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This survey is based on

a course given by the author

in the Università degli Studi

dell’Aquila, as a part of the

Intensive Programme Mathe-

matical Models in Life and

Social Sciences, in July 2008.

It is a fast-paced introduction, aimed at grad-

uate students, to the mathematical modelling of

phenomena and experiments in which randomness

is present. After the introductory first section,

several examples from daily life, industry, biology,

and finance are presented, and the necessary tools

are introduced alongside, but without much math-

ematical detail.



1 Introduction to randomness

1.1 Random phenomena

A random phenomenon is a physical phenome-

non in which “randomness” takes a place.

So, what is randomness? It is something that

we do not control, in the sense that it may lead

to different outcomes or measurements of the phe-

nomenon in what we believe are “identical” condi-

tions.

There are many keywords associated to the dis-

cussion and mathematical foundation of random

phenomena: probability, chance, likelihood, sta-

tistical regularity, plausibility, . . . There are whole

books discussing and trying to explain what is the

nature of chance and randomness. It is not worth

going into such philosophical depth for the practi-

tioner. One may get lost into the variety of ”defini-



tions” or “trends” related to the word probability

(classical, frequentist, axiomatic, subjective, objec-

tive, logical, . . . ) or statistics (frequentist, classi-

cal, Bayesian, decision-theoretic, . . . ).

1.2 The modelling point of view

Instead, take the modelling point of view: Each

problem must be treated in its own merits, choos-

ing the appropriate tools provided by mathematics.

In general, the modelling of a real world phe-

nomenon follows the scheme of Figure 1.2 The Modelling of Random Phenomena
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1.3 Quantifying randomness: Probability

Take a playing die, for example (Figure 3). Throw-

ing a die is a familiar random phenomenon. We

need the outcome to be unpredictable (thus po-

tentially different) each time; otherwise the die is

not useful for playing. On the other hand, the ex-

periment is performed each time in identical con-

ditions: We throw the die on the table so that it

rebounds several times before stopping. Of course,

the conditions are no “truly” identical; in this case,

our ignorance about the exact physical conditions

provides the desired unpredictability, therefore the

randomness.

Suppose we examine the die, and we see that

it looks new, homogeneous, balanced and with no

visible manufacturing defect. Is there any outcome

that looks more likely to appear than some other?

If not, then it is logical that any attempt to quan-



Figure 3: A playing die developed to show all its faces.

tify the likelihood of the outcomes lead to assign

the same quantity to all outcomes.

We may think that every outcome takes an

equal part of a cake they have to share. Let us

say, arbitrarily, that the cake measures 1. There-

fore, every outcome has to take 1/6 of the cake.

We say that every possible result ω of the ran-

dom phenomenon “throwing a balanced die” has a

probability of 1/6. See Figure 4.

From the probability of all possible results ω ∈
Ω, we can deduce (define, in fact, but in the only
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Figure 4: A (presumed) balanced die eating the probability cake.

sensible way) the probability of all possible events,

that is, subsets A ⊂ Ω: The event A takes the part

of cake that its results ω ∈ A take in total.



1.4 The law of Large Numbers

The relative frequency of an event in a series of

identical experiments is the quotient

Number of occurrences of the event
Number of experiments performed

.

If 1/6 is the probability of obtaining a 3 when

tossing the die, it can be proved that the relative

frequency of the event {3} converges to 1/6 when

the number of experiments tends to infinity.

In general, the relative frequency of an event

converges to its probability. This is the Law of

Large Numbers. It is a Theorem (an important

one). It is not a definition of “probability”, as it is

frequently said.

1.5 Statistical inference

We may think that a die is balanced when in fact it

is not. In this case, the relative frequencies will not



converge to the probabilities that we expect. Or,

plainly, we suspect that the die is not balanced,

and we do not know what to expect.

In any case, the Law of Large Numbers leads

to the following idea:

1. Toss the die as many times as you can.

2. Write down the relative frequency of each re-

sult.

3. Construct the model of the die by assigning

Probability of ω := Relative frequency of ω .

This is Statistical Inference: We construct

a model of a random phenomenon using the data

provided by a sample of the population.

The population here is a (hypothetical) infinite

sequence of die throws. In the usual applications,

the population is a big, but finite, set of objects



(people, animals, machines or anything), and the

sample is a subset of this set.

In another common (and definitely overused)

setting of statistical inference, one simply declares

the die as balanced unless the relative frequencies

deviate too much of the expected values. If they

do, then the die is declared “non-balanced”.

1.6 Probability. The mathematical con-

cept

We want a mapping that assigns to every event a

number called “the probability of the event” satis-

fying:

1. It is nonnegative.

2. The probability of the whole set Ω of possible

results is 1.



3. The probability of the union of two disjoint

events is the sum of the probabilities of the

two events.

Formally: A probability is a mapping

P : P(Ω)−−−−→ [0, 1]

A 7−−−−−→P (A)

such that P (Ω) = 1 and for any countable family

{An}n ⊂ Ω, with Ai ∩Aj = ∅ if i 6= j,

P
( ∞
∪
n=1

An

)
=

∞∑
n=1

P (An) .

This definition captures perfectly the idea of the

pieces of cake taken by the different events that we

saw in Figure 4. The extension to a countably infi-

nite union instead of just finite does not harm and

allows to construct a mathematical theory much

more in line with the phenomena that we intend



to model. Demanding the same for uncountable

unions, on the contrary, would collapse the theory

and make it useless. If Ω is a finite set, then of

course this discussion is void.

Sometimes it is not possible to define the map-

ping on the whole collection P(Ω) of subsets of Ω

preserving at the same time the properties of the

definition. In this case, we define it on a subcollec-

tion F ⊂ P(Ω) satisfying some desirable stability

properties:

1. Ω ∈ F ,

2. A ∈ F ⇒ Ac ∈ F ,

3. {An}n ⊂ F ⇒
∞
∪
n=1

An ∈ F ,

where Ac := Ω−A is the complement set of A.

These subcollections are called σ-fields or σ-

algebras. They enjoy the right stability properties



so that the additivity property in the definition of

P still makes sense.

Probability Theory is a specialised part of

Measure and Integration Theory. In general,

a measure is a function defined on the sets of a

σ-field with values in a set which is not necessarily

the interval [0, 1].

1.7 Drawing probabilities

Probabilities behave like areas of planar regions.

Consider Figure 5.

To compute the area of the region A ∪ B, we

may add the areas of A and B, and then sub-

tract the area of A ∩ B, which have been counted

twice. This leads immediately to the fundamental

formula:

P (A ∪B) = P (A) + P (B)− P (A ∩B) .



A B

Ω

Figure 5: Probabilities and areas

All usual lists of “properties of the probabilities”

are trivial derivations of this formula, and can also

be deduced from Figure 5. It is useless to learn

them by heart.

1.8 Conditional probabilities

Consider the following example (see Figure 6): We

have a box with five white balls, numbered 1 to 5,
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Figure 6: Balls in a box

and three red balls, numbered 1 to 3. We pick a ball

“completely at random”. What is the probability

of drawing an even number?

First of all, what is the probability of picking

a particular ball? The expression “completely at

random”, though imprecise, is used to mean that

all outcomes are equally likely, as in the case of the

balanced die.

We are interested in the event A = {W2, W4,

R2}, where W means white ball and R red ball.

Since each of the balls in A takes 1
8 of the proba-



bility cake, we have that

P (A) =
1

8
+

1

8
+

1

8
=

3

8
.

Now suppose a ball has been picked by someone,

who tell us that the ball is white. What is the

probability that the ball carries an even number?

In this case the possible results are W =

{W1,W2,W3,W4,W5}, all with probability 1
5 , thus

the probability of {W2,W4} is 2
5 . The additional

information has led as to change the model, and

consequently the value of the probabilities.

Notice that :

2

5
=

2/8

5/8
=
P (A ∩W )

P (W )
,

where the probabilities in the quotient are those of

the original model.

The conditional probability of A to B is de-



fined as

P
(
A /B

)
:=

P (A ∩B)

P (B)
.

In relation to Figure 5, the conditional proba-

bility of A to B is the proportion of area of A inside

B.

We say that A and B are independent if the

information that B has happened does not change

the probability of A:

P
(
A /B

)
= P (A) .

Equivalently,

P (A ∩B) = P (A) · P (B) .

1.9 Random variables

We can now step into a second level of difficulty:

the concept of random variable. Let us consider the



following example: We toss two balanced dice, and

we are interested in the sum of the points shown.

We may consider directly the set Ω = {2, . . . , 12}
and assign probabilities to each element of Ω, but

this is difficult; or we may keep the model closer to

the real experiment by defining Ω = {(i, j) : 1 ≤
i ≤ 6, 1 ≤ j ≤ 6}, and think of the mapping

Ω X−−−−−→{2, . . . , 12}

(i, j) 7−−−−−−→ i+ j

If the dice really look balanced, and if it is clear

that the outcome of one die does not influence the

outcome of the other, then it is natural to dis-

tribute the same amount of the probability cake

to every pair (i, j), that means P{(i, j)} = 1
36 .

This setting induces a probability PX on {2,



. . . , 12}, which is what we are looking for:

PX{2} = P{(1, 1)} =
1

36
,

PX{3} = P{(1, 2), (2, 1)} =
2

36
,

PX{4} = P{(1, 3), (2, 2), (3, 1)} =
3

36
. . . , etc.

In general, a random variable is a mapping

X : Ω −→ R. (R can be replaced by other conve-

nient sets; technically, the random variable must

take values in another measure space, that is, a

set endowed with a σ-field.) The law of a random

variable is the probability PX on R induced by P

and X as in the example.

From the modelling point of view the law is the

important thing, not Ω or the mapping X them-

selves. Typically one says: “I am observing a ran-

dom phenomenon following the law . . . ”.

From the law of a random variable one may de-

fine certain numeric values that carry some infor-



mation, and that sometimes are all that is needed

in a particular application. The most important

one is the expectation, which is the “mean value”

that a variable with that law will take. It can be

thought as the limit of the arithmetic mean of the

observed values of the variable when the number

of observations tends to infinity. But this is again

a version of the Law of Large Numbers, and not a

definition.

The expectation E[X] of a random variable

X with law PX and taking a countable number of

values k is defined as

E[X] :=
∑

k · PX{k} ,

with the sum extended over all values taken by X.

The variance of X is a degree of dispersion of its

values around the expectation, and defined as

Var[X] := E
[
(X − E[X])2

]
.



1.10 The binomial law

Leaving aside the elementary “equiprobable” or

“uniform” model of the balanced die, the most basic

useful example of probability law is the one appear-

ing in the following situation:

Fix an event A of any random experiment. Call

p its probability: P (A) = p. Repeat n times the

same experiment, and let X be the number of oc-

currences of A in the n trials. The law of X is then

determined by

P{X = k} =

(
n

k

)
pk(1− p)n−k , k = 0, . . . , n .

(1)

We write X ∼ Binom(n, p) and say that X follows

a binomial law with parameters (n, p).

The sentence “repeating n times the same ex-

periment” means in particular that one experiment

does not influence the result of another, and there-



fore events concerning the outcome or one experi-

ment are independent of events concerning the out-

come of the other experiments, in the sense of sec-

tion 1.8. This fact is key in the deduction of for-

mula (1).

2 Examples from daily life: Arrivals
and waiting lines

2.1 The geometric law

Assume the experiments of Section 1.10 are per-

formed continuously and at regular unit time inter-

vals. We want to know the time elapsed between an

occurrence of A and the next occurrence of A. Or,

in other words, how many experiments are needed

before observing again the event A.

This is a situation that may be of interest in

manufacturing, where the event A is the occurrence



of a defective item in the production line.

Let N be the number of Ac occurrences before

the next occurrence of A. Then it is easy to deduce

P{N = k} = (1− p)k · p , k = 0, 1, 2, . . .

We write N ∼ Geom(p) and say that N follows

a geometric law with parameter p.

2.2 Tails and the memoryless property

Once we know the density function (or proba-
bility function) k 7→ P{N = k}, we can com-
pute, as in the case of the die, the probability of
any event P{N ∈ B}, where B is any subset of N.
In particular, we can compute the right and left
tails of the law:

P{N > k} = (1−p)k+1 , P{N ≤ k} = 1−(1−p)k+1 .

Because of the (hypothesized) independence be-

tween the experiments, the law of N is the same if



we define N as the number of Ac occurrences be-

fore the first occurrence of A. From this fact one

can prove the memoryless property:

P
{
N > m+ k /N > m

}
= P{N > k} .

In words, knowing that the event has not appeared

in the first k experiments, it is not more or less

likely to appear than if we just start now the se-

quence.

2.3 Arrivals at random times: The Poisson

law

Assume now that the arrivals occur at random

times instead of regularly. For example, the arrival

of customers to a waiting line may correspond to

this situation. To be precise, assume:

1. People arrive alone (never in groups).



2. The probability p that an arrival occurs dur-

ing a time interval of length h (small) is pro-

portional to h:

p = λ · h+ o(h) .

3. The number of arrivals on disjoint time in-

tervals are independent random variables.

We would like to know, for instance, the law

of the number of arrivals Nt in the interval [0, t],

or the number of arrivals per unit time. The hy-

potheses above are quite suitable for a situation

where the arrivals can be considered “completely

at random”.

Now, divide [0, t] in intervals of length h = t/n.

For n big enough, inside each interval we will see at

most one arrival, and this will happen with prob-

ability λh. Therefore, the number of arrivals in



[0, t] follows approximately a law Binom(n, λ t/n).

Hence, by (1):

P{k arrivals in [0, t]} ≈
(
n

k

)
·
(λ t
n

)k
·
(

1− λ t

n

)n−k
.

Taking n→∞,

P{k arrivals in [0, t]} =
(λ t)k

k!
exp{−λ t} . (2)

Let N be the number of arrivals per unit time.

We write N ∼ Pois(λ) and say that N follows a

Poisson law with parameter λ:

P{N = k} =
λk

k!
exp{−λ} .

The parameter λ is called the traffic intensity.

2.4 Interarrival times: The exponential

law

Let T be the time between two arrivals. As in

the case of the geometric law, this random variable



is equal in law to the time when the first arrival

takes place. The event {T > t} means to have

0 arrivals in [0, t], whose probability according to

(2) is exp{−λ t}.

We observe that this probability is nonzero for

all t ≥ 0, and that it cannot be expressed as the

sum of the probability of elementary events. We

say that the interarrival times follow a continuous

law, in contrast with all laws seen so far, called

discrete laws.

In the case of continuous laws, the density is

a function f : R −→ R+ such that P{T ∈ [a, b]} is
the area under its graph between a and b.

P{T ∈ [a, b]} =

∫ b

a
f .

To compute the density of the interarrival



times, we observe that∫ t

0
f = P{T ∈ [0, t]} = 1− exp{−λ t} ,

so that

f(t) = λ · exp{−λ t} .

T ∼ Exp(λ) is called the exponential law

with parameter λ.

2.5 Continuous laws

Continuous laws have some features that contrast

with those of discrete laws:

• The law is not determined by the probability

of the individual outcomes.

• It is the density that determines the law.

(This can be said to be true also for discrete

laws, but the concept of “density function” is

different.)



• It is not possible to assign a probability to all

subsets of the real line (this is not obvious).

But we do not need to! It is possible to assign

a probability to all intervals, and therefore to

the members of the minimal σ-field contain-

ing the intervals, which is far more than what

we need from a practical point of view.

• Continuous laws show why we cannot ask

a probability to be additive for collections

of arbitrary cardinality. For example: 1 =

P{T ≥ 0} 6=
∑

t≥0 P{T = t} = 0.

• The expectation of a variable with a con-

tinuous law cannot be defined with sums. It

is the integral

E[X] :=

∫ ∞
−∞

x f(x) dx ,

where f is the density. Notice however the

analogy with the definition for discrete laws.



In the context of measure theory, the expec-

tation can be expressed in a unified way for

all cases.

The correct name of these laws is absolutely

continuous, for mathematical consistency, but

the adverb is frequently dispensed with. “Continu-

ous”, strictly speaking, simply means that the so-

called distribution function F (x) := P{X ≤
x}, which is always non-decreasing and right-

continuous, is furthermore continuous; whereas

“absolutely continuous” refers to the stronger prop-

erty that the distribution function is a primitive of

another function, the density: F (x) =
∫ x
−∞ f .

2.6 Poisson arrivals / Exponential times

Still some remarks about the relation between the

Poisson and the exponential laws:



1. If the interarrival times are Exp(λ), then the

arrivals per unit time are Pois(λ).

2. This situation is called “completely random

arrivals", in the sense that the arrival times

0 < t1 < t2 < · · · < tk < t have the law of k

independent uniformly distributed values in

[0, t], after sorting them.

3. The exponential laws enjoy the same memo-

ryless property as the geometric law,

P{T > t+ s /T > s} = P{T > t} ,

and is the only continuous law with this prop-

erty. It is a good model for lifetimes of “age-

less devices”; for instance, the lifetime of an

electronic device, or living beings in their

middle ages, when the death comes from in-

ternal or external accidents (electric shocks,

heart strokes, . . . ).
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Figure 7: A Poisson sample path with λ = 1 (red) and with
λ = 0.5 (blue). Lower λ means less frequent arrivals in average.

2.7 The Poisson process

The collection of random variables {Nt, t ≥ 0},
counting how many arrivals have occurred in the

time interval [0, t], form the Poisson process.

When we observe a particular arrival phe-

nomenon, we see, as time passes, a sample path



of the Poisson process (see Figure 7). We may also

think of the Poisson process as the collection of all

its sample paths.

2.8 Stochastic processes

In general, a random evolution in time is modelled

by a stochastic process. There are two possible

points of view of a stochastic process:

1. As a collection of random variables:

X := {Xt, t ≥ 0} , with Xt : Ω −→ R .

2. As a “random function”

X : Ω−−−−→RR+

ω 7−−−−→X(ω)

Here RR+ denotes the set of all functions R+ → R,
which can be identified with the Cartesian product



of “R+ copies” of R as a set, as a topological space

and as a measure space.

2.9 Queues (waiting lines)

A queue is a situation in which users arrive to

a service, wait to be served if the service is not

immediately available, and leave after having been

served (Figure 8).

Figure 8: A typical simple queue: Customers arrive, wait in a
line, are served, and leave the system. (Illustration appeared in
The New Yorker, 1977)

Examples are customers in a supermarket cash,



cars in the highway at the toll booths, and parts

in a manufacturing chain.

Its behaviour depends, among other things, on:

1. Arrival pattern: Interarrival times, num-

ber of users per arrival, patience of the cus-

tomers, . . .

2. Service pattern: Service time, number of

users served simultaneously, . . .

3. Queue discipline: FIFO (First-In, First-

Out), LIFO (Last-In, First-Out), SIRO (Ser-

vice in Random Order), . . . , with variants

specifying priorities, pre-emption, etc.

4. Capacity: Number of users allowed to wait.

Moreover, everything may be dependent or not

on the state of the system (number of users, etc.)

and the elapsed time since the start.



Typical questions posed in these situations are:

• How many users are in the line? (at a given

time, in the mean, . . . )

• How long a user must wait? (a given user, in

the mean, . . . )

• How much time a service facility is idle?

• How long are the busy/idle periods of the

service facility?

The answers are random variables if at least

one of the features is random. We would like to

know the law of these variables, or at least its ex-

pectation, or some other value of interest.

The purpose of knowing these laws or law pa-

rameters is, frequently, to take a decision about

some controllable inputs of the queue, and with

some cost associated to each of the values of these



inputs. For instance, the number of cashiers in

a supermarket clearly influences the waiting time

of the customers; benefits may increase thanks to

that, but the running costs are also higher. Here

we enter the realm of optimisation and opera-

tions research.

2.10 The M/M/1 queue. Transition prob-

abilities

Assume that we have Poisson arrivals to a queue,

the service time is also random and follows an ex-

ponential law (just one among some common situ-

ations), and there is a single service channel (only

one user at a time is served).
More precisely, we now put in rigorous mathe-

matics the hypothesis of Section 2.3. In the sequel
we use the usual notation o(h) to mean any func-
tion such that limh→0 o(h)/h = 0. Assume that
the arrivals satisfy:



1. P{more than one arrival in [t, t+ h]} = o(h) .

2. P{an arrival occurs in [t, t+ h]} = λh+ o(h) .

3. The number of arrivals in non-overlapping time
intervals are independent random variables.

And moreover the service times satisfy

1. P{more than one service completed in [t, t+ h]}
= o(h) .

2. P{a service is completed in [t, t+ h]} = µh +

o(h) (assuming the service is not idle).

3. The number of completed services in non-over-
lapping time intervals are independent random
variables.

All these properties together imply that we

have a queue where the interarrival times follow

the law Exp(λ) and the service times follow the

law Exp(µ).

Assume, moreover, than jointly considered, ar-

rivals and services are independent.



Let us call now Nt the number of users in the

system at time t. We can compute the probability

that the state of the system changes from n users

to any other number in some time interval [t, t +

h]. These are called the transition probabilities,

and can be considered for any stochastic process.

It is easy to find, using the hypotheses above that

for all n ≥ 1

a) P
{
Nt+h = n+ 1 / Nt = n

}
= λh + o(h), for

n ≥ 0.

b) P
{
Nt+h = n− 1 /Nt = n

}
= µh + o(h), for

n ≥ 1.

c) P
{
Nt+h = n /Nt = n

}
= 1− (λ+ µ)h+ o(h),

for n ≥ 1, and

P
{
Nt+h = 0 /Nt = 0

}
= 1− λh+ o(h) .

d) All other transition probabilities are o(h) .



2.11 The M/M/1 queue. Differential equa-

tions

Fix two times s ≤ t. Denote pn,m(s, t) the con-
ditional probability of being in state m at time t,
conditional to be in state n at time s. Then, for
m > 0,

pn,m(s, t+ h) =
∑
k∈N

pn,k(s, t) · pk,m(t, t+ h)

= pn,m(s, t) · pm,m(t, t+ h)

+ pn,m−1(s, t) · pm−1,m(t, t+ h)

+ pn,m+1(s, t) · pm+1,m(t, t+ h) + o(h)

= pn,m(s, t) ·
(
1− (λ+ µ)h+ o(h)

)
+ pn,m−1(s, t) ·

(
λh+ o(h)

)
+ pn,m+1(s, t) ·

(
µh+ o(h)

)
+ o(h) ,

where the so-called Markov property have been
used (see Section 3.3 below). Diving by h and tak-
ing h→ 0, we obtain

d

dt
pn,m(s, t) = −(λ+ µ) pn,m(s, t) + λ pn,m−1(s, t)

+ µ pn,m+1(s, t) .



Analogously, for m = 0, one finds

d

dt
pn,0(s, t) = −λ pn,0(s, t) + µ pn,1(s, t) .

This is a countably infinite system of ordinary

differential equations for the conditional probabil-

ities pn,m(s, t) := P
{
Nt = m /Ns = n

}
, for s ≤ t,

and n,m ∈ N.
One can also obtain differential equations for

the law of Nt itself: Denote pn(t) = P{Nt = n}.
For n > 0,

d

dt
pn(t) =

d

dt

(∑
k∈N

pk(0) pk,n(0, t)
)

=
∑
k∈N

pk(0)
[
− (λ+ µ) pk,n(0, t) + λ pk,n−1(0, t)

+ µ pk,n+1(0, t)
]

= −(λ+ µ) pn(t) + λ pn−1(t) + µ pn+1(t) .

And, for n = 0,

d

dt
p0(t) = −λ p0(t) + µ p1(t) .



We get again a countably infinite system of or-

dinary differential equations. The system can be

solved exactly but it is difficult and there is a lot

of higher mathematics involved.

2.12 The M/M/1 queue. Steady-state law

In the long run, as t grows, does the law of Nt

stabilises? If this is true, then the derivatives in the

system of Section 2.11 must vanish when t→∞:

0 = −λ p0 + µp1 ,

0 = −(λ+ µ) pn + λ pn−1 + µ pn+1 .

By induction,

pn =
(λ
µ

)n
· p0 .

Using as boundary condition
∑
pn = 1, we ob-

tain

p0 =
1∑∞

n=0

(
λ
µ

)n ,



hence a necessary condition for the existence of a

stabilisation is λ < µ. Denote ρ := λ/µ. This num-

ber is called the traffic intensity of the queue.

If ρ ≥ 1, no steady-state exists; in fact, the

queue tends to grow forever, as more and more

users accumulate in it.

If, on the contrary, ρ < 1, then p0 = 1− ρ, and
we get

pn = ρn(1− ρ) ,

which is the probability of having n users in the

system, in the long run.

Knowing the law of the number of users in the

system in the long run, it is easy to compute:

• The expectation of the number of users N in

the system:

E[N ] =
ρ

1− ρ
.



• The expectation of the number of customers

Nq in the queue:

ρ2

1− ρ
.

• The law of the waiting time Tq in queue:

P{Tq = 0} = 1− ρ .

P{Tq ≤ t} = 1− ρ exp{−µ (1− ρ) t} (for t > 0).

• The expectation of Tq:

E[Tq] =
λ

µ(µ− λ)
.

2.13 Complex queueing systems. Simula-

tion

The results above are specific of the M/M/1 queue.

There are specific results for other types of queues,

and there are also some general results. For in-



stance, the relations

E[N ] = λ E[T ]

E[Nq] = λ E[Tq] ,

which one can easily deduce in the M/M/1 queue,

are true, no matter the law of arrivals and service

times.

However, except for relatively easy queue sys-

tems, there is no hope to find analytical results, as

computations become intractable very soon. That

means that in the real world, one can hardly find

closed formulae.

What to do then? One may propose:

• Idea 1 : Observe the system long enough,

take data and do some sort of statistical in-

ference.

• Idea 2 : Simulate the system in a computer,

and do statistical inference as well.



For idea 1 to work, we need the system really run-

ning, some mechanism of observation, and a lot of

time. In practice, we seldom can afford such luxu-

ries. For idea 2, on the other hand, we only need,

essentially, a mechanism to generate random num-

bers.

There are very good random number generators

embodied in software. Their outcome is not really

random, but they can fool any detector of “non-

randomness”. Anyway, if the quality of a stream

of such pseudo-random numbers is a concern, it

is very easy to use a true random number genera-

tor based in hardware: Nowadays, several internet

sites offer potentially infinite streams of true ran-

dom numbers produced by a quantum device. And

such devices are quite cheap, in fact.



2.14 Birth and death processes

A birth and death process Nt takes values in N
and the change across an infinitesimal time interval

can only be -1, 0, +1:

P
{
Nt+h = n+ 1 /Nt = n

}
= λn · h+ o(h) ,

P
{
Nt+h = n− 1 /Nt = n

}
= µn · h+ o(h) .

This is a generalisation of the M/M/1 queue model

to transition probabilities that may depend on the

system state.
The corresponding system of differential equa-

tions for the state of the system becomes

d

dt
pn(t) = −(λn + µn) pn(t) + λn−1 pn−1(t)

+ µn+1 pn+1(t)

d

dt
p0(t) = −λ0 p0(t) + µ1 p1(t)



Birth and death processes have been used, for

example, to model the varying size of a biological

population under given environmental conditions,

or to describe the evolution of an epidemic.

3 Example from industry: Inventories

3.1 Inventory modelling

A company distributes some

product, maybe after process-

ing some raw material that ar-

rives to the warehouse. Let

us assume that we are dealing

only with one product and no

processing time. Assume also that the product has

an approximately constant level of demand, but

the arrival of orders from the clients is not so pre-

dictable. The time required to obtain units of prod-



uct from the manufacturer is also subject to some

variability.

Two fundamental questions in this situation

are:

1. When should more items be ordered?

2. How many items should be ordered when an

order is placed?

A couple of things to take into account:

• If a customer wants to purchase but we do

not have items, the sale is lost. Therefore,

it is important to have enough items in the

warehouse.

• The product may become obsolete, and there

is also a cost of maintaining the inventory.

Therefore, it is not good to keep in storage

too many items.



Simple hypothesis for an inventory problem

that allow analytical computations similar to the

M/M/1 queue are:

• Orders arrive for single items with a random

interarrival times following the same law, in-

dependent from each other.

• The time to receive items from the manu-

facturer (lead times) follows some law, and

are independent, and independent of order

arrival.

A commonly used simple strategy is the (r, s)-

policy: when the inventory drops to r units, order

s− r units. One may measure the performance to

this policy, given r and s by the average inventory

level, or by the average no-inventory time, or by the

number of orders that arrive when the inventory is

broken, or, most probably, by an combination of



these and other measures that ultimately reduces

to a measure of economic benefit that the company

wants to maximise.

Level

Time0
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2
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4

5

0 5 10 15 20 25 30

Figure 9: A path of a inventory process. For some time before
day 20 and around day 30 the inventory was “empty”.

The inventory process, whose paths have the

aspect of Figure 9, is not in general a birth and

death process: Items may arrive in batches to the

warehouse, and the clients’ orders may also involve

more that one unit. It is therefore a generalisation

of the situations seen in the last sections. But it



can still be simulated easily if we know the input

distributions.

3.2 Markov chains

We further generalise by abstracting a remarkable

property of the inventory process: If we know the

state of the system at a particular time t, we do

not need to know anything about previous states to

predict the future. This is a random analogous of

the uniqueness property of deterministic dynamical

systems when proper initial conditions are given.

Formally: If t1 < · · · < tk < t,

P
{
Nt = n /Nt1 = n1, . . . , Ntk = nk

}
= P

{
Nt = n /Ntk = nk

}
.

Stochastic processes satisfying this property are

called Markov chains, and enjoy an extensive an

quite rich theory.



3.3 Chapman–Kolmogorov equation

Consider times 0 ≤ u < t < s. Recall the notation

of Section 2.11 for the transition probabilities.

The Chapman–Kolmogorov equation for

Markov chains establishes that the probability of

going from state n to state m when time runs from

u to s can be computed by decomposing all possi-

ble paths at the intermediate time t:

pn,m(u, s) =
∑
k

pn,k(u, t) pk,m(t, s) .

We have already used this in Section 2.11.
In particular, the law of the random variable

Nt+h can be obtained from the law of Nt and the
transition probabilities from t to t+ h:

pn,m(0, t+ h) =
∑
k

pn,k(0, t) pk,m(t, t+ h) ,

∑
n

pn(0) pnm(0, t+ h) =
∑
k

∑
n

pn(0) pn,k(0, t) pk,m(t, t+ h) ,

pm(t+ h) =
∑
k

pk(t) pk,m(t, t+ h) .



3.4 Kolmogorov forward and backward

equations

Assume

1− pn,n(t, t+ h) = qn(t)h+ o(h) ,

pn,m(t, t+ h) = qn,m(t)h+ o(h) (for n 6= m),

for some continuous functions qn and qnm. Then,
the following two relations hold:

∂

∂t
pn,m(u, t) = qm(t) pn,m(u, t) +

∑
k 6=m

pn,k(u, t) qk,j(t) ,

∂

∂u
pn,m(u, t) = qn(u) pnm(u, t)−

∑
k 6=n

qn,k(t) pk,m(u, t) .

These differential equations for the transition

probabilities are known as Kolmogorov equa-

tions, forward and backward, respectively.



3.5 Differential equations for the laws

Assume that the functions qn and qn,m above are

constant: qn(t) ≡ qn and qn,m(t) ≡ qn,m. The

Markov chain is then called time-homogeneous.

From Kolmogorov forward equations, letting

u = 0, multiplying by pn(0) and summing over n,

one obtains a (infinite) system of differential equa-

tions for the laws of Nt:

d

dt
pm(t) = −qm pm(t) +

∑
k 6=m

pk(t) qk,j .

3.6 Long-run behaviour of Markov chains

In many applications it is of interest to study the

behaviour of the chain in the long run. For in-

stance:

• Limiting distributions: Assume that the lim-

its limt→∞ pnm(u, t) exist and are equal, for



all n. That means, the limit is independent of

the initial state, when time is large. The limit

is a probability law called the limiting or

steady-state distribution of the Markov

chain.

• Stationary distributions: If the limit of the

laws {limt→∞ pn(t)}n exists, it is called the

stationary distribution of the chain. If

there is a limiting distribution, then it coin-

cides with the stationary distribution. But

the latter may exist independently.

• Ergodicity: Loosely speaking, ergodictiy

means that some kind of information that

can be extracted from a process as a whole,

can also be obtained by observing one sin-

gle path. For instance, ergodicity with re-

spect to the expectation means that the limit



limt→∞ E[X(t)] coincides with

lim
t→∞

1

t

∫ t

0
X(s) ds

for all sample paths X(s). For example, the

M/M/1 queue, with traffic intensity ρ < 1,

satisfies this property.

In particular, ergodicity implies that simu-

lating one only sample path for long enough

time is sufficient to estimate the expectation

of the process in the long run.

• Classification of states: The elements of

the state space of Markov chains are classi-

fied according to different interwoven crite-

ria. Among the most important concepts:

A state is transient if the probability to

never returning to it is positive; otherwise

it is called recurrent, and the process will

certainly visit that state an infinite number



of times; a state is absorbing if the chain

never leaves it once it is reached.

3.7 Stochastic processes in discrete time

A discrete time stochastic process is a process

where the family of random variables is indexed by

a discrete set, usually Z or N.

A discrete time Markov chain has the same

definition of a Markov (continuous time) chain, ex-

cept that the index t runs over a discrete set, usu-

ally the non-negative integers.

Another important class of stochastic process

in discrete time is the time series, that models

a different sort of dependency between variables.

Figure 10 shows the monthly evolution of the num-

ber of passengers of international airlines between

January 1949 and December 1960. One observes a

trend (increasing), a seasonality (peaks at the cen-
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Figure 10: A time series: A discrete time stochastic process with
144 values corresponding to the number of airlines passengers (in
thousands) between 1949 and 1960.

tral months of the year) and a residual noise (the

purely random component of the process). Usu-

ally, one tries to fit a suitable model of dependence

between the variables, so that the original process

is expressed as the sum of these individual compo-

nents.



4 Example from biology: genes

4.1 Genotype and gene frequencies

Alleles are several forms that a gene may have in

a particular place (locus) of a chromosome.

For example, sheep haemoglobin presents two

forms, produced by two alleles, A and B, of a cer-

tain locus. Each individual possesses chromosomes

in pairs, one coming from each parent. This implies

that there are three possible genotypes: AA, AB,

BB.

Some sheep

Typically, one allele is domi-

nant, while the other is recessive.

The recessive allele shows up exter-

nally in the phenotype only if the

dominant is not present.

Assume we extract blood from a

population ofN sheep, and the geno-



types appear in proportions PAA,

PAB and PBB (called genotypic frequencies).

The gene frequencies are the proportions of the

two alleles:

PA := PAA +
1

2
PAB

PB := PBB +
1

2
PAB .

(3)

4.2 Hardy-Weinberg principle

Assume that:

• The proportions are the same for males and

females.

• The genotype does not influence mating pref-

erences.

• Each allele of a parent is chosen with equal

probability 1/2.



Then, the probabilities of each mating are, ap-

proximately (assuming a large population):

P (AA with AA) = P 2
AA ,

P (AB with AB) = P 2
AB ,

P (BB with BB) = P 2
BB ,

P (AA with AB) = 2PAA PAB ,

P (AA with BB) = 2PAA PBB ,

P (AB with BB) = 2PAB PBB .

We can deduce easily the law of the genotypes

for the next generation:

QAA = P 2
AA +

1

2
2PAA PAB +

1

4
P 2
AB = P 2

A ,

QBB = P 2
BB +

1

2
2PBB PAB +

1

4
P 2
AB = P 2

B ,

QAB = 2PA PB .

Computing the gene frequencies QA and QB

with (3) we find again PA and PB, so the genotype



frequencies must be constant from the first gen-

eration onwards. This is the Hardy-Weinberg

principle (1908).

As an application of this principle, suppose B

is recessive and we observe a 4% proportion of

individuals showing the corresponding phenotype.

Then we can deduce the genotype proportions of

the whole population:

4% = PBB = P 2
B, ⇒ PB = 20%, PA = 80%,

PAA = 64%, PAB = 32% .

If the population were small, then randomness in

the mating may lead to genetic drift, and eventu-

ally one of the alleles will disappear from the pop-

ulation. The other gets fixed, and time to fixation

is one of the typical things of interest. This purely

random fact explains the lost of genetic diversity

in closed small populations.



4.3 Wright-Fisher model (1931)

If the mating is completely random, it does not

matter how the alleles are distributed among the

N individuals. We can simply consider the popu-

lation of 2N alleles.

Assume that at generation 0 there areX0 alleles

of type A, with 0 < X0 < 2N . We pick alleles from

this population independently from each other 2N

times to form the N individuals of generation 1.
The law of the number of alleles of type A must

be Binom(2N, p), with p = X0/2N . Thus

P{X1 = k} =

(
2N

k

)
(X0/2N)k (1−X0/2N)2N−k ,

k = 0, . . . , 2N .

In general, the number of alleles A in generation
n+ 1 knowing that there are j in generation n is

P{Xn+1 = k /Xn = j} =

(
2N

k

)
(j/2N)k(1− j/2N)2N−k.



This defines a Markov chain in discrete time. Its

expectation is constant, E[Xn] = E[X0], and the

expectation of the random variable Xn, knowing

that a past variable Xm (m < n) has taken value

k, is equal to k:

E
[
Xn /Xm = k

]
= k , k = 0, . . . , 2N . (4)

However, as we saw in Section 4.2, the process

will eventually reach states 0 or 2N , and it will

remain there forever. They are absorbing states

(see Section 3.6).

4.4 Conditional expectation

The expression on the right-hand side of (4) is

called the conditional expectation of Xn given

that Xm = k. It is exactly the expectation of Xn

computed from the conditional probability to the



event {Xm = k}. One may write (4) as

E
[
Xn /Xm

]
= Xm

and the left-hand side is now a random variable

instead of a single number, called the conditional

expectation of Xn given Xm. For each ω ∈ Ω,

the random variable E
[
X /Y

]
(ω) is equal to the

number E
[
X /Y = y

]
, if Y (ω) = y.

In case the conditioning random variable Y has

a continuous law, the definition above does not

work, since {Y (ω) = y} is an event of probability

zero. The intuitive meaning is however the same.

Mathematically, the trick is not to consider the y

individually, but collectively: The conditional ex-

pectation E
[
X /Y

]
is given a sense as the (unique)

random variable that can be factorized as a com-

position (ϕ◦Y )(ω), with ϕ : R→ R, and whose ex-

pectation, restricted to the events of Y , coincides



with that of X:

E[(ϕ ◦ Y ) · 1{Y ∈B}] = E[X · 1{Y ∈B}] ,

where 1{Y ∈B} is equal to 1 if Y (ω) ∈ B and 0

otherwise.

4.5 Continuous approximation of discrete

laws

Discrete laws involve only elementary discrete math-

ematics, but they are sometimes cumbersome with

computations. For instance, computing exactly the

probability density of a Binom(n, p) distribution

when n is large involve making the computer work

with higher precision than usual. Although nowa-

days this is not a big deal (unless n is really very

large), it is still useful, and conceptually impor-

tant, to use continuous laws as a proxy to the real

distribution.



Specifically, for the binomial law: If X ∼
Binom(n, p), then

X − n p√
n p (1− p)

∼ N(0, 1) , (approximately, for n large)

where N(0, 1) denotes the so called Normal (or

Gaussian) law with expectation 0 and variance 1.

Its density function is the Gaussian bell curve

f(x) =
1√
2π

e−x
2/2 .

Figure 11 shows graphically the approximation.

The importance of the Gaussian law comes

from the Central Limit Theorem, which ex-

plains its ubiquity: If Xn is a sequence of inde-

pendent identically distributed random variables,

with finite variance, and Sn :=
∑n

i=1Xi, then

Sn − E[Sn]√
Var[Sn]

converges in law to N(0, 1) .
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Figure 11: Approximation by the Gaussian law: The probability
density of Binom(n = 45, p = 0.7), after subtracting its expec-
tation (centring) and dividing by the square root of its variance
(reducing), depicted with black vertical lines. In red, the density
function of N(0, 1).

We immediately see that the binomial case

above is a particular application of this theo-

rem, taking Xi ∼ Binom(1, p), which implies

Sn ∼ Binom(n, p). Convergence in law is a non-

elementary concept that has to do with duality in



functional spaces: Suppose that {Yn} is a sequence

of random variables with respective distributions

Pn, and Y is a random variable with distribution P .

Then, we say that {Yn} converge in law to P if

for every bounded continuous function f : R→ R,

lim
n→∞

E[f(Yn)] = E[f(Y )] .

The seemingly natural “setwise” convergence

lim
n→∞

Pn(A) = P (A) for all sets A is too strong, and

will not work for the purpose of approximating by

continuous distributions.

One practical consequence of the Central Limit

Theorem for modelling is that any phenomenon

whose result is the sum of many quantitatively

small causes (like for instance the height or the

weight of a person) will be well described by a

Gaussian random variable. The fact that the Gaus-

sian laws may take values in any interval of the real

line is not an obstacle due to the rapid decrease of



the bell curve: Outside a short interval, the prob-

ability is extremely small.

4.6 Random walk and the Wiener process

Let {Xn}n be a Markov chain taking values in Z
with

X0 = 0 ,

P{Xn+1 = i+ 1 /Xn = i} = 1/2 ,

P{Xn+1 = i− 1 /Xn = i} = 1/2 .

This process is called random walk. It is simply

a “walk” on the integer lattice, where at each time

step we go to the left or to right according to the

toss of a fair coin. In other words, the increments

εn := Xn −Xn−1 are independent and take values

1 and −1 with probability 1/2.

Define a sequence of continuous-time process



WN
t by renormalisation of a random walk:

WN
t =

1√
N
XbN tc =

1√
N

bN tc∑
k=1

εk .

By the Central Limit Theorem,

=
1√
N t

bN tc∑
k=1

εk converges in law to N(0, 1) ,

hence the sequence {WN
t }N converges in law to a

random variable Wt ∼ N(0, t), the Gaussian law

with variance t, for all t > 0, whose density is

f(x) =
1√

2π t
e−x

2/2t .

Analogously, WN
t −WN

s converges in law to Wt −
Ws ∼ N(0, t−s). The limiting processWt satisfies:

1. The increments in non-overlapping intervals

are independent.

2. The expectation is constant equal to zero.



3. The sample paths are continuous functions.

4. The sample paths are non-differentiable at

any point.

W is called the Wiener process. In fact, a

Wiener process is defined by its laws, but usually

it is additionally asked to have continuous paths.

This particular construction as the limit of random

walks leads indeed to continuous paths.

The Wiener process is also called Brownian

Motion in the mathematical literature. However,

the Brownian motion is a physical phenomenon,

and the Wiener process is just a mathematical

model (and not the best one) to that phenomenon.

4.7 Diffusion approximation of

Wright-Fisher model

The Markov chain of the Wright-Fisher model is
too complicated to work upon. Instead, define



Y N
t = 1

2NX
N
b2N tc. Then,

E
[
(Y N

t+h − Y N
t )2 /Y N

t = x
]

=
( 1

2N

)2
E
[
(XN
b2N(t+h)c −X

N
t )2 /XN

t = x
]

=
1

2N
x (1− x) , (if h ∼ 1

2N
).

The limiting process Yt exists, satisfies

E
[
(Yt+h − Yt)2 /Yt = x

]
= hx (1− x) + o(h)

and it is called the diffusion approximation of

the original Markov chain.

4.8 Diffusions

A diffusion Y is a continuous-time Markov pro-

cess, with continuous paths, and such that

1. E[Yt+h − Yt /Yt = x] = b(t, x)h+ o(h) ,

2. E[(Yt+h − Yt)2 /Yt = x] = a(t, x)h+ o(h)



for some functions a and b. See Section 4.4 for

the interpretation of the conditional expectations

when the conditioning variable is continuous.

Under mild conditions, Yt has a continuous law
with density f(t, x) satisfying the Kolmogorov
forward and backward equations:

∂

∂t
f(t, x) =

1

2

∂2

∂x2
[
a(t, x) f(t, x)]− ∂

∂x

[
b(t, x) f(t, x)] ,

(5)

− ∂

∂s
f(t, x) =

1

2
a(t, x)

∂2

∂x2
f(t, x)− b(t, x)

∂

∂x
f(t, x) .

(6)

The Wright–Fisher model can be expanded to

take into account other effects in population dy-

namics, such as selection or mutation. This com-

plications make even more useful the corresponding

diffusion approximations.



5 Example from economy: stock mar-
kets

5.1 A binomial economy

Assume an economy with only two states:

• Up (with probability p) ,

• Down (with probability 1− p) .

Assume that there are two assets:

• A risk-free bond with interest rate R, and

• A share with price S(0) at time 0 and S(1)

at time 1, given by

S(1) =

S(0)u , if the economy is “up”

S(0)d , if the economy is “down”

A trading strategy for a portfolio is defined

by



• B0 e allocated to the bond, and

• ∆0 quantity of shares of the stock at time

zero.

The values of the portfolio at times 0 and 1 are

V (0) = B0 + ∆0S(0)

V (1) = B0(1 +R) + ∆0S(1)

Kuwait stock market



5.2 Free lunch?

As we will see, one can make money for free, unless

d < 1+R < u. An arbitrage opportunity is the

situation in which, without investing any money at

time zero, the probability to have a positive port-

folio at time one is positive, and the probability of

a loss is zero.
For a couple (B0,∆0) such that V (0) = 0,

V (1) = B0(1 +R) + ∆0S(1) =

B0(1 +R) + ∆0uS(0)

B0(1 +R) + ∆0dS(0)

=

∆0S(0) · [u− (1 +R)]

∆0S(0) · [d− (1 +R)]

with respective probabilities p and 1− p.
If (1 +R) < d, both quantities are positive and

we could borrow money to buy assets to have a sure

win. If (1 + R) > u, both quantities are negative

and we could make money by selling assets and

buying bonds. If V (0) 6= 0, the argument is equally



valid.

The arbitrage situation is not realistic if all the

actors have complete information. Thus, usually

there is no free lunch!

5.3 European options

An European call option is a financial deriva-

tive: It gives the holder the right (not the obli-

gation) to buy a share for an pre-specified amount

(exercise priceK) on a specific later date (expiry

date T ). Similarly, an European put option is

the right to sell the share.

If S(T ) is the value of the share at time T , the

payoff of a call is
(
S(T )−K

)+. If S(T ) < K, the

holder does not exercise the option, since it can

buy the share in the market for a cheaper price, so

the payoff is never negative.

Correspondingly, the payoff of a put is
(
K −



S(T )
)+, see Figure 12.

Payoff

S(T )
0 K

max{S(T )−K, 0}

Payoff

S(T )
0 K

max{K − S(T ), 0}

Figure 12: Graphs of an European call and an European put

5.4 Fair price of an European call option.

Example

Assume the following data:

• Current price of the share: S(0) = 100 ,

• Interest of the risk-free bond: 10% ,

• Possible prices for the share at time 1: 120

or 90 ,

• Exercise price: K = 100 .



We have u = 1.2, d = 0.9, 1 + R = 1.1.

The payoff will be Cu := 20 or Cd := 0.

To find the fair price, let us construct a port-

folio with a value V (1) equal to the payoff of the

option. The fair price will be V (0).

V (1) =

 B0 · 1.1 + ∆0S(0) · 1.2 = 20

B0 · 1.1 + ∆0S(0) · 0.9 = 0

⇒ ∆0S(0) = 66.67 , B0 = −54.55

The fair price is thus 12.12 .



5.5 Fair price of an European call option.

In general

In general, we have

V (1) =

 B0 (1 +R) + ∆0 S(0)u = Cu

B0 (1 +R) + ∆0 S(0) d = Cd

⇒ B0 =
uCd − dCu

(1 +R) (u− d)
,

∆0 S(0) =
Cu − Cd

u− d
,

⇒ B0 + ∆0 S(0) = (1 +R)−1
(
Cu q + Cd (1− q)

)
,

where q =
1 +R− d
u− d

.

It follows that the fair price of the option is the

expected (and discounted!) payoff of the option

under the probability Q = (q, 1− q) for the states

of the economy:

EQ
[
(1 +R)−1

(
S(1)−K

)+]
. (7)



Some remarks on the probability Q:

• Under Q, the share and the bond have the

same expected return:

EQ[S(1)] = S(0)u q + S(0) d (1− q)

= S(0)
(
u

1 +R− d
u− d

+ d
u− 1−R
u− d

)
= S(0) (1 +R) .

• The probability Q does not depend on the

underlying probability P = (p, 1− p) nor on

the payoff of the option.

• Q is called the risk-neutral probability (or

martingale probability).



5.6 Fair price of an European call option.

Example (cont.)

With the same data as before, we compute now the
fair price directly using formula (7), where in this
case q =: 2/3 .

EQ

[
(1 +R)−1

(
S(1)−K

)+]
= (1 +R)−1

(
Cu · q + Cd · (1− q)

)
=

1

1.1

[
20 · 2

3
+ 0 · 1

3

]
= 12.12 .

Assume now that the exercise price is fixed to
K = 95 instead of K = 100, while all other data
remain the same. Logically, the option should be
more expensive in this case. Applying again for-
mula (7),

EQ

[
(1 +R)−1

(
S(1)−K

)+]
= (1 +R)−1

(
Cu · q + Cd · (1− q)

)
=

1

1.1

[
25 · 2

3
+ 0 · 1

3

]
= 15.15 .



5.7 European call option. Multiperiod

The previous sections dealt with a single time pe-

riod. Assume now that the expiry time of the op-

tion is T and that we can change the composition

of the portfolio at any of the intermediate integer

times.

A trading strategy is then {(Bt,∆t), 0 ≤ t ≤
T − 1}. It is called a self-financing strategy if

we do not put new money or take money out of the

portfolio.

At time t, we can change the portfolio compo-

sition, but the value remains the same:

Bt + ∆t S(t) = Bt+1 + ∆t+1 S(t) .

The new value at time t+ 1 will be:

Bt+1 (1 +R) + ∆t+1 S(t+ 1) .



Therefore, the value increments for a self-financing
strategy is

V (t+ 1)− V (t) = Bt+1R+ ∆t+1

(
S(t+ 1)− S(t)

)
.

We can compute the fair price F (0) at time 0
of an option with exercise value K at expiry date
T recursively:

F (T − 1) = EQ

[
(1 +R)−1(S(T )−K)+ /S(T − 1)

]
,

F (T − 2) = EQ

[
(1 +R)−1F (T − 1) /S(T − 2)

]
= EQ

[
(1 +R)−2(S(T )−K)+ /S(T − 2)

]
,

...

F (0) = EQ

[
(1 +R)−T (S(T )−K)+

]
.

This computation uses essential properties of the

conditional expectation that we are not going to

detail here. But the conclusion must be quite in-

tuitive.



5.8 Martingales

Under probability Q, the stochastic process (1 +

R)−tS(t) enjoys the martingale property. A stochas-

tic process {Xt, t ≥ 0} is a martingale if

E
[
Xt /Xs

]
= Xs whenever s < t , (8)

meaning that the knowledge of the state of the sys-

tem at time s makes this the expected value at

any later time. The discrete time process defined

in Section 4.3 is a discrete time martingale (see

Equation (4)).

Martingales are good models for fair games:

The expected wealth of a player in the future is

the current wealth, no matter what happened be-

fore, or how long has been playing.

From (8) it can be deduced in particular that

the expectation of the process is constant in time.



In our case of the European call option, this means

EQ
[
(1 +R)−t S(t)

]
= S(0) ,

implying that

EQ
[
S(T )

]
= S(0) · (1 +R)T

which is precisely the return of the risk-free bond

(and this is why Q is called a “risk neutral” proba-

bility measure).

5.9 European call option. Continuous time

In continuous time, it can be shown that there is

also a probabilityQ under which e−RtS(t) is a mar-

tingale, and the fair price at time 0 of a call option

is given by

F (0) = EQ
[
e−RT (S(T )−K)+

]
,

although Q is more difficult to describe here.



The evolution of the value of the bond asset I(t)

is driven by the well-known differential equation

dI(t) = R · I(t) dt .

The evolution of the price of the share can be

described as

dS(t) = S(t)
(
µdt+ σ dW (t)

)
(9)

where W is a Wiener process, approximating (in

the continuum limit) the Markov chain given by

the binomial model. The trend, if p 6= 1/2, goes

to the drift µ. The volatility σ is the intensity of

the noise. This is a simple example of a stochastic

differential equation. It is a pathwise descrip-

tion of a diffusion process with b(t, x) ≡ µ and

a(t, x) ≡ σ2 (see Section 4.8).

Although the paths ofW are non-differentiable



everywhere, Equation (9) has the obvious meaning

S(t) = S(0) + µ

∫ t

0
S(r) dr + σW (t) .

This equation can be solved explicitly (this

is not common, of course). The solution is the

stochastic process given by

S(t) = S(0) exp
{
µ t− 1

2
σ2 t+ σW (t)

}
,

and we can compute its law from here.

The evolution of the whole portfolio value will

be

dV (t) = Bt dI(t) + ∆t dS(t) .

5.10 Stochastic differential equations

In general, a diffusion process X with characteris-

tic functions a(t, x) and b(t, x) (called respectively

diffusion and drift coefficients) can be repre-



sented pathwise by means of the stochastic differ-

ential equation

dX(t) = b(t,X(t)) dt+ a(t,X(t))1/2 dW (t) ,

with a suitable definition of the last term, which in

general, when the function a depends effectively of

its second argument, does not possess an obvious

meaning.

Diffusions can therefore be studied at the same

time with the tools of partial differential equations

that describe the evolution of the laws in time, and

with the tools of stochastic processes and stochas-

tic differential equations, that provide the evolu-

tion of the paths themselves.

The word “diffusion” is taken from the physi-

cal phenomenon with that name: The movement

of particles in a fluid from regions of high concen-

tration to regions of low concentration. The heat

“diffuses” in the same way, following the negative



gradient of the temperature field f(t, x). In one

space dimension, it obeys the partial differential

equation

∂

∂t
f(t, x) = D

∂2

∂x2
f(t, x) ,

where D is called the thermal diffusivity. Compar-

ing with Kolmogorov equations (5-6), we see that,

with suitable initial conditions, f(t, x) is the den-

sity at time t and point x of a diffusion process

following the stochastic differential equation

dX(t) =
√

2D dW (t) ,

that means, essentially, the Wiener process.

6 Recommended books

• Nelson, Stochastic Modeling, Dover 1995

(Arrivals, queues, Markov chains, simula-

tion)



• Gross-Harris, Fundamentals of queueing the-

ory, Wiley 1998
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• Asmussen-Glynn, Stochastic simulation,

Springer 2007

(Simulation)

• Maruyama, Stochastic problems in popula-

tion genetics, Springer 1977

(Diffusions, application to genetics)

• Lamberton-Lapeyre, Introduction au calcul

stochastique appliqué à la finance, Ellipses

1997

(Diffusions, stochastic differential equations,

application to finance)
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