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Sir Ronald Ross

We introduce and analyze

a basic transmission model for

a directly transmitted infec-

tious disease. The model con-

sists of a system of three cou-

pled non-linear ordinary dif-

ferential equations which does

not possess an explicit for-

mula solution. However, sim-

ple tools from calculus allow us to extract a great

deal of information about the solutions. Along the

way we illustrate how this simple model helps to

lay a theoretical foundation for public health in-

terventions and how several cornerstones of public

health required such a model to illuminate.



1 Introduction

“As a matter of fact, all epidemiology, con-
cerned as it is with the variation of disease
from time to time or from place to place,
must be considered mathematically, how-
ever many variables as implicated, if it is
to be considered scientifically at all.”

Sir Ronald Ross, MD

We introduce and analyze the most basic trans-

mission model for a directly transmitted infec-

tious disease caused by bacteria, viruses, or fungi.

Direct transmission occurs through individual-to-

individual contact: through a sneeze or cough,

through skin-skin contact, or through exchange of

body fluids. Examples in the American media this

week are the H7N9 flu, whooping cough, mumps,

tuberculosis, and MERS-CoV.



The SIR (susceptible-infected-removed) model,

developed by Ronald Ross1, William Hamer, and

others in the early twentieth century [4], consists

of a system of three coupled non-linear ordinary

differential equations, which does not possess an

explicit formula solution. However, simple tools

from calculus allow us to extract a great deal of

information about the solutions. Along the way

we illustrate how this simple model helps to lay

a theoretical foundation for public health interven-

tions and how several cornerstones of public health

required a similar model to discover.

The SIR disease transmission model is derived

assuming several strong assumptions. There are

hundreds of papers (and some books) where the

authors extend this basic model in many directions

by relaxing some assumptions. The mathematical

analysis quickly becomes significantly more sophis-



ticated and in this article we focus on one of the

simplest models.

We begin with a population that can consist of

humans (e.g., a school, hospital, or city), animals

(e.g., a pig farm, bat colony, or deer in a forest), or

plants (e.g., spruce forest, sod farm, or wheat field).

We then partition the population into three groups

or compartments: susceptible individuals, infected

individuals, and removed individuals. We denote

the sizes of these subpopulations at time t by S(t),

I(t), and R(t). There are many assumptions be-

hind the model, including a large and closed popu-

lation, the outbreak is short lived; no natural births

or natural deaths occur, the infection has zero la-

tent period (an individual becomes infectious as

soon as they become infected), recovering from in-

fection confers lifetime immunity, and mass-action

mixing of individuals. Mass action mixing assumes



that the rate of encounter between susceptible and

infected individuals is proportional to the product

of the population sizes. Doubling the size of either

population results in twice as many new infections

per unit time. This requires that the members of

both populations are homogeneously distributed in

space and thus do not mix mostly in any smaller

subgroups. Intuitively, every person will encounter

every other person per unit time with equal prob-

ability. But keep in mind that the SIR model is

deterministic and there are no probabilities2.

Is the mass action mixing assumption reason-

able? Most humans have contacts with only a small

fraction of individuals in their community, and are

more likely to have contacts with family members,

neighbors, and classmates. Children typically have

many more contacts than seniors. A common and

pragmatic view is that one should begin model-



ing with the simplest model and latter add more

complexity, if required. The next step is some-

times to use multiple classes of susceptible and in-

fected individuals and assume well mixing between

these sub-classes with different rates. Models with

well-mixing can serve as null models against the

influence of more detailed mechanisms. The well-

mixing hypothesis also allows the use of ordinary

differential equations (ODEs) instead of partial dif-

ferential equations or agent based models, which

can be substantially more difficult to parametrize,

simulate, and analyze.

2 Methods

2.1 The SIR Model

The SIR model is the following system of quadratic

ODEs:



dS

dt
= −β S I (1)

dI

dt
= β S I − ν I (2)

dR

dt
= ν I, (3)

where the disease transmission rate β > 0 and the

recovery rate ν > 0 (or in other words, the duration

of infection D = 1/ν).

The bi-linear incidence term β S I for the num-

ber of new infected individuals per unit time cor-

responds to homogeneous mixing of the infected

and susceptible classes. The total population size

should remain constant, and this easily follows

from the SIR system: that the sum of the left hand

sides of the three equations is the derivative of the

total population size and the sum of the right hand

sides is zero. We denote the total population size

by N . Since R(t) = N − S(t) − I(t), the system



can be reduced to a system of two ODEs: (1) and

(2).

Suppose that each infected individual has κ

contacts (each sufficient for transmission) per unit

time and κ is independent of the population size.

Then κS/N of these contacts are with susceptible

individuals. If the fraction τ of adequate contacts

result in transmission, then each infected individ-

ual infects κ τ S/N susceptible individuals per unit

time. Thus β = b/N where b = κ τ . The parame-

ter τ is called the transmissibility of the infectious

disease.

2.2 Analysis of the SIR Model

2.2.1 Long term limits exist

Since the right hand side of (1) is negative and

the right hand side of (3) is positive, this implies

that dS/dt ≤ 0 and dR/dt ≥ 0. Since 0 ≤ S(t) ≤



S(0) ≤ N and 0 ≤ R(0) ≤ R(t) ≤ N , this im-

plies that the limits S(∞) = limt→∞ S(t), R(∞) =

limt→∞R(t), and thus I(∞) = limt→∞ I(t) =

N − S(∞)−R(∞) exist.

2.2.2 The disease always dies out

It is also easy to prove that the disease always dies

out, I(∞) = 0 for all initial conditions, without

having a formula for I(t). If not, (3) implies that

for t sufficiently large, dR/dt > νI(∞)/2 > 0, and

this implies that R(∞) =∞, a contradiction.

2.2.3 Epidemic threshold theorem

We define the effective reproductive number Re =

(S(0)/N) b/ν and the basic reproductive number

R0 = b/ν. If the entire population is initially sus-

ceptible, i.e., S(0) = N − 1, I(0) = 1, R(0) = 0,

and large (recall this is a model assumption), then



Re = ((N − 1)/N) b/ν is approximately equal to

R0. Henceforth, to beautify formulas involving R0,

we will assume that the quantity (N−1)/N is equal

to 1.

We now show that Re is the threshold value

or tipping point that determines whether an infec-

tious disease will quickly die out or whether it will

invade the population and cause an epidemic.

Theorem 2.1. 1. If Re ≤ 1, then I(t) de-

creases monotonically to zero as t→∞.

2. If Re > 1, then I(t) starts increasing, reaches

its maximum, and then decreases to zero as

t → ∞. We call this scenario of increasing

numbers of infected individuals an epidemic.

It follows that an infection can invade and cause

an epidemic in an entirely susceptible population

if R0 > 1 or b > ν.



Proof. Equation (2) and the discussion in Section

2.2.1 imply that dI/dt = (β S − ν) I ≤ (β S(0) −
ν) I = ν (Re − 1) I ≤ 0 for Re < 1. This obser-

vation together with I(∞) = 0 (see Section 2.2.2)

proves the first statement.

Equation (2) implies (dI/dt)(0) = ν (Re −
1) I(0) > 0 for Re > 1. Thus I(t) is increasing

at t = 0. Equation (2) also implies that I(t) has

only one non-zero critical point. These observa-

tions, together with I(∞) = 0 imply the second

statement.

Figure 1 contains solutions of the SIR system

simulating a highly virulent (Re = 3.5) flu epi-

demic in a town of 50, 000 people.

We stress that the existence of a threshold for

infection is far from obvious and was missed by

many public health and infectious disease experts.

The reason is that such a threshold can not be dis-
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Figure 1: Solutions of SIR system of ODEs with β =

0.7/50000, ν = 1/5, S(0) = 49955, I(0) = 5, R(0) = 0



cerned from data; it requires a mathematical model

to illuminate.

Above we observed that (dI/dt)(0) = ν (Re −
1) I(0), which implies that the number of infected

individuals initially starts growing/decreasing ex-

ponentially at rate ν (Re − 1). The next section

will provide strong intuition for the exponential

growth.

2.2.4 Public Health interpretation of Re

We defined the effective reproductive number

Re =
S(0)β

ν
=
S(0) b

ν N
=
Dκτ S(0)

N
(4)

which is the product of the duration of infection,

the number of contacts an infected individual has

with susceptible individuals per unit time, and the

transmissibility (rate of transmission). Thus Re is



the number of new infections caused by each in-

fected individual at the beginning of the outbreak.

The parameter Re is a measure of the fitness of the

pathogen. With this interpretation, the first the-

orem is almost obvious: if at the beginning each

infected individual infects three susceptible indi-

viduals, and each of these three infected individu-

als infects three additional susceptible individuals,

then of course the number of infections starts grow-

ing exponentially. This is schematically illustrated

in the Figure 2.

2.2.5 The theoretical foundation of public

health interventions

Theorem 2.1 and (4) provide strategies for public

health experts to prevent an epidemic by reducing

Re to less than one. For example, for the flu:

1. Reduce the duration of infection D with an-



Figure 2: The exponential growth of infected individuals at

the beginning of an epidemic



tivirals;

2. Reduce the contact rate κ by self-isolation

of susceptible individuals (request that they

stay at home and skip school or work);

3. Reduce S(0) by offering flu vaccines;

4. Reduce the transmissibility τ by encouraging

frequent hand washing and, in some cultures,

distributing face masks.

These strategies provide a theoretical underpin-

ning for public health interventions.

2.2.6 Vaccination and heard immunity

Vaccinating susceptible individuals removes them

from the susceptible class. Even if a vaccine is

100% effective (during a year when the flu vaccine

matches the circulating strains well, the annual flu



vaccine is estimated to be about 60% effective),

vaccinating an entire population is very expensive,

and not everybody can take the vaccine. Some

individuals, such as those with compromised im-

mune systems or severe allergies, the vaccine may

be worse than the disease. We ask the question,

can an epidemic be prevented by vaccinating only

a fraction of the susceptible class?

It easily follows from our analysis of the SIR

model that the answer is yes, and the phenomenon

is called herd immunity. Recall, to prevent an

epidemic, we require that Re ≤ 1. Let ρ denote

the fraction of the susceptible individuals who gets

vaccinated (assuming that the vaccine is 100% ef-

fective). These ρS(0) vaccinated individuals have

moved from the susceptible class to the removed

class, and thus the size of the susceptible class be-

comes (1− ρ)S(0).



To prevent an epidemic, we require that

(1− ρ)S(0)β/ν ≤ 1.

This will occur when ρ ≥ ρc, where ρc = 1− 1/Re

denotes the critical vaccination threshold.

Thus vaccination against a disease can be com-

pletely effective without making everyone immune.

The existence of a herd immunity threshold is

also far from obvious and was missed by many pub-

lic health experts. A significant number of experts

thought that such a threshold did not exist and

thus believed that mass vaccination programs were

bound to fail. The reason it was missed is that it

can not be discerned from data; it requires again a

mathematical model to illuminate.

Assuming a completely susceptible population,

to prevent a flu outbreak with R0 = 1.3, one must

vaccinate “only” 23% of the population to prevent



an epidemic. If the vaccine is only 60% effective

then it is easy to verify (do it!) that one must

vaccinate at least 23%/.6 ≈ 39% of the population

to prevent an epidemic.

To prevent a smallpox epidemic with R0 = 5,

one must vaccinate 80% of the population. Based

in part on this finding, along with the belief that

humans are the only natural hosts of the small-

pox virus, in 1967 the World Health Organization

(WHO) mounted a successful worldwide smallpox

eradication program. Smallpox is one of only a

very small number of human infectious diseases

that has been almost completely irradiated around

the world. Even if a malaria vaccine that is 100%

effective, since R0 > 100, it would be necessary

to vaccinate 99% of the population to prevent epi-

demics.



2.2.7 The maximum number of infected in-

dividuals

We now show that although we can not explicitly

solve the SIR system of ODEs, we can still obtain

a formula solution for Imax.

Dividing (1) by (2) yields the ODE

dS

dI
=

−β S I
β S I − ν I

.

This ODE is separable, since for I > 0 it can be

rewritten as ∫
β S − ν
β S

dS = −
∫
dI.

Hence, −I − S + ν/β logS = C. In other words,

for every t ≥ 0,

I(t)+S(t)−ν/β logS(t) = I(0)+S(0)−ν/β logS(0).

(5)



Imax occurs when dI/dt = 0 which from (2)

yields occurs when S = ν/β. Applying (5) yields

Imax + ν/β − ν/β log ν/β

= I(0) + S(0)− ν/β logS(0)

or

Imax = I(0) + S(0)− ν/β logS(0)− ν/β

+ ν/β log ν/β.

An easy exercise is to show that for an initially

fully susceptible population, the maximum fraction

of infected individuals is solely a function of R0:

Imax/N = 1− 1

R0
(1 + logR0) .

Expression (5) has another useful application.

It states that the solutions (S(t), I(t)) viewed in

the S–I plane (orbits) are contained in the level



curves of the function F (S, I) = S+ I−ν/β logS.

The level curves of this function are shown in Fig-

ure 3.

Figure 3: Parametric plots of I(t) verses S(t) with β = 1.66

and ν = 0.44

2.2.8 Why do epidemics end?

Why do epidemics end? Do they end because there

are no longer susceptible individuals in the popu-



lation? This question perplexed public health ex-

perts for many years. If so, then it would be the

case that S(∞) = 0. We now show this is not true.

Proposition 2.2. The limiting number of suscep-

tible individuals

S(∞) ≥ S(0) exp(−R0) > 0.

Proof. Dividing (1) by (3) yields the ODE

dS

dR
=
−β I S
ν I

=
−β S
ν

.

This ODE is separable, since for S > 0 it can be

rewritten as ∫
1

S
dS =

∫
−β
ν
dR.

Integrating both sides yields

S(t) = S(0) exp(−β (R(t)−R(0))/ν), (6)



Since 0 ≤ R(t) − R(0) ≤ N it follows that

S(t) ≥ S(0) exp(−β N/ν) and thus

S(∞) ≥ S(0) exp(−β N/ν) = S(0) exp(−R0) > 0.3

As an epidemic proceeds, the number of sus-

ceptible individuals decreases and so the rate at

which new infections arise also decreases. Eventu-

ally, S(t) drops below ν/β, and the rate at which

individuals recover exceeds the rate at which new

infections occur. Thus, I(t) starts decreasing. The

epidemic ends because of the lack of new infected

individuals and not because of the lack of suscep-

tible individuals.

This is still another fundament fact can not be

discerned from data; it requires a mathematical

model to illuminate.



2.2.9 The size of an epidemic?

Equation (6) easily yields a transcendental equa-

tion for S(∞), which when R(0) = 0, reduces to

S(∞)/N = (S(0)/N) exp(−b (R(∞)/N)/ν)

= (S(0)/N) exp(−b (1− (S(∞)/N))/ν). (7)

(recall from Section 2.2.2 that I(∞) = 0).

If the entire population is initially susceptible

(7) has the following simple, but transcendental

form solely in terms of R0:

log

(
S(∞)

N

)
= R0

(
S(∞)

N
− 1

)
.

We numerically solve this equation, and Figure

4 contains a plot of S(∞)/N verses R0.

It also follows in this case that the attack rate,

the total fraction in individuals who get infected,

is 1− S(∞)/N .
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Figure 4: Plot of S(∞)/N verses R0.

2.2.10 Five key epidemiological roles of the

reproduction numbers

To recap, we have seen that Re plays the following

five key epidemiological roles:

1. Re is a threshold value for an epidemic: an

epidemic will occur if Re > 1.

2. The initial exponential growth rate of an epi-



demic is (Re − 1)ν.

3. The critical vaccination threshold for herd

immunity is 1− 1/Re.

4. Assuming a fully susceptible initial popula-

tion, the maximum fraction of infected indi-

viduals satisfies Imax/N = 1 − (1/R0) (1 +

logR0).

5. Assuming a fully susceptible initial popula-

tion, the percentage of susceptible individ-

uals S(∞)/N at the end of an epidemic

is the root of the transcendental equation

log(S(∞)/N) = R0 ((S(∞)/N)− 1).

3 Testing the SIR model with data

We now present examples to illustrate the predic-

tions of the SIR model. In these examples the SIR



model is parametrized using actual infection data,

and the I(t) output of the model is compared with

the time series data. By parametrizing, we mean

that the parameters β and ν are estimated from

the data. We note that all the fundamental facts

about epidemics that we have so far obtained were

discovered without parametrizing the model with

any data.

In practice, the transmission rate β, being a

complicated function of contact rate κ and trans-

missibility τ , is difficult to estimate directly and

usually requires data to estimate. However, the

duration of infectiousness D = 1/ν can usually be

estimated independently of data (e.g., by measur-

ing the virus shedding of infected individuals over

time).

The main model parametrization methods are

the method of least squares, the method of max-



imal likelihood, and Bayesian methods. There

are other statistical challenges when parametriz-

ing models, for example, under-reporting. Not all

infected individuals are officially counted. For ex-

ample, most people who have the flu suffer at home

and do not visit a doctor and have their diagnosis

confirmed by a laboratory. One needs to estimate

the underreporting rate. At the beginning of the

2009 H1N1 flu pandemic the under-reporting rate

in the U.S. was estimated to be about 80 to 1 ([13]).

3.1 Dengue fever outbreaks

Dengue fever is a viral disease that is transmitted

by mosquitoes. The “Dengue triad" of fever, rash,

and headache is characteristic of Dengue. The dis-

ease commonly frequently found in the tropics and

is endemic in about 100 countries. There are ap-

proximately 50 million cases of Dengue fever virus



worldwide. Global warming is causing the range of

Dengue to spread.

Figure 5 shows the number of infected individ-

uals during outbreaks in Venezuela and Santiago

de Cuba [5] along with the output of parametrized

SIR models. Figure 6 illustrates an attempt to

model a Dengue outbreak in Havana.

Figure 5: SIR model predictions of Dengue fever outbreaks

in (a) Venezuela (2000) (b) Santiago de Cuba (1997)



Figure 6: SIR model prediction of 2001 Dengue fever out-

break in Havana .



3.2 Classical swine fever outbreak in the

Netherlands

Classical swine fever or “hog cholera” is a highly

contagious viral disease of pigs and wild boar.

Swine fever usually causes death within 15 days,

particularly in young animals. Figure 7 shows the

number of infected swine during an outbreak in

the Netherlands during 1997-1998 [14] along with

a parametrized SIR model.

3.3 Norovirus in Brussels long-term care

facility

Norovirus is a highly contagious viral disease and

a major cause of gastrointestinal illness in closed

and crowded environments, such as hospitals, nurs-

ing homes and cruise ships. Typically, people with

norovirus infection develop diarrhea and abdomi-

nal pain and begin to vomit within 24 to 48 hours



Figure 7: SIR model prediction of classical swine fever virus

outbreak in the Netherlands

of exposure. Norovirus symptoms may last a few

days, but most people recover completely without

treatment.

Figure 8 shows the number of norovirus infec-

tions in a Brussels long-term care facility during



2007 [16] along with a parametrized SIR model.

Figure 8: SIR model prediction of norovirus outbreak in

Brussels long-term care facility 2007

3.4 How well do the models fit the data?

All the fits except Figure 6 look pretty good. But

do not to be overly impressed. The displayed

data was used to parametrize the model and the

parametrized model may be just regenerating the

data which was used to parametrize it. More con-



vincing would be if a parameterized model can ac-

curately reproduce new observed data.

Furthermore, a model can achieve an excellent

fit to data for reasons that have nothing to do

with the model’s fidelity to the underlying biolog-

ical process. For an extreme example, in [12] we

show that nearly any positive function is the I(t)

output of an SIR model with variable transmission

rate β(t). However, if the output of a model does

not mimic the data (e.g., Figure 6), then the model

is likely to be missing at least one important com-

ponent. In this sense, a deficient model may be

more helpful than a model that fits the data.

4 Concluding remarks

What have we learned? Mathematically, we learned

how we can extract many useful properties of so-

lutions of nonlinear ODEs even though the sys-



tem has no explicit formula solution. Biologically,

we learned how the simple unparameterized SIR

model yields several fundamental insights into out-

breaks of infectious diseases and their control - in-

sights that were nearly impossible to discern from

infection data alone. Thus the analysis of the SIR

model provides a theoretical framework for public

health interventions.

How else could compartment models be helpful

to study disease transmission? Here is a recent

example from my research. The gray bars in Figure

9 represent the number of pandemic H1N1 viral

isolates tested the United States during the 2009

H1N1 flu pandemic [9]. Think of this as a proxy

for the number of infections.

Notice the two peaks. If all the assumptions of

the SIR model held for this outbreak, Theorem 2.1

would imply there would be only one peak. Also,



Figure 9: Number of pandemic H1N1 viral isolates tested

the United States from April 2009 through March 2010.

the US experienced one peak every year except

during the pandemic years 1918, 1958, 1968, 2009,

when it experienced two or more waves. What is

the mechanism(s) that is generating the multiple

peaks? Nobody knows. Recently in [10], we used

relatively simple extensions of the SIR model to

exhibit five plausible mechanisms, each of which

could have generated the two peaks during 2009,

both quantitatively and qualitatively.



The first two mechanisms capture changes in

virus transmissibility and behavioral changes. The

third mechanism involves population heterogene-

ity where each wave spreads through one sub-

population. The fourth mechanism is virus mu-

tation which causes delayed susceptibility of indi-

viduals. The fifth mechanism is waning immunity.

We use the models to examine the effects of border

control at the beginning of the outbreak and the

timing of and amount of available vaccinations.

We also use the models to try to understand

why China, which instituted strict border control

at the onset of the outbreak, had only one peak

and the US had two peaks. The models indicate

that had the US also instituted strong border con-

trol at the onset of the outbreak, they would have

also experienced a single peak of infections. How-

ever, the models also indicate that strong border



control would not have decreased the total number

of infections.

Want to learn more about infectious disease

transmission models? Some references include

[6, 7, 8, 11]. References for the mathematics (dy-

namical systems or nonlinear dynamics) required

to analyze these models include [3, 15]. References

[1, 2] contain introductions to stochastic transmis-

sion models.
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Notes

1Sir Ronald Ross received the second Noble

Prize in Medicine and Physiology for his discov-

ery of the transmission of malaria by the mosquito.



He was also a closet Mathematician and published

papers in several areas of pure and applied mathe-

matics.
2One can formulate a stochastic analog of the

SIR model as a Markov chain.
3If simple models are pushed too far they may

yield unreasonable results. If, for example, R0 =

103, then for almost any population the lower

bound S(0) exp(−R0) < 1. In this totally unre-

alistic case everybody becomes infected. However,

for most infectious diseases R0 ≤ 5, and for large

populations (recall this is a model assumption), the

conclusion is meaningful.
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