

Courant algebroid lifts and curved Courant algebroids

Filip Moučka
(joint with Roberto Rubio)

46th Winter School Geometry and Physics
Srní

January 19, 2026

Recalling Courant algebroids

The generalized tangent bundle $\mathbb{T}M := TM \oplus T^*M$ is naturally equipped with

- the canonical symmetric form $\langle X + \alpha, Y + \beta \rangle_+ := \alpha(Y) + \beta(X)$,
- the projection $\text{pr}_{TM}: \mathbb{T}M \rightarrow TM$,
- the Dorfman bracket $[X + \alpha, Y + \beta] := [X, Y]_{\text{Lie}} + L_X \beta - \iota_Y d\alpha$.

Properties of this structure motivate the definition [Liu, Weinstein, Xu 1997]:

A **Courant algebroid** over M is a tuple $(\mathbb{E}, \langle \cdot, \cdot \rangle, \rho, [\cdot, \cdot])$ consisting of

- a vector bundle $\mathbb{E} \rightarrow M$,
- a non-degenerate symmetric form $\langle \cdot, \cdot \rangle \in \Gamma(\text{Sym}^2 \mathbb{E}^*)$, (the **pairing**)
- a vector bundle morphism $\rho: \mathbb{E} \rightarrow TM$ over id_M , (the **anchor**)
- an \mathbb{R} -bilinear map $[\cdot, \cdot]: \Gamma(\mathbb{E}) \times \Gamma(\mathbb{E}) \rightarrow \Gamma(\mathbb{E})$. (the **bracket**)

satisfying, for $a, b, c \in \Gamma(\mathbb{E})$ and $\rho^* := \langle \cdot, \cdot \rangle^{-1} \circ \rho^t: T^*M \rightarrow \mathbb{E}$, the following:

$$(\text{Ca1}) \quad [a, a] = \rho^* d\langle a, a \rangle,$$

$$(\text{Ca2}) \quad \rho(a) \langle b, c \rangle = \langle [a, b], c \rangle + \langle b, [a, c] \rangle,$$

$$(\text{Ca3}) \quad [a, [b, c]] = [[a, b], c] + [b, [a, c]].$$

Transitive Courant algebroids

A Courant algebroid is called **transitive** if ρ is surjective.

Every **transitive** Courant algebroid fits into the exact sequence:

$$0 \longrightarrow \ker \rho \hookrightarrow \mathbb{E} \xrightarrow{\rho} TM \longrightarrow 0 \quad \Rightarrow \quad \mathbb{E} \cong TM \oplus \ker \rho.$$

As every Courant algebroid satisfies $\rho \circ \rho^* = 0$, we get another exact sequence:

$$0 \longrightarrow \text{im } \rho^* \hookrightarrow \ker \rho \longrightarrow \frac{\ker \rho}{\text{im } \rho^*} \longrightarrow 0$$

Transitive Courant algebroids

A Courant algebroid is called **transitive** if ρ is surjective.

$\rho^* : T^*M \rightarrow \text{im } \rho^*$
is an **isomorphism**.

Every **transitive** Courant algebroid fits into the exact sequence:

$$0 \longrightarrow \ker \rho \hookrightarrow \mathbb{E} \xrightarrow{\rho} TM \longrightarrow 0 \quad \Rightarrow \quad \mathbb{E} \cong TM \oplus \ker \rho.$$

As every Courant algebroid satisfies $\rho \circ \rho^* = 0$, we get another exact sequence:

$$0 \longrightarrow T^*M \xrightarrow{\rho^*} \ker \rho \longrightarrow \underbrace{\frac{\ker \rho}{\text{im } \rho^*}}_{=: \mathcal{G}} \longrightarrow 0 \quad \Rightarrow \quad \mathbb{E} \cong TM \oplus \mathcal{G}.$$

[Chen, Stiénon, Xu 2013]: There is a choice of such vector bundle isomorphism that transports the **Courant algebroid structure** from \mathbb{E} to $TM \oplus \mathcal{G}$ such that

- the anchor $\rho : TM \oplus \mathcal{G} \rightarrow TM$ is the **projection**.

\Rightarrow Every **transitive Courant algebroid** over M is isomorphic to a Courant algebroid on a vector bundle of the form $\mathbb{E} = TM \oplus E$, for some bundle $\text{pr} : E \rightarrow M$.

Courant algebroid lifts

Given a Courant algebroid on $\mathbb{E} = TM \oplus E$ and a vector bundle connection ∇ on E ,

$$TE = \mathcal{H}_\nabla \oplus \mathcal{V} \cong \text{pr}^* TM \oplus \text{pr}^* E = \text{pr}^* \mathbb{E}.$$

Using the pull-back section map, we get the injective $\mathcal{C}^\infty(M)$ -module morphism

$$\begin{aligned}\phi: \Gamma(\mathbb{E}) &\longrightarrow \mathfrak{X}(E) \\ X + \varphi &\longmapsto X^h + \varphi^v\end{aligned}$$

such that $\text{im } \phi$ locally generates $\mathfrak{X}(E)$.

Courant algebroid structure $(\mathbb{E}, \langle \cdot, \cdot \rangle, \rho, [\cdot, \cdot])$ induces

- the (pseudo-)Riemannian metric g_∇ on E $g_\nabla(\phi a, \phi b) := \text{pr}^* \langle a, b \rangle,$
- the map $\rho_\nabla: \text{im } \phi \rightarrow \mathfrak{X}(E)$ $\rho_\nabla(\phi a) := \phi \rho(a) = \rho(a)^h,$
- the map $[\cdot, \cdot]_\nabla: \text{im } \phi \times \text{im } \phi \rightarrow \text{im } \phi$ $[\phi a, \phi b]_\nabla := \phi[a, b].$

The maps ρ_∇ and $[\cdot, \cdot]_\nabla$ admit unique extensions to an anchor and a bracket on TE by

- requiring $\rho_\nabla: \mathfrak{X}(E) \rightarrow \mathfrak{X}(E)$ to be $\mathcal{C}^\infty(E)$ -linear,
- requiring $[\cdot, \cdot]_\nabla: \mathfrak{X}(E) \times \mathfrak{X}(E) \rightarrow \mathfrak{X}(E)$ to satisfy

$$[V_1, fV_2]_\nabla = \dots, \quad [fV_1, V_2]_\nabla = \dots$$

Is $(TE, g_\nabla, \rho_\nabla, [\cdot, \cdot]_\nabla)$ a Courant algebroid?

Is $(TE, g_\nabla, \rho_\nabla, [,]_\nabla)$ a Courant algebroid?

Theorem. Let $(\mathbb{E} = TM \oplus E, \langle , \rangle, \rho, [,])$ be a Courant algebroid over M and ∇ a vector bundle connection on $\text{pr}: E \rightarrow M$. The tuple $(TE, g_\nabla, \rho_\nabla, [,]_\nabla)$ over E satisfies, for $V_1, V_2, V_3 \in \mathfrak{X}(E)$, the following:

(Ca1) $[V_1, V_1]_\nabla = \rho_\nabla^* \text{d}g_\nabla(V_1, V_1),$

(Ca2) $\rho_\nabla(V_1)g_\nabla(V_2, V_3) = g_\nabla([V_1, V_2]_\nabla, V_3) + g_\nabla(V_2, [V_1, V_3]_\nabla),$

(Ca3) the Jacobi identity is **fails** in general.

■ However, for $a, b \in \Gamma(\mathbb{E})$, we have that

$$\rho_\nabla([\phi a, \phi b]_\nabla) - [\rho_\nabla(\phi a), \rho_\nabla(\phi b)]_{\text{Lie}} = R_\nabla(\rho(a), \rho(b))^v,$$

where $R_\nabla \in \Omega^2(M, \text{End}E)$ is the **curvature** of ∇ .

■ Moreover, $(TE, g_\nabla, \rho_\nabla, [,]_\nabla)$ becomes a **Courant algebroid** if and only if

$$R_\nabla(\rho(a), \rho(b)) = 0.$$

If $E \neq 0$, the tuple $(TE, g_\nabla, \rho_\nabla, [,]_\nabla)$ is always **non-transitive**.

The vertical lift of the field of endomorphisms $A \in \Gamma(\text{End}E) \rightsquigarrow A^v \in \mathfrak{X}(E)$.

Examples of Courant algebroid lifts

The lift of a **transitive Courant algebroid** (regarded as $\mathbb{T}M \oplus \mathcal{G}$) by a connection ∇ on $E = T^*M \oplus \mathcal{G}$ is a Courant algebroid if and only if ∇ is flat.

Example 1. The Courant algebroid $(\mathbb{T}M, \langle \cdot, \cdot \rangle_+, \text{pr}_{TM}, [\cdot, \cdot])$ lifts to a Courant algebroid on $T(T^*M)$ by **flat affine connections** on M . In this case,

g_∇ is the **Patterson-Walker metric** [P., W. 1952]

$$g_\nabla|_{T^*U} = dp_i \odot dx^i - p_k (\text{pr}^* \Gamma_{ij}^k) dx^i \odot dx^j.$$

The B_n -Courant algebroid is $(\mathbb{T}M \oplus (M \times \mathbb{R}), \langle \cdot, \cdot \rangle, \text{pr}_{TM}, [\cdot, \cdot])$, where

- $\langle X + \alpha + f, Y + \beta + g \rangle_+ := \alpha(Y) + \beta(X) + 2fg$
- $[X + \alpha + f, Y + \beta + g] := [X, Y]_{\text{Lie}} + (L_X \beta - \iota_Y d\alpha + 2f dg) + (Xg - Yf)$

~ The **odd Patterson-Walker metric** on $T^*M \oplus (M \times \mathbb{R})$.

Example 2. For an **almost complex structure** J and a **torsion-free connection** ∇ ,

$$\nabla_X^J(\alpha + f) := \nabla_X \alpha + Xf + \alpha(JX)$$

is a connection on $T^*M \oplus (M \times \mathbb{R})$, which is flat if and only if (J, ∇) is a **special complex complex structure**, that is, ∇ is flat and $d_\nabla J = 0$.

Courant algebroid lift of a non-transitive Courant algebroid

[Liu, Weinstein, Xu 1997]: A pair of Lie algebroids $(A, \rho_A, [,]_A)$ and $(A^*, \rho_{A^*}, [,]_{A^*})$ is said to be a **Lie bialgebroid** if

$$d_{A^*}[\varphi, \psi]_A = [d_{A^*}\varphi, \psi]_A + [\varphi, d_{A^*}\psi]_A.$$

- There is a natural **Courant algebroid** on the double of a Lie bialgebroid $A \oplus A^*$.

In particular, by choosing $\rho_{A^*} = 0$ and $[,]_{A^*} = 0$, every Lie algebroid $(A, \rho_A, [,]_A)$ induces the Courant algebroid $(A \oplus A^*, \langle , \rangle_+, \rho_A \circ \text{pr}_A, [,])$.

<p>Poisson structure π on M</p>	\rightsquigarrow	<p>Lie algebroid on T^*M, anchor: $\pi: T^*M \rightarrow TM$</p>	\rightsquigarrow	<p>Courant algebroid on $TM \oplus T^*M$, anchor: $\pi \circ \text{pr}_{T^*M}$</p>
---	--------------------	--	--------------------	--

Example 3. The Courant algebroid on TM induced by a Poisson structure π lifts to a Courant algebroid by an affine connection ∇ if and only if ∇ is flat on **Hamiltonian vector fields**, that is,

$$R_\nabla(\pi(\alpha), \pi(\beta)) = 0$$

⇒ Courant algebroid lifts are not restricted to the transitive case and flat connections.

Relation to Courant algebroid actions

[Li-Bland, Meinrenken 2009]: Let $(\mathbb{E}, \langle \cdot, \cdot \rangle, \rho, [\cdot, \cdot])$ be a Courant algebroid over M . A **Courant algebroid action on a manifold M'** is a pair (Ψ, ϱ) consisting of $\Psi: M' \rightarrow M$ and an \mathbb{R} -linear map $\varrho: \Gamma(\mathbb{E}) \rightarrow \mathfrak{X}(M')$ such that

$$\Psi_{*q}\varrho(a) = \rho(a)_{\Psi(q)}, \quad \varrho(fa) = (\Psi^*f)\varrho(a), \quad [\varrho(a), \varrho(b)]_{\text{Lie}} = \varrho([a, b]).$$

■ The **stabilizer** of the action at a point $q \in M'$ is the kernel of the map

$$\begin{aligned}\varrho_q: \mathbb{E}_{\Psi(q)} &\rightarrow T_q M' \\ a &\mapsto \varrho(a)_q,\end{aligned}$$

where a is an arbitrary section of \mathbb{E} such that $a_{\Psi(q)} = a$.

■ A Courant algebroid action with **coisotropic stabilizers** naturally induces a Courant algebroid on the pull-back bundle $\Psi^*\mathbb{E} \rightarrow M'$.

Courant algebroid lifts provide large class of examples of Courant algebroid actions:

Theorem. Let $(\mathbb{E} = TM \oplus E, \langle \cdot, \cdot \rangle, \rho, [\cdot, \cdot])$ be a Courant algebroid over M and ∇ a vector bundle connection on $\text{pr}: E \rightarrow M$ such that $R_{\nabla}(\rho(a), \rho(b)) = 0$. Then $(\text{pr}, \rho_{\nabla} \circ \phi)$ is a **Courant algebroid action on E** with **Lagrangian stabilizers**.

What if $R_\nabla(\rho(a), \rho(b)) \neq 0$?

Given a tuple $(\mathbb{E}, \langle \ , \ \rangle, \rho, [\ , \])$ over M , we define the map $F: \Gamma(\mathbb{E}) \times \Gamma(\mathbb{E}) \rightarrow \mathfrak{X}(M)$ by

$$F(a, b) := \rho([a, b]) - [\rho(a), \rho(b)].$$

A **curved Courant algebroid** over M is a tuple $(\mathbb{E}, \langle \ , \ \rangle, \rho, [\ , \])$ satisfying

$$(\text{Ca1}) \quad [a, a] = \rho^* d\langle a, a \rangle,$$

$$(\text{Ca2}) \quad \rho(a)\langle b, c \rangle = \langle [a, b], c \rangle + \langle b, [a, c] \rangle,$$

and moreover,

$$(\star) \quad F \in \Gamma(\wedge^2 \mathbb{E}^* \otimes TM) \text{ such that } F(a, b) = 0 \text{ if } a \in \ker \rho.$$

■ We call F the **curvature** of the curved Courant algebroid.

⇒ The **Courant algebroid lift** by ∇ is a **curved Courant algebroid**, whose curvature is

$$F(\phi a, \phi b) = R_\nabla(\rho(a), \rho(b))^\vee.$$

Every curved Courant algebroid still satisfies

- $\rho \circ \rho^* = 0$,
- $[a, fb] = (\rho(a)f)b + f[a, b]$,
- $[fa, b] = -(\rho(b)f)a + f[a, b] + 2\langle a, b \rangle \rho^* df$.

Exact curved Courant algebroids

[Ševera 1998]: Every **exact** (i.e. transitive such that $\ker \rho = \text{im } \rho^*$) Courant algebroid over M is **isomorphic** to $(\mathbb{T}M, \langle \cdot, \cdot \rangle_+, \text{pr}_{TM}, [\cdot, \cdot]_H)$ for some $H \in \Omega_{\text{cl}}^3(M)$, where

$$[X + \alpha, Y + \beta]_H = [X, Y]_{\text{Lie}} + L_X \beta - \iota_X d\alpha + \iota_Y \iota_X H.$$

■ Moreover, $H_{\text{dR}}^3(M) \xrightarrow{\sim} \{ \text{ exact Courant algebroids over } M \} / \sim$.

Step 1. Curved exterior derivative

The **exterior derivative** is fully characterized by the formula

$$d\varphi = (k+1) \text{skew}(\nabla\varphi),$$

where $\varphi \in \Omega^k(M)$ and ∇ is an arbitrary **torsion-free** connection on M .

dropping the torsion-freeness \rightsquigarrow operator on $\Omega^\bullet(M)$ depending **only** on the **torsion T** of ∇ \rightsquigarrow the **curved exterior derivative** $=: d^T$

For an arbitrary $T \in \Omega^2(M, TM)$, we still have $d^T \in \text{gDer}^1(\Omega^\bullet(M))$ and $(d^T f)(X) = Xf$, but $d^T \circ d^T = 0 \Leftrightarrow T = 0$. In fact,

$$\Omega^2(M, TM) \xrightarrow{\sim} \{ D \in \text{gDer}^1(\Omega^\bullet(M)) \text{ such that } (Df)(X) = Xf \}.$$

Step 2. Curved Cartan calculus

curved Lie derivative

$$L_X^T := [\iota_X, d^T]_g$$

curved bracket

$$[X, Y]^T := [X, Y]_{\text{Lie}} + T(X, Y) = \nabla_X Y - \nabla_Y X$$

Every $T \in \Omega^2(M, TM)$ makes $(\text{End}(\Omega^\bullet(M)), [\ ,]_g)$ a curved differential graded Lie algebra with the differential $[d^T,]_g$ and the curvature $\mathcal{R} := \frac{1}{2}[d^T, d^T]_g = d^T \circ d^T$.

$$\begin{aligned} [\iota_X, \iota_Y]_g &= 0, & [\iota_X, d^T]_g &= L_X^T, & [d^T, L_X^T]_g &= [\mathcal{R}, \iota_X]_g, \\ [d^T, d^T]_g &= 2\mathcal{R}, & [L_X^T, \iota_Y]_g &= \iota_{[X, Y]^T}, & [L_X^T, L_Y^T]_g &= L_{[X, Y]^T} + [[\iota_X, \mathcal{R}]_g, \iota_Y]_g. \end{aligned}$$

Theorem. Every exact curved Courant algebroid over M is isomorphic to $(\mathbb{T}M, \langle \ , \ \rangle_+, \text{pr}_{TM}, [\ ,]_H^T)$ for some $T \in \Omega^2(M, TM)$ and $H \in \Omega^3(M)$, where

$$[X + \alpha, Y + \beta]_H^T = [X, Y]^T + L_X^T \beta - \iota_X d^T \alpha + \iota_Y \iota_X H.$$

■ Moreover,

$$\bigsqcup_{T \in \Omega^2(M, TM)} \frac{\Omega^3(M)}{\text{im } d^T} \xleftrightarrow{\sim} \{ \text{ exact curved Courant algebroids over } M \} / \sim.$$

M., Rubio

Courant algebroid lifts and curved Courant algebroids.

arXiv:2511.04743, 28 pages, November 2025.

$$\begin{array}{ccc} TE \cong_{\nabla} \text{pr}^*(TM \oplus E) & & TE \cong_{\nabla'} \text{pr}^*(TM \oplus E) \\ \downarrow & \searrow & \downarrow \\ E & TM \oplus E & E \\ \downarrow & \downarrow & \downarrow \\ M & & M \end{array}$$

Thank you for your attention!