρ∗
0

⇒ E ∼= TM ⊕ G.

[Chen, Stiénon, Xu 2013]: There is a choice of such vector bundle isomorphism that
transports the Courant algebroid structure from E to TM ⊕ G such that

• the anchor ρ : TM ⊕ G → TM is the projection.

⇒ Every transitive Courant algebroid over M is isomorphic to a Courant algebroid
on a vector bundle of the form E = TM ⊕ E, for some bundle pr: E →M .
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Courant algebroid lifts

Given a Courant algebroid on E = TM ⊕ E and a vector bundle connection ∇ on E,

TE = H∇ ⊕ V ∼= pr∗TM ⊕ pr∗E = pr∗E.

Using the pull-back section map, we get the injective C∞(M)-module morphism

ϕ : Γ(E) −→ X(E)

X + φ 7−→ Xh + φv

such that imϕ locally generates X(E).

Courant algebroid structure (E, ⟨ , ⟩, ρ, [ , ]) induces

• the (pseudo-)Riemannian metric g∇ on E

• the map ρ∇ : imϕ→ X(E)

• the map [ , ]∇ : imϕ× imϕ→ imϕ

g∇(ϕa, ϕb) := pr∗⟨a, b⟩,
ρ∇(ϕa) := ϕρ(a) = ρ(a)h,

[ϕa, ϕb]∇ := ϕ[a, b].

The maps ρ∇ and [ , ]∇ admit unique extensions to an anchor and a bracket on TE by

• requiring ρ∇ : X(E)→ X(E) to be C∞(E)-linear,

• requiring [ , ]∇ : X(E)× X(E)→ X(E) to satisfy

[V1, fV2]∇ = . . . , [fV1, V2]∇ = . . .

Is (TE, g∇, ρ∇, [ , ]∇) a Courant algebroid?



Is (TE, g∇, ρ∇, [ , ]∇) a Courant algebroid?

Theorem. Let (E = TM ⊕E, ⟨ , ⟩, ρ, [ , ]) be a Courant algebroid over M and
∇ a vector bundle connection on pr: E → M . The tuple (TE, g∇, ρ∇, [ , ]∇)
over E satisfies, for V1, V2, V3 ∈ X(E), the following:

(Ca1) [V1, V1]∇ = ρ∗∇dg∇(V1, V1),

(Ca2) ρ∇(V1)g∇(V2, V3) = g∇([V1, V2]∇, V3) + g∇(V2, [V1, V3]∇),

(Ca3) the Jacobi identity is fails in general.

■ However, for a, b ∈ Γ(E), we have that

ρ∇([ϕa, ϕb]∇)− [ρ∇(ϕa), ρ∇(ϕb)]Lie = R∇(ρ(a), ρ(b))
υ,

where R∇ ∈ Ω2(M,EndE) is the curvature of ∇.

■ Moreover, (TE, g∇, ρ∇, [ , ]∇) becomes a Courant algebroid if and only if

R∇(ρ(a), ρ(b)) = 0.

If E ̸= 0, the tuple (TE, g∇, ρ∇, [ , ]∇) is always non-transitive.

The vertical lift of the field of endomorphisms A ∈ Γ(EndE) ⇝ Aυ ∈ X(E).



Examples of Courant algebroid lifts

The lift of a transitive Courant algebroid (regarded as TM ⊕ G) by a connection ∇ on
E = T ∗M ⊕ G is a Courant algebroid if and only if ∇ is flat.

Example 1. The Courant algebroid (TM, ⟨ , ⟩+,prTM , [ , ]) lifts to a Courant
algebroid on T (T ∗M) by flat affine connections on M . In this case,

g∇ is the Patterson-Walker metric [P., W. 1952]

g∇|T∗U = dpi ⊙ dxi − pk(pr∗Γk
ij) dx

i ⊙ dxj .

The Bn-Courant algebroid is (TM ⊕ (M × R), ⟨ , ⟩,prTM , [ , ]), where

• ⟨X + α+ f, Y + β + g⟩+ := α(Y ) + β(X) + 2fg
• [X + α+ f, Y + β + g] := [X,Y ]Lie + (LXβ − ιY dα+ 2fdg) + (Xg− Y f)

⇝ The odd Patterson-Walker metric on T ∗M ⊕ (M × R).

Example 2. For an almost complex structure J and a torsion-free connection ∇,

∇J

X(α+ f) := ∇Xα+Xf + α(JX)

is a connection on T ∗M⊕(M×R), which is flat if and only if (J,∇) is a special
complex complex structure, that is, ∇ is flat and d∇J = 0.



Courant algebroid lift of a non-transitive Courant algebroid

[Liu, Weinstein, Xu 1997]: A pair of Lie algebroids (A, ρA, [ , ]A) and
(A∗, ρA∗ , [ , ]A∗) is said to be a Lie bialgebroid if

dA∗ [φ,ψ]A = [dA∗φ,ψ]A + [φ, dA∗ψ]A.

■ There is a natural Courant algebroid on the double of a Lie bialgebroud A⊕A∗.

In particular, by choosing ρA∗ = 0 and [ , ]A∗ = 0, every Lie algebroid (A, ρA, [ , ]A)
induces the Courant algebroid (A⊕A∗, ⟨ , ⟩+, ρA ◦ prA, [ , ]).

Poisson
structure
π on M

⇝ Lie algebroid on T ∗M ,
anchor: π : T ∗M → TM

⇝
Courant algebroid
on TM ⊕ T ∗M ,
anchor: π ◦ prT∗M

Example 3. The Courant algebroid on TM induced by a Poisson structure π
lifts to a Courant algebroid by an affine connection ∇ if and only if ∇ is flat on
Hamiltonian vector fields, that is,

R∇(π(α), π(β)) = 0

⇒ Courant algebroid lifts are not restricted to the transitive case and flat connections.



Relation to Courant algebroid actions

[Li-Bland, Meinrenken 2009]: Let (E, ⟨ , ⟩, ρ, [ , ]) be a Courant algebroid over M .
A Courant algebroid action on a manifold M ′ is a pair (Ψ, ϱ) consisting of
Ψ: M ′ →M and an R-linear map ϱ : Γ(E)→ X(M ′) such that

Ψ∗qϱ(a) = ρ(a)Ψ(q), ϱ(fa) = (Ψ∗f)ϱ(a), [ϱ(a), ϱ(b)]Lie = ϱ([a, b]).

■ The stabilizer of the action at a point q ∈M ′ is the kernel of the map

ϱq : EΨ(q) → TqM
′

a 7→ ϱ(a)q,

where a is an arbitrary section of E such that aΨ(q) = a.

■ A Courant algebroid action with coisotropic stabilizers naturally induces a Courant
algebroid on the pull-back bundle Ψ∗E→M ′.

Courant algebroid lifts provide large class of exampels of Courant algebroid actions:

Theorem. Let (E = TM ⊕E, ⟨ , ⟩, ρ, [ , ]) be a Courant algebroid over M and
∇ a vector bundle connection on pr: E → M such that R∇(ρ(a), ρ(b)) = 0.
Then (pr, ρ∇ ◦ϕ) is a Courant algebroid action on E with Lagrangian stabilizers.



What if R∇(ρ(a), ρ(b)) ̸= 0?
Given a tuple (E, ⟨ , ⟩, ρ, [ , ]) over M , we define the map F : Γ(E)×Γ(E)→ X(M) by

F (a, b) := ρ([a, b])− [ρ(a), ρ(b)].

A curved Courant algebroid over M is a tuple (E, ⟨ , ⟩, ρ, [ , ]) satisfying
(Ca1) [a, a] = ρ∗d⟨a, a⟩,
(Ca2) ρ(a)⟨b, c⟩ = ⟨[a, b], c⟩+ ⟨b, [a, c]⟩,

and moreover,

(⋆) F ∈ Γ(∧2E∗ ⊗ TM) such that F (a, b) = 0 if a ∈ ker ρ.

■ We call F the curvature of the curved Courant algebroid.

⇒ The Courant algebroid lift by ∇ is a curved Courant algebroid, whose curvature is

F (ϕa, ϕb) = R∇(ρ(a), ρ(b))
υ.

Every curved Courant algebroid still satisfies

• ρ ◦ ρ∗ = 0,

• [a, fb] = (ρ(a)f)b+ f [a, b],

• [fa, b] = −(ρ(b)f)a+ f [a, b] + 2⟨a, b⟩ρ∗df .



Exact curved Courant algebroids

[Ševera 1998]: Every exact (i.e. transitive such that ker ρ = im ρ∗) Courant algebroid
over M is isomorphic to (TM, ⟨ , ⟩+,prTM , [ , ]H) for some H ∈ Ω3

cl(M), where

[X + α, Y + β]H = [X,Y ]Lie + LXβ − ιXdα+ ιY ιXH.

■ Moreover, H3
dR(M)

∼←→
{

exact Courant algebroids over M
}/
∼.

Step 1. Curved exterior derivative

The exterior derivative si fully characterized by the formula

dφ = (k + 1) skew(∇φ),

where φ ∈ Ωk(M) and ∇ is an arbitrary torsion-free connection on M .

dropping the
torsion-freeness

⇝
operator on Ω•(M)
depending only
on the torsion T of ∇

⇝ the curved exterior
derivative =: dT

For an arbitrary T ∈ Ω2(M,TM), we still have dT ∈ gDer1(Ω•(M)) and
(dT f)(X) = Xf , but dT ◦ dT = 0 ⇔ T = 0. In fact,

Ω2(M,TM)
∼←→

{
D ∈ gDer1(Ω•(M)) such that (Df)(X) = Xf

}
.



Step 2. Curved Cartan calculus

curved Lie derivative

LT

X := [ιX ,d
T ]g

curved bracket

[X,Y ]T := [X,Y ]Lie + T (X,Y ) = ∇XY −∇YX

Every T ∈ Ω2(M,TM) makes (End(Ω•(M)), [ , ]g) a curved differential graded Lie
algebra with the differential [dT , ]g and the curvature R := 1

2
[dT ,dT ]g = dT ◦ dT .

[ιX , ιY ]g = 0, [ιX ,d
T ]g = LT

X , [dT , LT

X ]g = [R, ιX ]g,

[dT ,dT ]g = 2R, [LT

X , ιY ]g = ι[X,Y ]T , [LT

X , L
T

Y ]g = L[X,Y ]T + [[ιX ,R]g, ιY ]g.

Theorem. Every exact curved Courant algebroid over M is isomorphic to
(TM, ⟨ , ⟩+,prTM , [ , ]

T
H) for some T ∈ Ω2(M,TM) and H ∈ Ω3(M), where

[X + α, Y + β]TH = [X,Y ]T + LT

Xβ − ιXdTα+ ιY ιXH.

■ Moreover,⊔
T∈Ω2(M,TM)

Ω3(M)

imdT

∼←→
{

exact curved Courant algebroids over M
}/
∼ .
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TM ⊕ E

M

E E

TE ∼=∇ pr∗(TM ⊕ E) TE ∼=∇′ pr∗(TM ⊕ E)

Thank you for your attention!


