

Moduli spaces of spacefilling branes in symplectic 4-manifolds

Marco Zambon

joint work with Charlotte Kirchhoff-Lukat

Symplectic manifolds

Let M be a smooth manifold.

Definition

A **symplectic form** is $\omega \in \Omega^2(M)$ such that

- ω is closed: $d\omega = 0$
- ω is non-degenerate: the following bundle map is injective

$$TM \rightarrow T^*M, v \mapsto \iota_v \omega$$

Examples

- Any orientable surface
- $(\mathbb{R}^{2n}, \omega)$ where $\omega = \sum_{i=1}^n dx_i \wedge dy_i$
- $\mathbb{T}^{2n} = \mathbb{R}^{2n}/\mathbb{Z}^{2n}$
- \mathbb{CP}^n

Notation

Given any 2-form σ , we denote by the same symbol the bundle map $TM \rightarrow T^*M$.

Spacefilling branes

Definition

A **spacefilling brane** structure on (M, ω) is $F \in \Omega_{closed}^2(M)$ such that $I := \omega^{-1} \circ F$ satisfies

$$I^2 = -1.$$

Lemma

There is a bijection between

- Spacefilling brane structures F
- Complex structures I s.t. $\omega(I \cdot, \cdot)$ is **skew**
- Complex structures I and $F \in \Omega^2(M)$ such that $F + i\omega$ is **holomorphic symplectic** w.r.t. I

$$F \quad \leftrightarrow \quad I := \omega^{-1} \circ F \quad \leftrightarrow \quad F + i\omega$$

Definition

On a complex manifold, a **holomorphic symplectic form** is $F' + i\omega' \in \Omega_{closed}^{2,0}(M, \mathbb{C})$, so that F' (or ω') is non-degenerate.

Examples of spacefilling branes

Example

Let $M = \mathbb{C}^2$ (or $M = \mathbb{T}^4$), with complex coordinates $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$. Take

$$\begin{aligned}\omega &:= \text{Im}(dz_1 \wedge dz_2) \\ F &:= \text{Re}(dz_1 \wedge dz_2)\end{aligned}$$

Example

The $K3$ manifold is

$$M := \{z_0^4 + z_1^4 + z_2^4 + z_3^4 = 0\} \subset \mathbb{CP}^3.$$

It is a compact, simply connected, 4-dimensional smooth manifold.

Every complex structure on M admits a holomorphic symplectic form $F + i\omega$.

Remarks on branes

Remark

Branes arose in the study of the A-model [Kapustin-Orlov 2001]

Remark

Branes are natural in terms of the generalized geometry [Gualtieri 2003].

A **generalized submanifold** of M is (Y, F) where

- Y is a submanifold
- $F \in \Omega_{closed}^2(Y)$.

Its **generalized tangent bundle** sits in $TM \oplus T^*M$:

$$\tau_F Y = \{(X, \xi) : X \in TY, \xi|_{TY} = \iota_X F\}.$$

Let $J: TM \oplus T^*M \rightarrow TM \oplus T^*M$ be a **generalized complex structure**.

A **brane** is a generalized submanifold (Y, F) such that

$$J(\tau_F Y) = \tau_F Y.$$

Notice: ω symplectic form \rightsquigarrow generalized complex structure

$$\begin{pmatrix} 0 & -\omega^{-1} \\ \omega & 0 \end{pmatrix}.$$

Main result

Let $M = K3$ manifold or $M = \mathbb{T}^4$, with any symplectic form ω admitting a spacefilling brane. Let

-

$$\mathcal{M}_\omega := \{\text{Spacefilling branes}\}/\text{Symp}(M, \omega)_*$$

where $\text{Symp}(M, \omega)_*$ is the symplectomorphisms inducing $Id_{H^\bullet(M, \mathbb{R})}$.

-

$$Q_{[\omega]} := \{[F'] \in H^2(M, \mathbb{R}) : [F'] \wedge [\omega] = 0 \text{ and } [F'] \wedge [F'] = [\omega] \wedge [\omega]\},$$

a codimension two submanifold of $H^2(M, \mathbb{R})$.

Theorem (KIRCHHOFF-LUKAT, Z.)

- \mathcal{M}_ω is a smooth manifold (possibly non-Hausdorff)
- This map is a local diffeomorphism:

$$\begin{aligned} \mathcal{M}_\omega &\rightarrow Q_{[\omega]} \\ F' \text{ mod } \dots &\mapsto [F']. \end{aligned}$$

Main result (cont.)

Corollary

\mathcal{M}_ω is smooth, non-compact,

- of dimension 20 if $M = K3$ manifold,
- of dimension 4 if $M = \mathbb{T}^4$.

Complex 4-manifolds

Lemma

Let M be an oriented 4-manifold and $\Omega \in \Omega^2(M, \mathbb{C})$.

Ω is holomorphic symplectic w.r.t. some complex structure iff

HS1 $\Omega \wedge \bar{\Omega} > 0$ everywhere on M ,

HS2 $\Omega \wedge \Omega = 0$,

HS3 $d\Omega = 0$.

The complex structure is recovered by

$$T^{0,1}M := \{X \in T_{\mathbb{C}}M \mid i_X \Omega = 0\}.$$

Proposition

Let M^4 be compact, admitting a complex structure and a holomorphic symplectic form. There is a bijection:

$$\{\text{Complex structures}\} \xleftrightarrow{1:1} \left\{ \begin{array}{l} \text{Lines } \mathbb{C}\Omega \subset \Omega^2(M, \mathbb{C}) \\ \text{satisfying HS1-HS3} \end{array} \right\}$$

The local Torelli theorem

Let M^4 compact, admitting a complex structure and a holomorphic symplectic form. Let

$$\mathcal{Q} := \mathbb{P}\{A \in H^2(M, \mathbb{C}) : A \wedge \bar{A} > 0, A \wedge A = 0\},$$

a complex submanifold of $\mathbb{P}(H^2(M, \mathbb{C}))$.

The period map is

$$\begin{aligned}\mathcal{P} : \{\text{Complex structures}\} / \text{Diff}_*(M) &\rightarrow \mathcal{Q}, \\ I' \text{ mod } \dots &\mapsto \mathbb{C}[\Omega']\end{aligned}$$

where Ω' is a holomorphic symplectic form w.r.t. I' .

The local Torelli theorem (cont)

Again: the **period map** is

$$\begin{aligned}\mathcal{P}: \{\text{Complex structures}\} / \text{Diff}_*(M) &\rightarrow \mathcal{Q}, \\ I' \bmod \dots &\mapsto \mathbb{C}[\Omega']\end{aligned}$$

Theorem (Local Torelli)

Let M^4 be compact, admitting a Kähler complex structure I and a holomorphic symplectic structure Ω .

\mathcal{P} yields a **bijection** between

- small deformations of the complex structure I , up to $\text{Diff}_*(M)$
- small deformations of the complex line $\mathbb{C}[\Omega]$ in \mathcal{Q} .

Consequence:

The domain of \mathcal{P} is a **smooth manifold** (non-Hausdorff), so that \mathcal{P} is a **local diffeomorphism**.

Remark:

Necessarily $M = K3$ manifold or $M = \mathbb{T}^4$.

Smoothness of the restricted period map

Let (M^4, ω) be compact symplectic admitting a spacefilling brane whose complex structure I is Kähler.

Get a well-defined **restricted period map**:

$$\mathcal{P}_\omega: \left\{ \begin{array}{l} \text{Complex structures } I' \\ \text{s.t. } \omega \circ I' \text{ is skew} \end{array} \right\} / \text{Diff}_*(M) \rightarrow \{\mathbb{C}[\Omega'] \in \mathcal{Q} \text{ s.t. } \text{Im}[\Omega'] = [\omega]\},$$
$$I' \text{ mod } \dots \mapsto \mathbb{C}[\omega \circ I' + i\omega].$$

Proposition (KIRCHHOFF-LUKAT, Z.)

\mathcal{P}_ω yields a **bijection** between:

- small deformations I' of the complex structure I s.t. $\omega \circ I'$ is skew, up to $\text{Diff}_*(M)$*
- small deformations $\mathbb{C}[\Omega']$ of the complex line $\mathbb{C}[\Omega]$ in \mathcal{Q} s.t. $\text{Im}[\Omega'] = [\omega]$.*

The codomain of \mathcal{P}_ω is submanifold of \mathcal{Q} .

Consequence:

The domain of \mathcal{P}_ω is a **submanifold** of the domain of \mathcal{P} , thus smooth.
 \mathcal{P}_ω is a **local diffeomorphism**.

Back to the moduli space of spacefilling branes

The **restricted period map** \mathcal{P}_ω corresponds to the map of the main result:

$$\frac{\left\{ \begin{array}{l} \text{Complex structures } I' \\ \text{s.t. } \omega \circ I' \text{ is skew} \end{array} \right\}}{\text{Diff}_*(M)} \xrightarrow{\mathcal{P}_\omega} \{ \mathbb{C}[\Omega'] \in \mathcal{Q} \text{ s.t. } \text{Im}[\Omega'] = [\omega] \}$$

||

||

$$\mathcal{M}_\omega = \frac{\{ \text{Spacefilling branes} \}}{\text{Symp}(M, \omega)_*} \xrightarrow{\quad} Q_{[\omega]}.$$

- The left map is the bijection $[I'] \mapsto [\omega \circ I']$
- The right map is the diffeomorphism $\mathbb{C}[\Omega'] \mapsto \text{Re}[\Omega']$
(recall: $[\Omega'] \in H^2(M, \mathbb{C})$)

References

- M. Gualtieri
Generalized complex geometry
Ph.D. Thesis, 2003
- D. Huybrechts
Geometries on $K3$ surfaces and their symmetries
Notes of a Colloquium talk given in Berlin and Kyoto, around 2002
- A. Kapustin, D. Orlov
Remarks on A-branes, mirror symmetry, and the Fukaya category
J. Geom. Phys. 48, pages 84-99, 2003
- C. Kirchhoff-Lukat, M. Zambon
Moduli spaces of spacefilling branes in symplectic 4-manifolds
Math. Z. 311, 2025

Thank you for your attention