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Polygons, conics and billiards

Ronaldo A. Garcia

In this expository article we will describe some elementary properties of
billiards and Poncelet maps and special attention is dedicated to N-periodic
orbits. In general, problems involving billiards are easy to state and under-
standing, and difficult or laborious to solve.
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2 Polygons, conics and billiards

Introduction

Billiards are objects that lie at the crossroads of several areas in mathematics
and physics, such that: dynamical systems (rotations of the circle, interval
exchange transformations, twist maps, K.A.M theory, etc), algebraic geom-
etry, projective and symplectic geometry, ergodic theory, singularity theory,
number theory, probability, abelian varieties, classical mechanics, statistical
physics, optics, acoustics, Aubry—Mather variational theory and others.

Historically, a systematic study of billiards begun with Birkhoff [13]. But
the antecedents are the works of William Chapple, FEuler, Poncelet, Jacobi,
Chasles, Joachimstall, Cayley, Poincaré, Darboux and many others.

Following L. Bunimovich [18], billiard dynamics can be seen as the prop-
agation of rays of light with an uniform speed within some closed region
which boundary consists of dispersing (convex outwards), focusing (convex
inwards) and neutral (planar) mirrors. Upon reaching the boundary the rays
experience specular (elastic) reflections. i.e., the angle of incidence is equal
to the angle of reflection as in mirrors.

In Fig. 1 we show the evolution of a wave that is initially parallel to the
elliptic billiard. See also [5] and [75].

Figure 1: Family of parallel waves to an elliptic billiard.

A billiard trajectory in a smooth convex body Q € R? is a polygon
P C Q, with all its vertices on the boundary of €2, and at each vertex the
direction of line changes according to the elastic reflection rule. Motion is
in a straight line, with unit velocity, except when the ball hits 02, where it
rebounds with incidence angle equal to reflection angle. In a more general
setting the billiards can be considered as a geodesic flow on a manifold with
a boundary.

Billiards are conservative dynamical systems, and so periodic behavior is
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expected and, typical questions are:
i) Classification of periodic orbits (elliptic, hyperbolic and others).
How many N-periodic orbits do they have?

Is the set of periodic points dense in configuration space?

)
)

iv) Can a recurrent orbit be approximated by a periodic one?
) What is the structure of the envelope of the billiard orbits?
)

What is the minimal length of a billiard N-periodic orbit in a convex
billiard?

vii) How is the billiard theory in other geometries (spherical, hyperbolic,
affine, projective, etc)?

ix) When two billiard flows are C*—topologically equivalent? Equiva-
lently, when the associated billiard maps are C*-conjugated?

The main goal of this paper is to present some elementary facts about
billiards and Poncelet porisms that is still a source of problems. We will
concentrate essentially in the case of billiards in a convex region with smooth
boundary. Some proofs are sketched and the reader is invited to look at the
original works. Some books introducing billiards and/or Poncelet porisms
include [10], [14], [19], [23], [34], [37], [39], [50], [59], [69], [76], [74], [86], [90],
[95], [104], [107].

For historical aspects, problems and surveys see [24], [25], [33], [55], [65],
[69], [105], [109].

1  Circular and polygonal billiards

In this section we will discuss briefly two examples of billiards and the outer
billiard.

1.1 Circular billiard

Consider a unit circle C; given by 22 + 42 = 1. Let N = —[z,y] and T =
[—y, z] the positive frame of C;. The straight line ¢(p,#) passing through
Py = [cos p,sin | and direction d; = cos0T(p) + sinON(p) intersects the
circle again at the point Py = [cos(¢+26), sin(p+20)]. The reflection of d; =
A(P1— P») about N (¢+20) is the vector do = cos 8T (p+260)+sin ON (¢+26).

Therefore, the billiard map in coordinates (p, #) with ¢ € [0, 27) mod 27
and 6 € [0, 7] is the map T := S! x [0, 7] — S! x [0, 7] with

T(p,0) = (¢ +20,0), T(p,0)=(p,0) and T(p,7) = (p,m) (1)
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Therefore a billiard orbit is the polygon with vertices P, = T"(P) =
[cos(p + 2nB), sin(p + 2nb)].

0 27r>90

(p,0) T(p.0)

Figure 2: Billiard map defined in the cylinder S' x [0, ] preserving the horizontal fibers.

Proposition 1. The billiard map preserves the fibers 0, i.e., for fized 6 the
map Ty : S' — St Ti(p) = ¢ + 20 is a rotation of angle 20. All sides of
the billiard orbit have length 2sin 0 and it is tangent to the circle centered at
(0,0) and radius | cosd)|.

Proof. Direct calculations or geometrically observing the symmetry of the
circle. 0

Proposition 2. When & = mdc(m,n) = 1 all billiard orbits are closed of

period n making m turns around the origin. When % 1s irrational all billiard
orbits are dense.

Proof. This is a direct consequence of the properties of rotations of the circle.
O

Proposition 3. The number of polygonal orbits of period n (n-sides) in the
circular billiard is ¢(n), where ¢ is the Euler function. Moreover, the turning
number m < n of a n-gonal periodic orbit is n/mdc(m,n). See Fig. 17.

Remark 1. The study of billiards which are small deformations of the circle,
including the elliptic billiard, has a long tradition and the literature about this
subject is vast and rich. See for example [6], [9, Chapter XI], [13], [95], [107]
and references cited in Math. Review and Zentralblatt.
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Figure 3: Regular polygons (billiard orbits of period 3, 4, 5 (two types, red and blue,
bottom left) and 7 (three types, red, blue and black, bottom right).

1.2 Polygonal billiards

Consider a convex polygon Q counterclockwise oriented with vertices V,, =
{q1,--.,qn}. A Dbilliard orbit is defined by a map T : Q \ V,, x [0,7] —
Q x [0,7]. As usual, the angle § € [0, 7] is identified with the direction
d = (cosf,sinf) making an angle § with a side of Q. A billiard orbit is a
polygon P, with vertices p; € Q and angles 6; with the sides of Q. In this
case, when a orbit reach a vertex ¢; it ends there. See Figs. 4 and 5.

kb @

Figure 4: Billiard orbits in triangles and a quadrilateral.
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0=9825° n=43.76 . £
8 =43.76' T =158.35°

Figure 5: Self-intersecting billiard 4-periodics orbits in a quadrilateral and a 5-periodic in
a pentagon.

Proposition 4. In any acute triangle the pedal triangle of the orthocenter
is the unique 3-periodic billiard orbit. See Fig. 6.

Figure 6: In a acute triangle, the pedal triangle is the unique 3-periodic orbit. All 6-period
orbits have the same perimeter.

Proof. The geometric proof follows from the Fagnano construction as shown
in Fig. 6. It is constructed a chain of triangles such that adjacent triangles
are obtained by reflection of a vertex with respect to the opposite side. See
also [56] and [58]. We will proceed as follows. Any triangle is similar to a
triangle with vertices A = [-1,0], B = [1,0], C = [a,b]. Let P, = [z1,0] and
dy = [1,m]. Computing the billiard map T it follows that the third return
map is given by:
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T3(x1,m) =[x4,m4]

oy maiasxy B 4b (b (2a+ az) m+ aag — 2 b2)
Y (as — 2b)(as + 2b)m — 4bag  (as — 2b)(as + 2b)m — 4 bas
m (2b—a3)(2b+a3)m+4a3b
4 =

4bagm + (a3 — 20b)
a1 =a®> 4+ —2a+1, as=a*>+bv"+2a+1, az=a’>+b>-1
(2)
The equation T3(x1,m) = [x1,m] is given by
(a3 + 2bm)(agm —2b) =0
b(az +2a)m + aaz — 2b?
- 2bm+a3

Therefore the unique solution is given by: (x1,m) = (a,g—g). Now it is

straightforward to check that the solution obtained is the pedal triangle
with respect to the orthocenter of the triangle {A, B, C}. O

Corollary 1. Near a 3-periodic orbit (pedal triangle) there exists a one pa-
rameter family of self intersecting 6-periodic orbits as shown in Fig. 6.

Proof. The proof follows directly taking a family of parallel lines of the Fag-
nano construction. Also it can be checked directly, using symbolic compu-
tations, that T%(z1,m) = (21, m) with m = 2—2. O
Proposition 5. Consider an obtuse triangle A = [—-1,0], B = [1,0], C =
[a,b] with vertex C contained in hyperbola h(z,y) = 3z — y?> + 2z — 1 = 0.
Then there exists a family of 6-periodic orbits which are perpendicular to the

sides AC e BC'. See Fig. 7.

/4: (1.0 | B=(1,0)

Figure 7: A obtuse triangle with a family of 6-periodic orbits perpendicular to the sides
of the triangle.
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Proof. Let Py = [29,0] and d; = [0,1]. Computing the first three iterates
of the billiard T' and imposing the conditions that P, € AB, P; € BC and
that P3 — P is orthogonal to the side BC it follows that the T": (w_,w;) C
AB — BC restricted to the vertical direction d; = [0, 1] is defined in the
open interval (w_,w;) given by:

2a%2 +2a — 1 3a
a2+a+1"a2+a+1

1
(w—,wy) = ( )7 a’e(_§71)'
The condition that the vertex C' is contained in hyperbola h(z,y) = 0 is
essential to obtain the right calculations. O

Remark 2. In a triangular billiard there are no 2-periodic orbits. In an
obtuse triangle there are no 3-periodic periodic orbits. Consider an obtuse
triangle defined by A = [-1,0], B = [1,0], C = [a,b] and let H = [a, (1 —
a?)/b] be the orthocenter. Then the pedal triangle of C (orthocenter) is a
billiard 3-periodic orbit of the acute triangle {A, B, H}. It is not known if a
general obtuse triangle has n-periodic orbits. For results in this area see [}1]
and [99].

Remark 3. There are (n — 1)!/2 “essentially” different types of polygons
with n vertices. We invite the reader to construct closed billiard orbits in the
case n = 6 and the Pascal lines associated to the configuration of points. See
[113, Pascal lines|

1.3 External and Outer billiard

Let P, be a convex polygon. Consider the polygon P’,, having vertices
defined as the intersection of the external bisectors of P, as shown in Fig. 8.

Figure 8: External billiards defined by the external bisectors of a convex polygon.

Proposition 6. In the above conditions we have that P, is a n-periodic
billiard orbit of P',. A neighborhood of Py, is foliated by n—periodic orbits
when n is even and by 2n-periodic orbits when n is odd. Moreover these
families of orbits are isoperimetric.
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Proof. Direct from the construction of the billiard. O

Another possibility to construct “external billiard” is the following.

Consider a convex polygon P,, with vertices {p1,p2,...,pn}. For a point
P in the external region delimited by P, consider a straight line ¢; passing
though P; and a vertex of P, such that the polygon P, is contained in a
half plane defined by ¢;.

The reflection of P; about this vertex defines a point P» external to
P,.. Repeat this process taking into account the orientation (the polygon is
always on the same side of the half line) and obtain a sequence (F,) that is
called the outer billiard orbit. When a support line ¢; contains a side of P,
the reflection is taken about the midpoint of this side. The correspondence
T(Py) = P; is called outer billiard map. See Fig. 9.

Figure 9: Outer billiards on a convex polygon. Left is shown a 11-periodic with a support
line containing a side of the triangle.

Lemma 1. Consider a segment defined by the vertices A = [0,0] and B =
[a,0]. Then the half plane y > 0 (resp. y < 0) is invariant by T?> = T o T
and T? is a right translation (resp. left translation). See Fig. 10.

Proof. The outer billiard T is given by:

—P, P=(z,y), y>0
T(P)={¢2B—P, P=(z,y9), y<0
B—-P, P=(z,0)
Observe that the orientation is essential to define correctly the transforma-
tion T that is discontinuous along the x axis. A particle moving from P

to T(P) see the segment AB in the left half plane. Therefore T?(z,y) =
(x4 2a,y) when y > 0, and T2(z,y) = (z — 2a,y) when y < 0. O

Corollary 2. The map T? : R? — R? induces a twist map T : S' x R —
S x R. i.e., a counterclockwise rotation (resp. clockwise) for y > 0 (resp.

y<0).
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Figure 10: Outer billiard on a segment. The half planes y > 0 and y < 0 are invariant by

T2.

For the study of outer billiard on regular polygons see [108]|. For related
results see also [4], [16], [40], [48], [57], [60], [84].

The following result is due to R. Schwartz. See [97] and [98].

Consider a convex kite K, defined by the vertices A = [0,1], B = [—1,0],
C =1[0,—1] and D = [a,0]. An outer billiard on K, is called special if it is
contained in the union of horizontal odd straight lines ¢, = Rx {2k+1}, k €
Z.

Theorem 1. When a > 0 is irrational, the outer billiard on K, has un-
bounded special orbits.

Figure 11: Outer billiards on a kite. Left is shown a possible unbounded orbit. Right is
shown a 6-periodic orbit.

This beautiful result, which can be considered a masterpiece of math-
ematics, solves a problem known as Moser-Neumann problem that asks
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whether there exists unbounded outer billiard orbits in outer billiard sys-
tems. A theory, called “plaid model”, was developed in [97]. It is introduced
compactification, polyhedral exchange transformations and renormalization.

The dynamic of outer billiards is governed by discontinuous piece-wise
linear maps in the plan. In the billiard on the kite above we have the following
transformation.

2A—p, pe Ry A+B—-—p, pe RiNRy

2B —p, p€ Ry B+C—p, pe RN R
T(p) = and T'(p) =

2C —p, p€ R3 C+D—p, peR3NRy

2D —p, p€ Ry A+D—p, peRINRy

The regions R; are sketched in Fig. 12. For example, the region R; is defined
by the semialgebraic conditions > 0 and (z + ay — a)(z —y + 1) > 0.

7

Ry

Rs B D

Figure 12: Kite {A, B,C, D} and the regions R;. Left when 0 < a < 1 and right when
a>1.

An interactive experiment reveals that the set Uil is invariant by T.
Starting at a point P; = (z1,1), we have P, = T(P)) = (—z1,1), P3 =
T(P) = (x1 —2,—1). Now T(P3) = (2 —x1,—1) if x1 > 2 or T(P3) =
(r1—2a—2,—1) when 1 < 2. In any case, when T%(P;) € R; it follows that
THY(Py) = (*,3). In general, when P, = (x,+k) € R{UR3 we have T(P,) =
(*,2F k). Also any iterated will be of the form (f(n)z1+g(n,a), h(n)), where
f,g,h are polynomial. As the parameter a is irrational and near the infinity
the map is almost the antipodal it is natural to expect unbounded orbits.
Also, when a is very large the kite is “almost ”a segment and Lemma 1 help
us in the intuition of presence of unbounded orbits or N-periodic orbits. But
periodic orbits are rare in outer billiards. See [110].

2 Properties of the chords and variation of length

In this section we obtain some properties of chords of convex curves and
applications in billiard orbits.
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Consider two regular convex curves v and I' parametrized by arc lengths
s and t. Let I(s,t) = |y(s) — T(¢)], 0(s,t) the angle between +/(s) and
V(s,t) = I'(t) — v(s) and 7n(s,t) the angle between I"(t) and V(s,t). See
Fig. 13

Consider the Frenet frames {/(s), N,} and {I"(t), Nr} along v and T
Denote the curvatures by k., and kr.

Figure 13: Pair of curves and variations of length and angles.

Proposition 7. In the above conditions it follows that:

dl = —cos @ ds + cosn dt

iy .
o = (S”; - kv(s)> ds — 220 gy

l (3)
dn = gds - (Slrlm + kp(t)> dt
Proof. We have that
_of of
df = %ds + Edt

From the equation
2= (D(t) = (), T(t) — 7(5))

it follows that
ol

21% = —2(4'(s),T(t) — v(s)) = —2lcosf = Is= —rcosb
2l% = 2<F/(t)a F(t) — ’)’(S)) = 2l cosm = lt =cosn

From the equations

I(s,t) cos ) = (v/(s), '(t) = ¥(s)), (s, t) cosn = (I"(t),T(t) = ¥(s))

UNRB
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it follows that

lscos® —10ssinf = (v"(s

//(8

(Y"(s),(t) = v(s)) = (/(5),7'(s))
= (v ),lcos@’y +1sin N, (s)) — 1
= lsin Ok (s) —
Iy cos @ — 10, sin§ = (v/(s),T'(t)) = cos(0 n) = cos(n — 0)
Is cosn — Ins sinn = (7/(s), I'(t)) = cos(6 —n)
I cosn — Inesing = (T(£), T(8) — 4(5)) + (T'(6), T'(1)

= (I"(t),lcosnI + IsinnNr(t)) + 1

= krlsinn+1

Performing the calculations leads to the result. O

Proposition 8. In the same conditions above but with arc length parameters
s and t it follows that

lys = sinf (S”lla - k:,y(s))

sin @ sin
lst = % (4)
It = sinn (su;n - k‘F(S)>
Proof. Follows directly from differentiation of equation (3). O

Proposition 9. In the same conditions above but with arbitrary parameters
s and t it follows that

= —|7(s)| cos @ ds + |T"(t)| cosn dt
: Do
9 = |7/(s)| (Sme - ’MS)) ds — \(t)l|sm?7 it

l

/ : .
dn = W“)l'm@ ds — |T(1)| (SHZ‘" + kp(t)> dt

Consider a simple closed convex curve v parametrized by arc length s and
of length L. A particle moving along straight lines in the region Q = int(~y)
with uniform velocity and reflecting along v elastically and respecting the
laws of reflection of geometric optics is called a “billiard orbit”. Recall that
the reflection about the tangent direction is given by:

R(u) = u —2{(u, N)N,
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Let £(sp,00) be a a straight line (chord) passing through ~(s¢) making an
angle 6y € (0,7) counterclockwise oriented with the tangent vector 7/(sp).
Denote by s; the coordinate of the intersection of ¢(sg,0y) with v and 6; is
the reflected angle of intersection of the chord ¢(sg,6y) with I' at the point
I'(s1). So it follows that is defined a map

T:[0,L] x (0,7) = [0,L] x (0,7), T(s0,60) = (s1,61).
Identifying the points sg and s+ L the map T can be suspended as map
T:Rx[0,71] >R x[0,7], T(s0,00) = (s1,01)-

The map T is called billvard map.

6(307 90)

Figure 14: Billiard map T associated to a convex curve.

Proposition 10. Let r; = —cos6;. In the coordinates (s,ro) the billiard
map T(s,1m9) = (s1,71) s area preserving and detD(T) = 1.

Proof. Consider the notation of Proposition 7 and the function [(sg,s1) =

|7(s0) — v(s1)|- Then Iy, = —cosfy = 19 and ls, = cosf; = —r1. Define
L(So,T’o) = l(So,Sl(So,To)). Then
881 831
LSOZT’()—’I‘ITSO, L,,,Oz—rlairo'

Differentiating the above relations and using that Lg,,, = Ly,s, it follows

that
87"1 881 8281 (97'1 881 8281

"My = 1 .
87’0 880 (97“080 (97“0 850 8807“()
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Therefore,
Os10r1 01 051

87808?"0 B (977“0880

O
In other terms we have.
Proposition 11. The map T preserves the area form w = sinf ds A df.
Proof. See [107]. O

Remark 4. Ezxpressing the map T in the coordinates (s,p), where p = sin g
and ¢ = 5 — 0 is the angle between the segment of orbit and the normal
vector we write T(s,p) = (S(s,p), P(s,p)). Therefore, the derivative of T is

given implicitly by:

9sS 0S8 1 l+7cos g l
_ | 0os 0 _
DT(s,p) —\oP oP | — l+rcosg0TH"1 cosp1  l4rcospr
Os Op Cos 1 Ty 1

In the equation above r (resp. ri) is the radius of curvature of T' at s (resp.
s1) and l = |T'(s) — I'(s1)| is the length of the orbit segment. The same for
© and @1. Therefore, detDT(s,p) = cos ¢/ cos 1. See [19, Chapter IV] and

[68].
Proposition 12. Let f : U — R be a smooth function that the reqular levels
of f are T-invariant. Then T restricted to f~1(c) is conjugated to a rotation.

Proof. Let T, = T|f_1(c). Consider the 1-form 1 defined by df Ay = w =
sinf ds A df.
Explicitly, " o
V= oy~ fods + fudh) = =1
To obtain the last equality we used that fsds + fadf = 0. By construction
T, preserves 1. O

ds.

Proposition 13. Let T" be a planar smooth convex simple curve. The bil-
liard periodic orbits of T' are polygonal curves which are critical points of the
perimeter function.

Proof. The proof follows from Proposition 7. Consider a 3-periodic billiard
orbit with vertices I'(s;) (i=1,2,3) and lenfth sides l; = |T'(s;) — I'(si41)| for
example. Then,

dly = —|I"(s1)| cos 01 dsy + [TV (s3)| cos Oz dso

dly = —|T"(s2)| cos O dsa + [T’ (s3)| cos O3 dsa

dls = —|T"(s3)| cos b5 ds3 + |’ (s1)| cos 0 dsj.

Therefore d(l; + l2 + I3) = 0. The general case follows the same ideas. [
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Proposition 14. Let I be a planar smooth convex simple curve. The billiard
transformation T associated to I' always has at least two distinct periodic
orbits of period 3.

Sketch of Proof. See [22]. Consider the space T of oriented triangles in-
scribed in 4 with the appropriate topology induced from R®. Considering
also degenerated triangles (coincidence of two or three vertices) the space
T is compact. It is a stratified three dimensional manifold with singular
boundary. As the perimeter of a triangle (3-periodic orbit) is continuous
and 7T is compact, there is a non degenerate triangle Ty = { Py, P, P3} with
maximum perimeter. Fixed two vertices, say P; and P, the position of the
third vertex Ps is such that |Py — P3| 4+ |P» — P3| is extremal. Therefore,
the normal at P3 bisects the vectors P — P3 and P, — P3. Renumbering the
vertices cyclically we obtain three different 3-periodic orbits for which the
perimeter is maximum and with the same value. Passing continually from
two maximum we need to pass through a saddle point which is also a critical
point. The result follows from Moutain Pass Theorem in a compact domain.
See Fig. 15.

Figure 15: Level sets near two points of maximum in dimension two. In dimension three
the saddle point has index 1 (locally a cone).

O

Remark 5. The same result is valid for any N -periodic billiard orbit. For
more deeper results see [35].

3  About billiard orbits of period 2

A smooth convex billiard has at least two periodic orbits of period 2 (the
diameter and its breadth). The diameter is always unstable and the breadth
can be stable or unstable. In the ellipse the major contains the foci and is
unstable. The breadth is the smaller axis which is stable.

UNRB
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dy

& 5\

D2 dg

period 2 D3

Figure 16: Local billiard map (second return).

Proposition 15. Consider a periodic orbit Py Py and suppose that P| = [%, 0]
and Py = [—%,0]. Suppose that the parametrizations of the boundary near
the 2-periodic orbit are given by

[l e ayt awyt _

) = |5 - = B U4 05)) = (0
l byt by bay?

oy) = [+ 2y” | bay”  bay +0<5>,y] — [haly),y

2 2 6 24

Let 1y = 1/ag and ro = 1/by the inverses of the curvatures at Py and Ps.
Then the derivative of the T?> = T o T is given by

ro—21 4(1—ry)
DT?(0,0) = " " (6)
’ (ritro—20)1  (ro—20)r1+41(l—r3)
r17T2 r1LT2

Proof. The proof is straightforward. Using the Implicit Function Theorem
we can calculate explicitly the billiard orbit with higher precision for y small.
Departing from a point p; = v1(y) and direction dy = (1,m) we obtain the
point pa = Y2(s(y)), where s(y) is defined implicitly by the condition that
p1 + s(y)dy is a point of the curve 2. Therefore,

T(p1,d1) = (p2,dz), d2 = di — 2(N(p2),d1)N(p2).

Repeat the process and express T2(p1,d1) = (p3,ds) in angular coordinates
(6,m). So, T'(61,m) = (03, m3). Here 6, is defined by hq(y) —tan6; y = 0.
See Fig. 16. O

Proposition 16. The eigenvalues of DT2(0,0) are given by:

202 = 2(r1 4 r) L+ T2/ L0 —r) ([ —r2) (=11 —12)
r172

A2 =

Therefore, for min{ry,ra} <l < maz{ry,re} or ri + re < I the 2-periodic
orbit is unstable.



18 Polygons, conics and billiards

Proof. The eigenvalues are defined by det(DT?(0,0) — A\) = 0. Direct cal-
culations leads to the result. Under the hypothesis it follows that 0 < \; <
1 < A and so the fixed point (0,0) is a hyperbolic saddle and the result
follows from Hartman theorem. O

Proposition 17. On the elliptic billiard Eqp : 22 /a® + y?/b* = 1 it follows
that

8a* — 8a%b? + vt

trace(DT?(0,0)) =2 i ,  diameter (larger azis) (7)
4 212 4
trace(DT?(0,0)) =2 @ —8a f +8b ,  width (smaller azis) (8)
a

Proof. Follows directly from equation (6) observing that | = 2a and r =
ry = b%/a for the diameter (larger axis) and [ = 2b and 71 = 79 = a?/b for
the width (smaller axis). O

Corollary 3. Two elliptic billiards £, and &, p, are C'-topologically equiv-
alent, if and only if, a/ar = b/by, i.e., the ellipses Eqp and Eq, p, are similar.

Proof. Tt is well known that C'—equivalence preserves the eigenvalues of
derivative of the return map in periodic orbits (see [59], [82]). As detDT?(0,0)
1 the result follows from equations (7) and (8) applied to the two ellipses. It
follows that (ab; — a1b)[(a® — b?)b? + a2b?] = 0 and (ab; — a1b)[(a® — b?)a? —
a®b?] = 0. The system above has solution only when a/a; = b/b;. O

Remark 6. The study of the case of complex eigenvalues is more subtle. It is
based on Birkhoff normal forms and Moser’s twist theorem [85]. In this case
is mecessary to consider at least the third jet of T at 0. In generic case the
fized point (0,0) of T? is stable, i.e., a neighborhood of the point is foliated
by invariant circles (closed curves) which are invariant by T?. See [31] and
[68].

In [96] the following result was obtained.
Theorem 2. The periodic points of a billiard with period 3 form a set of
measure zero.
3.1 Billiards in higher dimensions

Consider a compact convex body K C R™.
A billiard orbit is generalized as a sequence of points (p;) € 0K such that

n; = |pi — Piv1|(pi — pi—1) + |Pi — Pi—11(Pi — Pi+1)

is a support vector of K at p;.
Recall that an outward support vector at p € 0K a vector v such that
(x — p,v) < 0 for all x € K. A point p € 0K is called smooth if the
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outward support vector of K at p is unique. Equivalently, there is a unique
hyperplane through p that is disjoint from intK.

See [11] for illustration of this kind of generalized billiard orbits in various
convex bodies in the plane. See also [9, Chapter XIJ.

The width (or breadth) of K is the infimum of the distances between
pairs of parallel supporting hyperplanes of K.

The inradius of K is the radius of the largest ball (or sphere) contained
in K. For a triangle T the inradius is the radius of the circle inscribed in 7.

In a convex body K having boundary the ellipsoid x2/a?4y? /b +22/c? =
1 the inradius is the small semiaxis ¢ < b < a and the width is 2c.

The following result due to M. Ghomi [49] establishes bounds for the
perimeter of generalized billiard period orbits. An algorithm to find the short-
est generalised closed billiard orbits on a billiard table was given in [1].

Theorem 3. Let K C R™ be a compact convex body, and (P,) be a N-
periodic billiard trajectory in K. Then L(P) > 4 inradius(K). Further,
the equality holds for some (P,), if and only if width(K) = 2 inradius(K).
In this case, every shortest periodic trajectory of K is a bouncing ball orbit
(2-periodic).

4 Poncelet theorem

The classical Poncelet theorem is about a natural generalization of billiards.
Consider a pair of nested ellipses I' (outer) and 7 (inner) oriented by the
external normal vector. Consider a point p € v and /¢, the tangent line
to v at p. Let p; and p the intersection of ¢, with I'. The Poncelet map
is induced by the correspondence P, : I' — I', P,(p1) = p2. Through po
consider the other tangent line to v and let p3 the intersection of this line
with I'. Therefore, fixed a orientation we have a well defined map T : I' — I
with T'(p1) = p2, T(p2) = ps3, etc. Changing the orientation defines the
inverse T'. See Fig. 17.

The orbit of a point p; € T is the polygon defined by the vertices T%(p;) =
pr. A orbit of a point pp is called N-periodic when TV (p;) = p;. The N-
gon is inscribed in I and circumscribed about . Then Poncelet’s Theorem
states:

Theorem 4 (Poncelet’s Closure Theorem [86]). Consider a pair of nested
ellipses v C . If T : T' — T" has a periodic orbit for some py then all orbits
are periodic.

For a historical and proofs of this theorem see [8], [24], [25], [28], [33] and
references therein. See also |9, Chapter IV], |20], |23, Livre III, Chapitres II,
111}, [27], [50, Chapter 9], [61], [62], [76], [$3], [26] and [89].
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@ =T""q)

p3

Figure 17: Poncelet map T : T' — T with T(p1) = pe and T™' : T' — T with 77! (¢1) = ¢2
associated to the pair of nested ellipses v C I'.

The proof presented below is based in [102]. Consider an ellipse and a
circle given by

st =1 Cr: m2+y2=r2,0<7’<b<a.

For the reduction of a general pair of nested ellipses to the pair above
and a proof of Poncelet’s Porism theorem see [17].
Let P = (acosp,bsing) and P’ = (acos p,asin ) as shown in Fig. 18.

B

Figure 18: Poncelet maps T : €, — Eap with T(P) = Py and T : Cq — C, with
T'(P') = Pj associated to the pairs {€a,s,Cr} and {Ca;, &r rayp}-
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Consider the tangent line PP; to C. at the point M, and let
LAOP' = ¢, ZAOP| = ¢;.
Proposition 18. In the above conditions it follows that:

(chm)Q 11— Kk?sin® ¢y

= 9
dy 1 — k2sin? ¢ ©)

Proof. Let A(x,y) = (x, gy) be the affine transformation sending the circle
C, of radius a to the ellipse &, . Define the points M’ = T-'M and P =
T~(Py). The envelope of the family of lines P'P[ is an ellipse &, 4/, of
semiaxes r and ¢ > r wich is tangent to Mj. See Fig 18.
The line P'M’'P] intersects the circle C, in equal angles, and it follows

that

dpy _ |[M'P[| _ |MPy

dp — |M'P|  |MP|’

Now observe that

|MP|2 :|OP|2 — |OM|2 = a? cos> o+ b? sin? ©— r?

=a® — 12— (a* = b?*)sin® o
2 _ 12
a“ —b* .
= (a® —1?%) <1— PR sin’ <p>

= (a®> —rH(1 — K*sin? @), k? = @~ <1
- ¥)s _CL2—7“2 .

|MPy* =|OP> — |OM;]* = (a® — r?) (1 — k®sin® ¢1)

Proposition 19. Let
#1 dx
J(p,01) = / T
¢ V1—k%sinx
Then J(p,p1) = cte is independent of the initial position .

Proof. Follows directly from equation (9) and Fundamental Theorem of Cal-
culus. O

Remark 7. By the construction above it follows that Ao T’ = T o A and
therefore the two billiar maps t and T' are conjugated by the affine map A.

Theorem 5 (Poncelet). Consider the nested pair of an ellipse £, and a
circle C.. Consider a polygonal orbit Py, = P1 Py ... P, inscribed in E,; and
circumscribed about C,.. If after one revolution along &, the polygon Py, is
closed, then all orbits will be closed.
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Proof. Denote P, = (acospg,bsin ) with 9 = ¢. As J(p,¢1) = w =
cte, it follows that for a n-periodic orbit with turning number N we have
J(p,0+27N) = nw. O

The following proposition can be found originally in [13].

Proposition 20. Consider a billiard of a conver curve. Then the least
number of polygonal orbits of period n (n-sides) is ¢(n), where ¢ is the Euler
function. Moreover, the turning number m < n of a n-gonal periodic orbits
is n/mdc(m,n).

on) =n ] (1—;), n:ilillpfi.

pln

Remark 8. Forn > 2 it follows that

\éﬁ <¢(n)<n-1.

Remark 9. Given a pair of nested ellipses the algebraic criterion for the
existence of N— periodic orbits was obtained by A. Cayley. For a modern
exposition see [9, Chapter IV], [32, Chapter V], [53]. See also [76].

Remark 10. Various examples showing that the Poncelet theorem is not
valid for general pair of convex algebraic curves can be found in [20]. In this
paper is also derived a proof of Poncelet’s theorem.

Remark 11. For other measure properties of billiards and of the Poncelet

map see [17], [27], [55] [71], [73], [78], [112].

5 Elliptic billiards

In this section it will be introduced basic properties of billiards in the re-
gion bounded by an ellipse. This is a rich example of the interplay of
simple objects (conics, polygons) with more complex ones (integrable sys-

tems, variational calculus, caustics, etc). The systematic study started with
Birkhoff [13].

Proposition 21. Consider an ellipse and two tangent lines passing through
an extertor point as shown in Fig. 19. Let also the two lines passing through
the foci. Then we have that 61 = 5.
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Figure 19: Angles 6; and 62 are equal

Proposition 22. Consider an ellipse € with foci F| and F>. Let P be a
point in the region exterior to the ellipse £. Consider the two lines passing
through P andﬂ@ent to E/aiihe two points Py and Ps. Then the bisectors
of the angles PLPPy and FyPFy are coincident. When P € £ the tangent
and the normal lines are bisectors of the lines passing through P and the foci
Fy and Fs. See Figure 20.

bisectors

polar line bisector

Figure 20: Bisectors of angles @2 and FTﬁz are coincident.

Proof. See |76, Chapitre I] and [107, Chapter 4].

Proposition 23. Consider an ellipse and two tangent lines passing through
an eztertor point as shown in Fig. 21. Let also a line passing through the
foci. Then it follows that that cy = .
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Figure 21: Angles a; and a9 are equal

Proof. An analytic proof can be derived as follows. Consider a parametriza-
tion I'(t) = [acost,bsint] of the ellipse and consider two points P; = I'(¢1)
and P» = I'(t2). The tangent line through P; is given by:

rcost; ysint;

1
a b

Tyt
Therefore v N ry is given by

a(sint; —sintg) b(coste — costy)

Py =
12 sin (tl — tQ) ’ sin (tl — t2)

Let Fy = [Va? — b%,0]. It is straightforward to verify that

cosay = (P — Fy, Pi1g — F) _ (Py — Fy, Pio — Fy) — cosa
|Py — F5||Pia — Fo| [Py — F||Pig — Fy

O

Proposition 24 (|23, Chapitre II1]). Consider two confocal ellipses € and
&1 and a point M € €. Consider the two tangents £p and lq, as shown in
Figure 22, intersecting &, in P and Q. Then |M P|+|MQ|—arc(P, Q) = cte,
where arc(P, Q) is the length of the elliptic arc with extremal points P and
Q. In particular, in a billiard triangle conv|Py, Py, Ps], |PiPa| + |PyPs| +
|PsP1| — L(&1) = c1, where L(&E1) is the length of &1, and all the billiard
triangles have the same perimeter.
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Figure 22: Tangents to a confocal ellipse £1 and invariance of the length of chords.

Proof. See [28], [23, pp. 283-284| and [90, pp. 115-116]. It would be useful to
obtain a proof using only the properties of the confocal pair of ellipses. [

The above result is valid for any billiard in a convex curve having caustics.

Proposition 25. Consider a billiard in a region with boundary a convex
curve I'. Let v be the caustic of a family of orbits as shown in Fig. 23. Then
foranyx el

|z — y| + | — 2| — arc(y, z) = cte.

Here y,z € v are the points of tangency of the billiard orbit passing through
x with the caustic and arc(x, z) is the length of caustic between y and z.

x

xl

Figure 23: Tangents to a caustic and length of chords.
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Sketch of Proof. Let I'(t) be a parametrization of the boundary. Consider
also local parametrizations 7, (t) and ~2(t) of the caustic v with v1(0) = z,
v2(0) = y, and I'(0) = x. Suppose that all curves are counterclockwise
oriented. Let also the caustic parametrized by natural parameter s. Then

V(s) = 71(t) = T(t) + A)dr(t), v(s) = 2(t) = T(t) + A(t)d21(2).

Here di and do are the directions of the tangent lines xy and xz to the
caustic.
Let I1(t) = |I'(t) — v1(¢t)| with [3(0) = |x — z|. Also define Iy(t) =
[T () — 72(8)] with I2(0) = [z — y].
By Proposition 9 it follows that
dly = cosn|T"(t)|dt — |v1(s)|ds
dly = |4(s)|ds — cosn|T'(t)|dt
Here we used the condition of billiard orbit at the point x (angle of incidence

is equal to angle of reflection) and that cosf; 2 = £1 (caustic is tangent to
billiard orbits, taking into account the orientation). Therefore it follows that

d(ly + I2) = [73(s)lds + [v1(s)|ds = 0.
Integrating it follows that

li(a) = 11(0) + la(a) — 12(0) = arc(71(0),71(a)) — arc(y2(0), y2(a))

Therefore,

hi(a) +l2(a) — arc(n(a), y2(a)) = 11(0) +12(0) — arc(11(0), 2(0))-
0

Proposition 26 (|23, Chapitre I11]). A billiard triangle has mazimum perime-
ter among all triangles inscribed in £ and the minimum perimeter among all

the triangles circumscribed about E.. If the ellipse £ has axes a and b, a > b,

then the perimeter of all billiard triangles is

228 —a2 — b2 (a®> + V> +6
Lo W@ o e

a2 — b2

Moreover, supposing 0 < b < a, it follows that 4a < L < 3v/3 a.

Consider the ellipse F(x,y) = 22/a® + y*/b> — 1 = 0 be parametrized
by v(u) = (x(u),y(u)), where u is the angle of the vector vy(u) — 0 with the
x-axis. See [51]. Let h(u) = |7/ (u)|. It follows that
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() abcosu absinu
y\u) = )
VaZsin2u+ b2 cos2u VaZsin?u + b2 cos? u
b 4 qin2 b4 2
()] = ) = Vst Voo (10)
(a2 sin® u + b2 cos? u)
2v/atsin? u + b4 cos2 u
IN| = |[VE(y(u))| =

ab\/a2 sin® u + b2 cos2 u
Proposition 27. Consider an ellipse £ and a line £ passing through pg € &€

and making an angle 8 counterclockwise with the tangent line to € at pg.
Then there exists an unique confocal ellipse tangent to £ and semi axes are

gwen by a”’ = +va? —1r and b = /b2 — r where
(a4 sin? u + b* cos? u) sin? 0
a?sin? u + b2 cos? u

The function J(u,0) = b> —r = b> — M (u)sin® 0 is T-invariant.

= M (u)sin? 0

r =

Proof. Straightforward calculations using that the straight line
0 y(u)+s [cos 07/ (u) + sin 6+ (u)*

has quadratic contact with the confocal ellipse z%/(a® — r) + y?/(b*> — 1) =
1. O

Proposition 28. Restrict to the regular level curves of J = X\ the billiard
transformation T\ preserves the one differential form
h(u) sin edu B h(u)du

Jo 24/ M (u)(M(u) — b2 + \)

dp = —

Proof. The transformation T' preserves the two differential form defined by
w = sinf h(u)du A df. Here ds = |y (u)|du = h(u)du is the arc length of
the ellipse. The result follows performing the calculations as in the proof of
Proposition 12. O

Proposition 29. In the above conditions it follows that:

ks(\) du

du =
s V(1 =K1 (X) cos?u) (1 — ko cos? u)

(a? — b?)(a® +20% — \)

kL(A) = a?(a? 4+ b2 — )
a2 o b2

ko = 2
b
ks(A) =

_a\/a2 +0b2 -\
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Proof. Follows from direct symbolic computations.
In fact,

ab du
\/(b2 (202 — A) cos? u + a? (a® + b2 — \)sin? u) (a2 sin® u + b2 cos? u)

dp =

O

5.1 Joachimsthal integral

Proposition 30. Consider an ellipse € defined by (Ap,p) = 1. Let u be an
inward unit vector in the direction of the billiard orbit passing through the
point pg € € . Let T(po,u) = (p1,v). Then

(Ap(],u> = —<Ap1,u> = (Ap1,1)>

Apo

Figure 24: Joahimsthal first integral (Apo,u) is T-invariant

Proof. The tangent space T,,& is formed of the vectors u such that (Ap,u) =
0. Therefore Ap is a normal vector to the ellipse at the point p. The vector
u is proportional to p; — po.

Therefore,

(Apo + Ap1,p1 — po) = (Apo, p1) + (Ap1,po) — (Apo, po) + (Ap1,p1)
= (po, Ap1) — (Ap1,po) = 0.

Then,
(Apo,u) = (Ap1, —u) = (Ap1,7(—u)) = (Ap1,v)
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Definition 1. A billiard is called algebraically integrable if there is a poly-
nomial in velocity v = (uy,ug) first integral J(p,v) which is a non-constant
function on the energy level {|u| = 1}.

Remark 12. In the elliptic billiard 2?/a® 4+ y*/b* = 1,a > b > 0, the
function

J(xayvulaua) - b2u% + GQU% - (.’EUQ - yu1)2
s a first integral.

We conclude this section with the following theorem. See [19, Chapter
IV], [59, Chapter 6], [103, Lecture 10] and [107]. In the language of dynamical
systems it can be expressed in terms of rotation numbers and properties of
circle diffeomorphisms. See also [79].

Theorem 6. Consider an elliptic billiard defined in the ellipse £ given by
22/a? + 32 /6% =1 (a > b). Let Fi = (—c,0) and F» = (¢,0) the foci of £.
Let (P,) = (Pn)nez be a billiard orbit inscribed in E. Then:

i) If the segment of orbit Py Py is outside the segment Fy F» then the caus-
tic of the orbit (Py,) is a confocal ellipse £ and the orbit is periodic or
dense in the annulus defined by the pair {€,&:}.

i1) If the segment of orbit Py Py intersects the segment Fy Fy then the caus-
tic of the orbit is a confocal hyperbola Hy and the orbit is periodic or
dense in the disk defined by the ellipse £ and the caustic H;.

ii1) If the segment of orbit PyP) pass through a focus then the orbit pass
through the other focus and is asymptotic to the 2-periodic orbit (diam-
eter of the ellipse £) in the past (backward) and the future (forward).

Py

Py
p
Py
Py
P

1

Figure 25: Three types of billiard orbits in the ellipse.

Proof. We follow [17] to obtain the billiard map as a composition of two deck
transformations. Consider the pair of nested ellipses parametrized by

22 w?

2 y2
E1:9(xy)=—=+5—-1=0.

ag b
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A tangent (oriented) line to & (caustic), passing through gy = (z,y) is given
by xz
hz,y, z,w) = a—%—i— g —-1=0.

Now consider the set ¥ = {(z,y,z,w) : f(z,w) = g(z,y) = h(z,y,z,w) =
0}. The set X is the union of two disjoint circles (curves diffeomorphic to
circles) given by ¥y = {peX:zw—yz>0tand ¥_ ={pe X :zw—yz <
0}. Given gy € &1, let pg = (z,w) € & such that (qo,pp) € X4+. A line
passing through py and tangent to £; passes through the point ¢; = (u,v)
and (u,v,z,w) € X_.

The projection 71 : 3 — &1 is a double cover. The same for the projection
and 7w : ¥ — £. Now we observe that there is a unique map 7 : YL —
Y+ such that 7(x,y,2,w) = (z,y,2,w). Here (Z,w) is the other point of
intersection of the tangent line passing (z,y) with the outer ellipse £.

Also there is a unique map o : ¥y — 3¢ such that 7(z,y,2z,w) =
(Z,9,z,w). The point ¢1 = (Z,y) € &; is the in polar line of pg = (z,w).
Therefore the billiard orbit can be defined as follows. For each ¢; € &1, let
p; € & the point of intersection of tangent line at g; to & meets £ with
(gi,pi) € X4. Now let g;+1 the unique point on &; such that {g¢;,qit+1} are
on the two tangent lines to & that pass through p;. Therefore, the map
gi — ¢i+1 1is given by o o 7 (resp. p; — pi+2) is an orientation preserving
diffeomorphism on & (resp. on &).

e

Figure 26: Three types of billiard orbits in the ellipse.

When the caustic is a hyperbola is necessary to consider the second iter-
ation to obtain an orientation diffeomorphism. See [13]| and [73].
Finally, when the orbit pass through a focus the billiard map is conju-

gated to a diffeomorphism of the circle having two hyperbolic fixed points.
O

Remark 13. The billiard orbits in the ellipse are “good” approximations of
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geodesics in the ellipsoid x°/a® + y?/b> + 22/ = 1, ¢ ~ 0. See [13], [10,
Chapter 10/, [/7, Chapter 7] and [72, Chapter 3].

Remark 14. The rotation number of an elliptic billiard map was obtained in
[73]. For basic properties of rotation numbers of circle homeomorphisms see
[60], [82], [106]. The phase space of the billiard map in the elliptic billiard
s shown in Fig. 27.

/\/\

Figure 27: Phase space of the billiard map in the elliptic billiard. Each curve represents
the family of lines tangent to a fixed confocal conic (ellipse or hyperbola). The co—curve
represents the orbits that pass through the foci The singular points represent the two axes
of the ellipse; see [39, Lecture 28|.

Problem 1. Consider two ellipses &1 and Ex with eccentricities e; = c¢1/ay
and es = ca/as. When the two associated elliptic billiard flows are Co-
equivalents? Is there a classification in terms of eccentricities? Recall that
CP-equivalence is the usual notion of topological equivalence of flows; see
[82]. This means that there is a homeomorphism h sending orbits of the first
billiard system into orbits of the second one.

6 Other objects associated to the elliptic billiard

In this section it will be considered only elliptic billiards defined in the el-
lipse 22/a® + y?/b®> = 1 (a > b). Consider a family of 3-periodic orbits
parametrized by the vertices of the triangle A(t) = {Pi(t), Pa(t), Ps(t)} with
Pi(t) = [acost,bsint]. Explicit expressions of the vertices P»(t) and Ps(t)
are given by equations (16) and (17) in Appendix A. See also [42].

The caustic of the 3-periodic orbits is the ellipse 22/a? + y? /b = 1.

_}2 2 _
7‘1(526), L )] . ) = AR

c

Qe =
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Associated to a triangle we have the classical center points (incenter,
barycenter, circumcenter, orthocenter any more). There are approximately
40000 catalogued triangular centers. These centers are denoted by X,,.
See [70].

A basic question is about the locus of these triangular centers over the
family of 3-periodic orbits. Consider the geometric locus X,, = {X,,(¢) : t €
[0,27)}, where X,,(t) is the triangular center of A(t).

The fact that X7 is an ellipse was established by O. Romaskevich (93, 94],
using techniques of complex algebraic geometry.

The following results were obtained in [42] and [46]. See also [43], [91]
and [101].

Theorem 7. The geometric locus X1 is an ellipse of the form z%/a? +
y? /b3 = 1, where

§— b2 a? -6

= by = . 11
m=""" =" (1)

The locus of the Excenters (triangle formed by the intersection of external
bisectors) is an ellipse with axes:

b2 +6 a’?+6
Ae = s be:
a b

Notice it is similar to the X; locus, i.e., aij /by = be/ae.

Theorem 8. The geometric locus Xo is an ellipse of the form z%/a3 +
y? /b3 = 1, where
26 —a? — b?
by) =k b here kg = — — 7~
(a2, b2) 2 (a,b), where ko 302

The locus Xo is similar to the billiard.

Theorem 9. The geometric locus X3 is an ellipse of the form z*/a3 +
y? /b2 =1, where

5 (12)

The foci of X3 are (0, iz%) and Z—z = 3, this means that X3 and is similar
to the rotated caustic ..

2a

Theorem 10. The geometric locus Xy is an ellipse of the form x2/a% +
y? /b3 = 1, where

c2

ks k a? + b%)6 — 2a2b?
(aq,bs) = <a4’b4>’ ky = ( )

The locus X4 is similar to the rotated billiard.
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Figure 28: The locus of orthocenters X4 (green) is an ellipse similar to the rotated billiard
(red).

Question 1. Let X, (t) be a triangular center of a 3-periodic orbit {Pi(t),
Py(t), Ps3(t)} on an elliptic billiard. For each values of n, the locus X,, =
{X,(t) : t € (0,27} is an ellipse? For more details see [}5]. The first non
elliptic locus is X¢ (symmedian points or Lemoine points) [70].

The symmedian point is the unique point in the interior of the triangle
that minimize the sum of the squares distances from the point to the three
sides of the triangle.

Consider the space P, of polygonal lines inscribed in an ellipse &, .
By Poncelet’s theorem, when we have a n—periodic elliptic billiard orbit
all orbits are n—periodic and of the same type. A billiard n-periodic orbit
will be denoted by the vertices P;(t) € &, 5. This defines a smooth path
v :[0,27) = Pp, y(t) = [Pi(t),. .., Pu(t)].

A function ¢ : P, — R is called invariant if is constant in the path of
billiard orbits, i.e., p(v(t)) = cte.

Theorem 11. Let r(t) and R(t) be the variables radius of the incircle and
circumcircle of A(t). Then r(t)/R(t) is invariant over the 3-periodic billiard
orbits and is given by:

r(t)  2(6 —b*)(a® —9)
R(t)  (a®—0?)?
where J = /26 —a% — b2 /(a? — b?) is the Joachimstall constant of the 3-

periodic orbit and L = 2(§ + a® + b®).J is the perimeter of the S-periodic
orbit.

= JL — 4. (13)
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Proof. See [46]. O

Theorem 12. Let A(t) = {Pi(t), Px(t), Ps(t)} be the family of 3-periodic
orbits of an elliptic billiard. Let 0;(t) the internal angles of A(t). Then the
sum of cosines is invariant and

cos 01 (t) + cos 02(t) + cosb3(t) = JL — 3
Proof. See |46] 0

Remark 15. The above result was established for N— periodic elliptic bil-
liard orbits as

N
Zcos@i(t) =JL - N.
i=1

Here J is the Joachimstall constant of the N -periodic orbit and L its length.
For precise statement and proof see [2].

The power of a point @ with respect to a circle centered at Cy = (xq, yo)
of radius R is given by |Q — Co|? — R?. Let C(t) be the (moving) circumcircle
to the 3-periodic billiard orbits.

Theorem 13. The power of the billiard center O = (0,0) with respect to
C(t) is invariant and equal to —0.

Proof. See [16]. O

The next result gives a construction of 6-periodic orbits in a billiard pair
from 3-periodic billiard orbits in another pair of confocal ellipses. For general
constructions see |77], [100].

Proposition 31. Consider a 3-periodic billiard orbit and its antipodal or-
bit. The siz points of intersections of the two triangles are contained in a
stationary confocal ellipse Ey: 2 /a2 + y? /b2 = 1 where:

(6 =) (a® +b*+26) V26 — a® — 2

ar, =

" 3(a2 — 12)?

. _(a2—6)(a2+62+25)\/2(5—a2—b2
" 3 (a2 — 1?)?2

The pair of ellipses {En,E1} is a billiard pair having all orbits of period 6.
Also the pair {€, &L} defines a zig-zag billiard. The orbits have period 12 and
the perimeter is constant. See Fig. 29.
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Figure 29: Stationary ellipse and an elliptic billiard pair {€n, &1} with orbits of period
6. Also is shown a zig-zag billiard orbit P1Q1PsQ2 ... PsQsP1 of period 12 of the pair
{&,En}-

Proof. Left to the reader. The easy part is to obtain the equation of the
ellipse &,. This can be done using the explicit parametrization of 3-periodic
orbits given in Appendix A. We need only to solve a linear system of equa-
tions. The more laborious part is to show that &, is stationary. This can be
justified using Poncelet threorem. O

Remark 16. For a historical and projective properties of hexagons inscribed
in conics see [20] and [30, Chapter 9]. For example, the Pascal’s theorem tell
us that an hexagon inscribed in a conic the three pairs of opposite (extended)
sides meet in collinear points.

Proposition 32. Consider the ellipse x2/a® + y*/b*> = 1. For a 3-periodic
billiard orbit with vertices P; = [x;,y;] (i=1,2,3) it follows that:

(w293 — x3y2) T1y1 + (T3 91 — 21 Y3) T2 Y2 + (T1 Y2 — T2 Y1) 23 Y3 =0
Proof. Left to the reader. O

Consider a 3-periodic billiard orbit given by {Pi(t), P2(t), P3(t)}. See
Appendix A.
Consider the polygon C;(t) = [1/zi(t), 1/y:(t)]. Here P;(t) = [x;(t), y:i(t)].

Lemma 2. The polygon {C1(t), Ca(t), C3(t)} is a segment that can be bounded
or unbounded.
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Proof. Follows directly from Proposition 32 and the explicit parametrization
of this orbit (see Appendix A). O

Proposition 33. The envelope of the family of lines defined by the degen-
erated polygon C;(t) (i=1,2,3) is the ellipse B given by
6,.2 b6y2

a-xT

(32 + vaT— a2 57 " (a2 + vaT— a2 1 57)’

—-1=0.

Moreover, B is similar to the caustic rotated by 5. See Fig. 30.

R
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Figure 30: Envelope of the family of lines defined by the degenerated polygons C;(t).

Proof. This can be done from the definition of envelope of the family of lines
containing the vertices C;(t). The calculations are long, but straightforward.
It is helpful to use symbolic computations here. O

Proposition 34. Let £ be the circumellipse of a triangle A centered in the
triangle center Xo(mittenpunkt) of A. Then & is an elliptic billiard having
A as a 3-periodic orbit. The mittenpunkt is stationary over the family of
3-periodic orbits. See Fig. 31.

UNRB



Ronaldo A. Garcia 37

Figure 31: Triangles A = {A, B,C} and A’ = {A’, B’,C’} (excentral triangle) and the
elliptic billiard £ centered at Xg.

Proof. See [43] and [70]. Recall that Xg is the point of concurrence of lines
drawn from each excenter (intersection of external bisectors of A) to the
midpoint of the corresponding side of the triangle. See Fig. 31. O

Proposition 35. Let & be the inellipse of a triangle A centered in the
triangle center Xg(mittenpunkt) of A. Then & is the caustic of an elliptic
billiard € having A as 3-periodic orbit. The mittenpunkt is stationary over
the family of 3-periodic orbits. See Fig. 32.

Figure 32: Triangle A = {4, B, C}, inellipse &£ and the elliptic billiard £ centered at Xo.

Proof. Left to the reader. We have that &£ is the unique ellipse inscribed
in the triangle A and tangent to its sides at their extouch points (points of
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intersection of A with its excircles). The ellipse & is known as Mandart
ellipse [113, Mandart Inellipse|. O

Question 2. Which simple or self-intersected N- gon (closed polygon with
N wertices and N sides) can be an orbit on an elliptic billiard?

For N = 4 only the parallelogram can be a non self-intersected orbit on
an elliptic billiard, see [29]. For the analysis of self-intersected 4 — gons see

[44].

Remark 17. For an extensive list of invariants and conjectures associated
to N— periodic elliptic billiard orbits see [92]. See also [//] for some explicit
formulaes for small N.

7 Caustics

In this section will be present some properties of the billiard caustics. Recall
that is classically well known that the caustics of elliptic billiards are confocal
ellipses (elliptic orbits) and confocal hyperbolas (billiard orbits pass between
the two foci). See |9, Chapter XI|, [59, Chapter 6].

Figure 33: Envelope of billiard orbits: ellipse (left) and hyperbola(right).

Let I" be a smooth convex curve parametrized by arc length s, and con-
sider a smooth family of oriented lines passing through the points of I'. A
parametric representation is given by

U(s,v) =T(s) +vd(s), |d(s)] =1, |[T"(s)| =1

Denote by 6(s) the angle between d(s) and I(s). Therefore we can write
d(s) = cos@(s)T(s) + sinf(s)N(s) where {T'(s), N(s)} is the Frenet frame
of I'.

Lemma 3. The envelope of the family ((s,v) is given by

E(s)=T(s) — %d(s).
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Proof. The envelope of a family of straight lines is the locus of singularities
and is defined by the condition that the tangent vector of E(s) = £(s,v(s))
is parallel to d'(s). Let [.,.] denotes the determinant of two vectors (oriented
area of the parallelogram). So it follows that

(B, d) = [['(s) + v(s)d (s) + o/ (s)d(s), ()] = 0

Then,

Next, in other to apply to billiards, consider the reflected family of lines
defined by

lr(s,u) =T(s) + udy(s), |dr(s)| =1.

The envelope of 4,(s,u) is defined by the function

1 1 2k(s)
lu(s)| * lv(s)] N sinf(s) (14)

Proof. We have that d(s) = cos 8(s)T'(s)+sin6(s)N(s) and d,(s) = — cos0(s)T(s)+
sinf(s)N(s).

Therefore,
1 0(s) +k(s) L 0'(s) —k(s)
v(s) sinf(s)  u(s)  sinf(s)
This ends the proof. O
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tangent line

polar line

v,

Figure 34: Caustic and length of chords.

The following is a direct consequence of Proposition 36. See also [57] and
[114].

Corollary 4. Consider a smooth convex curve I with curvature k > 0. Let
~ be the caustic and the chords as shown in Fig. 3. Then

1 1 2% ()
+ ==,
|t —y| |z—2] sinf

When the curve is not strictly convex we have the following consequence.
See [81] and [95, Chapter 3|.

Theorem 14. If the curvature of a convex smooth billiard curve vanishes at
some point, then the associated billiard map has no invariant circles.

Theorem 15. Consider a convex billiard table with boundary T' of class C?.
Let d be the diameter, L be the length and A be the area. Let k = min{k(s)}
and K = maz{k(s)} of the curvature k of . Suppose that \; = /2d*kK < 1
and let Ao = 1 —\/§de2/14. Then the billiard table contains a conver region,
free of caustics, whose area is at least Aa.

Proof. See [57]. O

The result below can be found in [103, Lecture 10|. See also [7], [39,
Lecture 28] and [54].

Proposition 37. Let v be a convex curve of length I(v) > 0. For p outside
v let L(p) the length of a string through p stretched tightly around ~y. For
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each r > (%), let C, = {p € R? : L(p) = r}. Then C, is the boundary of a
convex body I' having v as a caustic.

pencil

v

Figure 35: Caustic v and the string construction of the convex curve I'.

Problem 2. Consider an elliptic billiard £ having a family of 3-periodic or-
bits given by A(t) = {P1(t), P2(t), P5(t)}. Denote by Ac(t) = {Q1(t), Q2(t), Qs(t)}
the wertices of the polar triangle (also it is the extouch triangle of A(t))
inscribed in the caustic £ (Mandart innelipse of A(t)). Find explicitly
the envelope & of the family of lines lij(u,t) = uQ;(t) + (1 — u)Q;(t)
(1 #75=1,2,3). Show that {&1,E} is a Poncelet pair.
In the three dimensional space of triangles inscribed in an ellipse analyze
the properties of the curves A(t) and A.(t).

Remark 18. The study of caustics of billiards on complex conics was de-
veloped in [36]. In this context it is used the complex reflection law to define
the billiard orbit.

8 Birkhoff Conjecture

The following is a classical open problem in theory of planar billiards. See
[13], [55], [88] and [107, Chapter 2].
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Conjecture 1 ([13]). Let I be a strictly convex smooth billiard curve. If a
neighborhood of T is foliated by caustics (smooth simple closed curves), then
I is an ellipse.

Partial deep results concerning the solution of this conjecture are the
following works: [6], [12], [66].

Also it is worth to observe that billiards have a remarkable relation with
the spectrum of the Laplace operator in the domain €, see [51], [87] and ref-
erences therein. Therefore, in some way from the billiard dynamical behavior
in Q it is possible to reconstruct the shape of the domain.

An outer billiard is polynomially integrable, if there exists a non-constant
polynomial function f : R?> — R that is invariant under the outer billiard

mapping T’ i.e., f(T(z,y)) = f(2,y).
The following result is valid. See [52].

Theorem 16. Let an outer billiard generated by a C*-smooth strictly convex
closed curve C be polynomially integrable. Then C is an ellipse.

A dynamical version of the Birkhoff conjecture is the following.

Conjecture 2 (|79]). The elliptic billiards are the only ones whose associated
billiard maps have polynomial entropy equal to 2.

9 Other types of billiards: impact systems

In this section, we briefly describe a more general context of billiards.

Given any second order differential equation
p" = f(p), pecQcR? (15)

in a connected region €2 of the plane, an extended solution (billiard orbit)
is the union of orbits of (15) such that when the orbit meets the boundary
it is reflected with equal angle of incidence and preserving the velocity in
magnitude. An example considered in [63] is the following.

Let two disks D1 = {p € R?: (x + 1)2 + (y +7)2 <r?} and Dy = {p €
R%: (z —1)2+ (y +7)? <r?} and Q = R?\ (D; U Dy). Consider a particle
moving in {2 obeying the gravitational law, i.e., 2" = 0,y"” = —g.
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Figure 36: Gravitational inclined billiard.

All billiard orbits are vertical lines or union of lines and segments of
parabolas. The analysis of this dynamical system is not immediate.

Another generalization of billiards is when the system is non-autonomous
and/or the region is variable. For example consider a particle moving in the
plane but meeting a boundary oscillating periodically. Let Q; = {p = (z,y) :
y > sinwt} and a particle moving according the gravitational law, hitting the
boundary of €, elastically (preserving moment of mass and angle of incidence
equal to that of reflection). This rich dynamic was studied in [3], [64].

See [38], [67], [80] and [111] for other variations of billiards. Finally we
mention the book by C. Coriolis [21] modelling a billiard table. This is
another history!

Figure 37: A round billiard table https://images.app.goo.gl/sFMhHEw33XB3UgeC8.


https://images.app.goo.gl/sFMhHEw33XB3UgeC8
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.
A Parametrization of 3-periodic orbits

The following explicit parametrization of the family of 3-periodic orbits in
an elliptic billiard defined in the ellipse 2%/a? + y?/b*> = 1 can be found in
[42].

A 3-periodic orbit is parametrized by P, = (z1,y1), P» = (x2,y2) and
P3 = (z3,y3) with:

o Py = (x2,y2), where xo = B2=

q2

P2y are given by

and yg = -

poz = — b ((a2 + 62) cos® a — a2) 23 — 248 cosasina
+at ((a2 —30%) cos® a + b2) z1y3 — 2a’? cos a sin axty,
D2y =2b° cosasinaz? — a? ((a2 + b2) cos® o — b2) vi
274 : 2 pd (2 2 2 2\ .2 (16)
+2a’b* cosasina z1yi + b* ((b* — 3a%) cos® a + @) Ty
g =b* (a® — (a® — b*) cos® a) z7 + a* (b* + (a® — b%) cos® ) yf
—2a%h? (a2 — b2) cosasina x1 Y.

— P3x
q3

P are given by

and y3 = 0

o P35 = (x3,y3), where x3
p3e =b* (a2 = (b2 + a2)) cos® ax? +2a% cosa sinay?
+a* (cos2 o (a2 -3 62) + bz) z1 Y3 + 2a*h? cos asin iy
D3y = — 2 b8 cos arsin o 3 + at (b2 — (b2 + a2) cos? a) y3
—2a*b* cosasina iy’ + b? (a2 + (b2 - 3a2) cos? ) 3y,
g3 =b* ((12 — (a2 — b2) cos? a) z? + a* (b2 + (a2 - b2) cos? a) ye

+2a’b? (a2 — b2) cosasinazy yi.

(17)

The angle « is given by

a?b \/—a2 — b2 +2+vat —b2c2

c2\/at — 222

COS & =

Acknowledgments

The author is grateful to Armengol Gasull for helpful comments. The author
is fellow of CNPq and coordinator of Project PRONEX/CNPq/FAPEG 2017
10 26 7000 508. Figures were done with inkscape and geogebra.

References

[1] Alkoumi, Naeem; Schlenk, Felix. Shortest closed billiard orbits on
convex tables. Manuscripta Math. 147 (2015), no. 3-4, 365-380.

UNRB



Ronaldo A. Garcia 45

[2] Arseniy Akopyan and Richard Schwartz and Serge Tabachnikov, Bil-
liards in Ellipses Revisited, Eur. J. Math., 9. 2020, http://doi.org/
10.1007/s40879-020-00426-9

[3] Akhmet, Marat. Principles of discontinuous dynamical systems.
Springer Verlag, New York, (2010) xii+176 pp.

[4] Amiran, Edoh Lazutkin coordinates and invariant curves for outer
billiards. J. Math. Phys. 36 (1995), no. 3, 1232-1241.

[5] Arnold,V. L., Singularities of caustics and wave fronts, Math. Appl.
62, Kluwer, Dordrecht, 1990.

[6] Avila, A., Kaloshin, V., de Simoi, J. An integrable deformation of
an ellipse of small eccentricity is an ellipse, Ann. of Math., Vol. 184
(2016), 527-558.

[7] Arnold, M. Bialy, M. Nonsmooth convex caustics for Birkhoff bil-
liards. Pacific J. Math. 295 (2018), no. 2, 257-2609.

[8] Barth, W. and Bauer, T. Poncelet Theorems, Exp. Math., 14 (1996),
125-144.

[9] Berger, Marcel, Geometry Revealed: a Jacob’s Ladder to Higher Ge-
ometry. Springer Verlag, (2005) 831pp.

[10] Berger, Marcel, A panoramic view of Riemannian geometry. Springer
Verlag, (2002).

[11] Bezdek, K., Connelly, R. Covering curves by translates of a convex
set. Am. Math. Monthly 96(9),789-806 (1989).

[12] Bialy, M. and Mronovthe, E. The Birkhoff-Porstsky conjecture for
centrally-symmetric billiard tables. arXiv:2008.03566v2 (2020).

[13] Birkhoff, G. On the periodic motions of dynamical systems. Acta
Mathematica, 50(1):359-379 (1927).

[14] Birkhoff, George D. Dynamical systems. With an addendum by Ju-
rgen Moser. American Mathematical Society Colloquium Publica-
tions, Vol. IX American Mathematical Society, Providence, R.1. 1966
xii+305 pp.

[15] Brogliato, Bernard. Nonsmooth impact mechanics. Models, dynamics
and control. Lecture Notes in Control and Information Sciences, 220.
Springer-Verlag London, Ltd., London, 1996. xvi+400 pp.

[16] Boyland, P. Dual billiards, twist maps and impact oscillators Non-
linearity 9 (1996) 1411-1438.


http://doi.org/10.1007/s40879-020-00426-9
http://doi.org/10.1007/s40879-020-00426-9

16

Polygons, conics and billiards

[17]
[18]

[19]

[20]
[21)
[22)
23]
[24]
[25)

[26]

[27]

28]

[29]
[30]

[31]

UNRB

Bryant R. Poncelet’s theorem. http://arimoto.lolipop.jp/
PonceletforBMC.pdf

Bunimovich, Leonid A. Mechanisms of chaos in billiards: dispersing,
defocusing and nothing else. Nonlinearity 31 (2018), no. 2, R78-R92.

Chernov, Nikolai; Markarian, Roberto Introduction to the ergodic
theory of chaotic billiards. Monografias del Instituto de Matemaética
y Ciencias Afines IMCA, Lima; Pontificia Universidad Catolica del
Peru, Lima, 2001. 187 pp.

Cima, Anna; Gasull, Armengol; Manosa, Victor. On Poncelet’s maps.
Comput. Math. Appl. 60 (2010), no. 5, 1457-1464.

Coriolis, G.-G. Gaspard-Gustave de Coriolis,G.G. Théorie Mathéma-
tique des Effets du Jeu de Billiard, Carilian-Goeury, Paris (1835).

H. T. Croft, H. T.; Swinnerton-Dyer, H. P. F. On the Steinhaus
billiard table problem. Volume 59(1) (1963), pp. 37-41

Darboux, G. Principes de Géométrie Analytique. Paris: Gauthier-
Villars (1917).

Del Centina, Andrea Poncelet’s porism: a long story of renewed dis-
coveries, I. Arch. Hist. Exact Sci. 70 (2016), no. 1, 1-122.

Del Centina, Andrea Poncelet’s porism: a long story of renewed dis-
coveries, II. Arch. Hist. Exact Sci. 70 (2016), no. 2, 123-173.

Del Centina, Andrea Pascal’s mystichexagram, and a conjectural
restoration of his lost treatise on conic sections. Arch. Hist. Exact
Sci. 74 (2020), no. 5, 469-521.

Cieslak, W. ; Mozgawa, W. In search of a measure in Poncelet’s
porism. Acta Math. Hungar. 149 (2016), no. 2, 338-345.

Charles, M. Propriétés genérales des arcs d’une section conique dont
la différence est rectifiable. Comptes Rendus Hebdomadaires des
Séances de I’Académie des Sciences, T.17 (1843), 838-844.

Connes, A., Zagier, D. A property of parallelograms inscribed in el-
lipses. The American Math. Monthly, 114(10): 9097914. (2007).

Coxeter, H. Projective Geometry. Second Editon. Springer Verlag
(1987).

Dias Carneiro, Mério Jorge; Oliffson Kamphorst, Sylvie; Pinto de
Carvalho, Sonia. Elliptic islands in strictly convex billiards. Ergodic
Theory Dynam. Systems 23 (2003), no. 3, 799-812.


http://arimoto.lolipop.jp/PonceletforBMC.pdf
http://arimoto.lolipop.jp/PonceletforBMC.pdf

Ronaldo A. Garcia 47

[32] Dragovi¢, V. (2011). Poncelet-Darboux curves, their complete decom-
position and Marden theorem. Int. Math. Res. Not. IMRN no. 15,
3502-3523.

[33] Dragovi¢, V., Radnovi¢, M. (2014). Bicentennial of the great Pon-
celet theorem (1813-2013): current advances. Bull. Amer. Math. Soc.
(N.S.), 51: 373-445.

[34] Dragovi¢, Vladimir; Radnovié, Milena Poncelet porisms and beyond.
Integrable billiards, hyperelliptic Jacobians and pencils of quadrics.
Frontiers in Mathematics. Birkh&user/Springer Basel AG, Basel,
(2011). viii+293 pp.

[35] M. Farber and S. Tabachnikov, Topology of cyclic configuration
spaces and periodic trajectories of multi-dimensional billiards, Topol-
ogy 41 (2002), 553— 589.

[36] Fierobe, C. Complex caustics of the elliptic billiard.
arXiv:1904.03706v6. Arnold Math J. (2020). https://doi.org/10.
1007/s40598-020-00152-w

[37] Flatto, Leopold. Poncelet’s theorem. Chapter 15 by S. Tabachnikov.
American Mathematical Society, Providence, RI, (2009) xvi+240 pp.

[38] Fokicheva, V. V. Topological classification of billiards in locally pla-
nar domains bounded by arcs of confocal quadrics. Sb. Math. 206
(2015), no. 9-10, 1463-1507.

[39] Fuchs, Dmitry; Tabachnikov, Serge. Mathematical omnibus. Thirty
lectures on classic mathematics. American Mathematical Society,
Providence, RI, (2007) xvi+463 pp.

[40] Gaivao, José Pedro. Asymptotic periodicity in outer billiards with
contraction. Ergodic Theory Dynam. Systems 40 (2020), no. 2, 402—
417.

[41] G. Galperin, A. Stepin, and Y. Vorobets. Periodic orbits in polygons;
generating mechanisms, Russian Math. Surueys 47 (1992), 5-80.

[42] Garcia, R., Elliptic Billiards and Ellipses Associated to the 3-Periodic
Orbits, American Mathematical Monthly, 126(06), (2019) 491-504.

[43] Garcia, R., Reznik, D. and Koiller J. Loci of 3-periodics in Ell. Bil-
liard: why so many ellipses? Arxiv. (2020).

[44] Garcia, R., Reznik, D. Invariants of Simple and Self-Intersected N-
Periodics in the Elliptic Billiard. Arxiv (2020).


https://doi.org/10.1007/s40598-020-00152-w
https://doi.org/10.1007/s40598-020-00152-w

48

Polygons, conics and billiards

[45]
[46]

[47]

48]
[49]

[50]

[51]

[52]

[53]
[54]
[55]

[56]

[57]
[58]

[59]

UNRB

Garcia, R., Reznik, D. and Koiller J. Loci of 3-periodics in elliptic
billiard: why so many ellipses? Arxiv (2020).

Garcia, R., Reznik, D. and Koiller J. New properties of elliptic bil-
liards. Amer. Math. Monthly. To appear (2021).

Garcia, Ronaldo; Sotomayor, Jorge Differential equations of classical
geometry, a qualitative theory. Publicacbes Matemaéticas do IMPA.
27° Coloquio Brasileiro de Matemaética. (IMPA), Rio de Janeiro,
(2009) ii+256 pp.

Genin, Daniel. Hyperbolic outer billiards: a first example. Nonlinear-
ity 19 (2006), no. 6, 1403-1413.

M. Ghomi, Shortest periodic billiard trajectories in convex bodies.
Geom. Funct. Anal. 14(2), 295-302 (2004).

Glaeser, G., Odehnal B., Stachel, H. (2016). The Universe of Conics:
From the Ancient Greeks to 21st Century Developments. New York:
Springer Verlag.

Guillemin, Victor; Melrose, Richard An inverse spectral result for
elliptical regions in R?. Adv. in Math. 32 (1979), no. 2, 128-148.

Glutsyuk, A., Shustin, E. On polynomially integrable planar outer
billiards and curves with symmetry property. Math. Ann. 372, 1481-
1501 (2018).

Griffiths, P., Harris, J. On Cayley’s explicit solution to Poncelet’s
porism, Enseign. Math. 24(1-2): 31-40 (1978).

Gruber, Peter M. Convex billiards. Geom. Dedicata 33 (1990), no. 2,
205-226.

Gutkin, E. Billiard dynamics: a survey with the emphasis on open
problems. Regul. Chaotic Dyn. 8(1):1-13 (2003).

Gutkin, E. Billiards in Polygons. Physica D 19, 311-333, (1986).

Gutkin, E. ; Katok, A. Caustics for inner and outer billiards. Com-
munications in Mathematical Physics 173,(1995) pp. 101-133.

Gutkin, E. Two Applications of Calculus to Triangular Billiards.
Amer. Math. Monthly. 104(7) pp. 618-622 (1997).

Hasselblatt, Boris; Katok, Anatole. A first course in dynamics. With a
panorama of recent developments. Cambridge University Press, New
York, (2003). x-+424.



Ronaldo A. Garcia 49

[60] Hassenblatt B. e Katok A. Introduction to the modern theory of
dynamical systems, Cambridge University Press, Cambridge (1995).

[61] Halbeisen L., Hungerbiihler N. (2015). A Simple Proof of Poncelet’s
Theorem (on the Occasion of Its Bicentennial). Amer. Math. Monthly,
122(6): 537-551.

[62] Halbeisen, Lorenz, Hungerbiihler, Norbert. Closed chains of conics
carrying Poncelet triangles. Beitr. Algebra Geom. 58 (2017), no. 2,
277-302.

[63] Hénon, M. Chaotic scattering modelled by an inclined billiard.
Progress in chaotic dynamics. Phys. D 33 (1988), no. 1-3, 132-156.

[64] Holmes, P. J. The dynamics of repeated impacts with a sinusoidally
vibrating table. J. Sound Vibration 84 (1982), no. 2, 173-189.

[65] Kaloshin V, Sorrentino A. On the integrability of Birkhoff billiards.
Phil. Trans. R. Soc. A 376: 20170419 (2018)

[66] Kaloshin, Vadim; Sorrentino, Alfonso. On the local Birkhoff conjec-
ture for convex billiards. Ann. of Math. (2) 188 (2018), no. 1, 315-380.

[67] Kozlova, T. V. Nonintegrability of a rotating elliptic billiard. J. Appl.
Math. Mech. 62 (1998), no. 1, 81-85 .

[68] Kamphorst, Sylvie Oliffson; Pinto-de-Carvalho, Sonia. The first
Birkhoff coefficient and the stability of 2-periodic orbits on billiards.
Experiment. Math. 14(3): 299-306 (2005).

[69] Katok, A. B. Billiard table as a playground for a mathematician. In
V. Prasolov & Y. Ilyashenko (Eds.), Surveys in modern mathematics,
216—242, London Math. Soc. Lecture Note Ser., 321, Cambridge Univ.
Press, Cambridge, 2005.

[70] Kimberling, C.: Encyclopedia of triangle centers (2019). https://
faculty.evansville.edu/ck6/encyclopedia/ETC.html

[71] J. L. King. Three problems in search of a measure, Amer. Math.
Monthly, 101 (1994), 609-628.

[72] Klingenberg, Wilhelm P. A. Riemannian geometry. Second edition.
De Gruyter Studies in Mathematics, 1. Walter de Gruyter & Co.,
Berlin, (1995) x+409 pp.

[73] Kotlodziej, Rafal. The rotation number of some transformation re-
lated to billiards in an ellipse. Studia Math. 81 (1985), no. 3, 293—
302.


https://faculty.evansville.edu/ck6/encyclopedia/ETC.html
https://faculty.evansville.edu/ck6/encyclopedia/ETC.html

50

Polygons, conics and billiards

[74]

[75]
[76]
[77]

78]

[79]
[30]
[81]
[82]
[83]
[84]

[85]

[36]

[87]

[33]

UNRB

Kozlov, Valerii V.; Treshchév, Dmitrii V. Billiards. A genetic in-
troduction to the dynamics of systems with impacts. Translations
of Mathematical Monographs, 89. American Mathematical Society,
Providence, RI, (1991). viii4171 pp.

Langevin, Remi ; Levitt, Gilbert ; Rosenberg, Harold. Classes
d’homotopie de surfaces avec rebroussements et queues d’aronde dans
R3. Canad. J. Math. 47 (1995), no. 3, 544-572.

Lebesgue, H. Les coniques. Gauthier Villars. Paris. (1942).

Levi, M., Tabachnikov, S. . The Poncelet Grid and Billiards in El-
lipses. American Math. Monthly, 114:895-908 (2007).

Lopes, Artur O. ; Sebastiani, Marcos. Poncelet pairs and the twist
map associated to the Poncelet billiard. Real Anal. Exchange 35
(2010), no. 2, 355-374.

Marco, Jean-Pierre. Entropy of billiard maps and a dynamical version
of the Birkhoff conjecture. J. Geom. Phys. 124 (2018), 413-420.

Maro, Stefano. Chaotic dynamics in an impact problem. Ann. Henri
Poincaré 16 (2015), no. 7, 1633-1650.

Mather, J. Non-existence of invariant circles. Ergod. Th. Dyn. Syst.
4 (1984), 301-309.

Melo, W. and Palis, J. Introdugéo aos Sistemas Din&micos, Projeto
Euclides, IMPA, 2a. edigao. (2018).

Mirman, Boris. Explicit solutions to Poncelet’s porism. Linear Alge-
bra Appl. 436 (2012), no. 9, 3531-3552.

Moser, J.K. Is the solar system stable? Math. Intelligencer 1 no. 2,
65-71 (1978/79).

Moser, J. K. On Invariant Curves of Area—Preserving Mappings of an
Annulus , Nachr. Akad. Wiss. Gottingen, Math.—Phys. KLII, (1962),
1-20.

Poncelet, J.-V. Traité des propriétés projectives des figures. Metz,
Paris. (1822).

Popov, Georgi. Invariants of the length spectrum and spectral invari-
ants of planar convex domains. Comm. Math. Phys. 161 (1994), no.
2, 335-364.

Poritsky, H. The billiard ball problem on a table with a convex
boundary—an illustrative dynamical problem. Ann. of Math. (2) 51
(1950), 446-470.



Ronaldo A. Garcia 51

[89] Previato, E. Poncelet’s theorem in space. Proc. Amer. Math. Soc.
127(9) (1999), 2547-2556.

[90] Ragazzo, Clodoaldo; Dias Carneiro, Mario Jorge; Adda-Zanata, Sal-
vador. Introdugdo a Dinamica de Aplicagbes do Tipo Twist, 25°
Coloquio Brasileiro de Matematica, IMPA, (2005).

[91] Reznik, Dan; Garcia, Ronaldo and Koiller, Jair. Can an elliptic bil-
liard still surprise us? Math. Intelligencer vol.42, (2020) 6-17.

[92] Reznik, Dan; Garcia, Ronaldo and Koiller, Jair. Eighty New Invari-
ants in the Elliptic Billiard. ArXiv:2004.12497v11.

[93] Romaskevich, O. On the incenters of triangular orbits on elliptic bil-
liard. Enseign. Math. 60(3-4):247-255 (2014)

[94] Romaskevich, O. Dynamique des systémes physiques, formes nor-
males et chaines de Markov. These de Doctarat de L’Université de
Lyon. (2016).

[95] Rozikov, Utkir A. An Introduction to Mathematical Billiards. World
Scientific Publishing Company, Singapore (2019)

[96] M. R. Rychlik, Periodic points of the billiard ball map in a convex
domain. J. Differential Geom. 30 (1):91-205 (1989).

[97] Schwartz, Richard E. The plaid model. Annals of Mathematics Stud-
ies, 198. Princeton University Press, Princeton, NJ, (2019).

[98] R.E. Schwartz, R. Outer billiards on kites. Annals of Mathematics
Studies. 171. Princeton University Press (2009).

[99] Schwartz, Richard E. Obtuse triangular billiards. II. One hundred
degrees worth of periodic trajectories. Experiment. Math. 18 (2009),
no. 2, 137-171.

[100] Schwartz, R. The Poncelet grid. Adv. Geom. 7(2): 157-175 (2007).

[101] Schwartz, R., Tabachnikov, S. Centers of Mass of Poncelet Polygons,
200 Years After. Math. Intelligencer 38(2): 29-34 (2016).

[102] 1. J. Schoenberg, On Jacobi-Bertrand’s proof of a theorem of Pon-
celet. Studies in pure mathematics, 623-627, Birkhduser, Basel,
(1983).

[103] Sinai, Ya. G. Introduction to ergodic theory. Princeton University
Press, Princeton, NJ, (1977).



52

Polygons, conics and billiards

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

UNRB

Sinai, Y.G.: Dynamical systems with elastic reflections. Ergodic
properties of dispersing billiards. Usp. Mat. Nauk 25(2 (152)), 141—
192 (1970).

Sorrentino, Alfonso. Mathematicians play... billiards! Mat. Cult.
Soc. Riv. Unione Mat. Ital. (I) 4 (2019), no. 2, 131-144.

Sotomayor, J. Li¢coes de Equagdes Diferenciais Ordinarias. Projeto
Euclides, IMPA (1979).

Tabachnikov, S. Geometry and Billiards, vol. 30 of Student Math-
ematical Library. Providence, RI: American Mathematical Society
(2005).

Tabachnikov, S. Outer billiards. Russian Math. Surveys 48 (1993),
no. 6, 81-109.

Tabachnikov, Serge. A baker’s dozen of problems. Arnold Math. J. 1
(2015), no. 1, 59-67.

Tumanov, A. Scarcity of Periodic Orbits in Outer Billiards. J Geom
Anal 30, 2479-2490 (2020).

Vedyushkina, V. V. ; Fomenko, A. T. Integrable topological billiards
and equivalent dynamical systems. Izv. Math. 81 (2017), no. 4, 688
733.

Vorobets, Ya. B. On the measure of the set of periodic points of a
billiard. Math. Notes 55 (1994), no. 5-6, 455-460

Weisstein, E.: Mathworld (2019). http://mathworld.wolfram.com

Wojtkowski, Maciej. Principles for the design of billiards with non-
vanishing Lyapunov exponents. Comm. Math. Phys. 105 (1986), no.
3, 391-414.

Universidade Federal de Goiés
Instituto de Matematica e Estatistica
Goiénia

ragarciaQufg.br

Publicat el 5 de mar¢ de 2021


http://mathworld.wolfram.com
mailto:ragarcia@ufg.br

	 Circular and polygonal billiards 
	Circular billiard
	Polygonal billiards
	External and Outer billiard

	Properties of the chords and variation of length
	 About billiard orbits of period 2 
	Billiards in higher dimensions

	Poncelet theorem
	Elliptic billiards
	Joachimsthal integral

	Other objects associated to the elliptic billiard
	Caustics
	Birkhoff Conjecture 
	Other types of billiards: impact systems
	Parametrization of 3-periodic orbits

