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The golden ratio from a
calculus point of view

Joaquim Bruna

1 Introduction

The golden number or golden ratio ϕ, the positive
number defined by the equation

ϕ(ϕ− 1) = 1, ϕ =
1 +

√
5

2
= 1, 618033 . . . (1.1)

is widely known in relation with many different areas:
mathematics and geometry, natural sciences, art, archi-
tecture, music, etc. The wikipedia article on the golden
ratio is a good source of information on these many ap-
pearances of ϕ.

In this note we will present another look to the golden number from a
calculus point of view. More precisely we will be dealing with the power
functions xϕ and x−α, for x > 0, where α = ϕ − 1 = ϕ−1. The motivation
comes from the so-called power laws. Power laws are ubiquitous in different
areas of social sciences under different names, Zipf laws in linguistics, Pareto
laws in economical sciences, etc. To the best of my knowledge, these laws
play in social sciences a role similar to normal laws in statistics, but well
funded mathematical statements to explain this are not so widely known.

When listening to a number of talks in linguistics in which power laws x−τ

appear modeling different aspects, I often ask the speaker about the exponent
τ , to find out that values close to α are most common. Understanding
whether the power law, with exponent α, has some intrinsic meaning seems
to be an appealing research project, although not precisely defined.

In this note, as a first step and in a completely deterministic setting, first
we ask ourselves whether the power functions xϕ and x−α have some special
property. In the second section we show that indeed they enjoy a character-
istic property among all self-homeomorphisms of the positive real line. In
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2 The golden ratio from a calculus point of view

the third section we show that in fact they are attractor points of a certain
transformation T acting on self-homeomorphisms of (0,+∞). These two
facts are just easy consequences of interpreting the defining equation (1.1)
in terms of the power functions.

In the last section we will describe an integer sequence, that may be
viewed as a discrete version of the power law xϕ. This integer sequence
turns out to be a known sequence, the Golomb sequence quoted as sequence
A001462 in the On-line encyclopedia of integer sequences, https://oeis.
org. We introduce a discrete analogue Td of the transformation T , acting
on integer sequences, and show that the Golomb sequence is a fixed point
and an attractor for Td. The transformation Td is related to the operation
of extracting frequencies. The fact that the golden ratio has some relation
with frequencies was hinted to me some time ago by Alvaro Corral.

2 The golden diffeomorphism

We start by noticing that the defining equation (1.1) means that the deriva-
tive of the power function xϕ equals, up to a constant, its inverse. This turns
out to be a characterization:

Theorem 2.1. The function f0(x) = ααxϕ, x ≥ 0, is the unique solution
of f ′ = f−1, f(0) = 0. More precisely, if f : [0,+∞) → [0,+∞), f(0) = 0,
f(+∞) = +∞ is strictly non-decreasing, differentiable and f ′ = f−1, then
f = f0.

As a restatement, the function h0(x) = (f0)
−1(x) = f ′

0(x) = ϕααxα =
ϕ1−αxα is then the unique self-diffeomorphism h of the positive real line such
that h = (h−1)′. We call f0, h0 the golden diffeomorphisms.

Proof. Computation shows that f0 is a solution, since α(α + 1) = 1. Now,
if f is as in the statement, (f(x)− x)′ = f ′(x)− 1 = f−1(x)− 1 grows from
−1 to +∞, whence f(x) − x decreases from 0 to an absolute minima and
increases thereafter. Therefore, the graph y = f(x) meets y = x at a unique
point (a, a), and f maps (0, a) onto (0, a) and (a,+∞) onto (a,+∞). Now
we argue separately in (0, a) and (a,+∞).

In (0, a) one has f ′(f(x)) = x ≥ f(x), that is f ′(t) ≥ t for t ∈ (0, a), since
f(x) fills (0, a). Thus, integrating we get f(t) ≥ t2

2 , that is, t ≤
√

2 f(t) .
Then f ′(f(x)) = x ≤

√
2
√
f(x) , that is, f ′(t) ≤

√
2
√
t , implying f(t) ≤

2
√
2

3 t
3
2 . Thus we get for some constants a2, a3

f(t) ≤ t, f(t) ≥ a2t
2, f(t) ≤ a3t

3
2 , . . .

and so on. Assuming inductively that f(t) ≤ an t
bn , one has

f ′(f(x)) = x ≥ (
1

an
)

1
bn (f(x))

1
bn ,
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that is, f ′(t) = x ≥ ( 1
an
)

1
bn t

1
bn , implying f(t) ≥ an+1t

bn+1 with

an+1 =

(
1

an

) 1
bn 1

1 + 1
bn

, bn+1 = 1 +
1

bn
.

Similarly, if f(t) ≥ ant
bn we get f(t) ≤ an+1t

bn+1 . Now, the sequence defined
inductively by b1 = 1, bn+1 = 1 + 1

bn
has limit ϕ, because it is bounded and

every limit L of a convergent subsequence satisfies L(1 + L) = 1. Similarly,
the sequence an has a limit L, with Lϕ = 1

ϕ , so L = αα. Thus f(x) = ααxϕ

in (0, a). Since f(a) = a, it follows that a = ϕ.
For x ∈ (ϕ,+∞), f ′(f(x)) = x ≤ f(x), that is, f ′(t) ≤ t for t ≥ ϕ, since

f(x) fills (ϕ,+∞). This implies by integration

f(t)− ϕ = f(t)− f(ϕ) ≤ 1

2
(t2 − ϕ2), f(t) ≤ ϕ− 1

2
ϕ2 +

1

2
t2.

Notice that ϕ− 1
2ϕ

2 = 1
2(ϕ− 1) > 0. Here and later we will bound from

above every expression A+B tδ, A ≥ 0, t ≥ ϕ, with A+Bϕδ = ϕ as follows:

A+B tδ =

(
A

tδ
+B

)
tδ ≤

(
A

ϕδ
+B

)
tδ = ϕ1−δtδ. (2.1)

Thus f(t) ≤ ϕ−1t2 if t ≥ ϕ, that is, t ≥ (ϕf(t))
1
2 . Then

f ′(f(x)) = x ≥ ϕ
1
2 f(x)

1
2 , f ′(t) ≥ γ

1
2 t

1
2 , t ≥ ϕ.

This implies by integration

f(t)− ϕ ≥ ϕ
1
2
2

3
(t

3
2 − ϕ

3
2 ), f(t) ≥ ϕ− 2

3
ϕ2 +

2

3
ϕ

1
2 t

3
2 .

Notice that ϕ− 2
3ϕ

2 = 1
3(ϕ− 2) < 0. Similarly, we bound from below every

expression A+B tδ, A ≤ 0, t ≥ ϕ, with A+Bϕδ = ϕ by

A+B tδ =

(
A

tδ
+B

)
tδ ≥

(
A

ϕδ
+B

)
tδ = ϕ1−δ tδ. (2.2)

Thus f(t) ≥ ϕ− 1
2 t

3
2 , t ≥ ϕ. This proceeds inductively as follows.

Assume f(t) ≤ ϕ1−bn tbn for t ≥ ϕ, bn > ϕ, that is t ≥
(
ϕbn−1f(t)

) 1
bn .

Then
f ′(f(x)) = x ≥ ϕ1− 1

bn

(
f(x)

) 1
bn , f ′(t) ≥ ϕ1− 1

bn t
1
bn ,

leading to

f(t)− ϕ ≥ ϕ1− 1
bn

1
1+ 1

bn

(
t1+

1
bn − ϕ1+ 1

bn

)
,
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1 Trigonometria esfèrica

Aquells lectors que ja sàpiguen què és un triangle esfèric i com es mesuren els
seus costats i els seus angles poden saltar-se les subseccions 1.1 i 1.2 i passar
directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.
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and

f(t) ≥ ϕ− ϕ2

1 + 1
bn

+
ϕ1− 1

bn

1
1+ 1

bn

t1+
1
bn .

Here

ϕ− ϕ2

1 + 1
bn

=
ϕ− bn
1 + bn

< 0,

whence by (2.2) we get f(t) ≥ ϕ1−bn+1 tbn+1 with bn+1 = 1 + 1
bn

< ϕ.
In the other direction, starting from f(t) ≥ ϕ1−bn tbn for t ≥ ϕ, bn < ϕ,

one obtains in the same way

f(t) ≤ ϕ− bn
1 + bn

+
ϕ1− 1

bn

1
1+ 1

bn

t1+
1
bn ,

which by (2.1) is bounded by ϕ1−bn+1 tbn+1 .
Since bn → ϕ it follows that f(t) = ϕ1−ϕ tϕ = αα tϕ too.

In a similar way one can prove that if f : [0,+∞) → [0,+∞), f(0) = +∞,
f(+∞) = 0, is strictly non-increasing, differentiable and f ′ = −f−1, then
f(x) = αϕ x−α. The derivative −α1+ϕ x−ϕ is then the unique strictly non-
increasing h such that h = −

(
h−1

)′.
3 The golden homeomorphism as an attractor

In this section we seek for another description of the golden homeomorphisms
within all non-decreasing homeomorphisms of the positive real line.

By theorem 2.1, the equation f ′ = f−1 characterizes f0 among all dif-
feomorphisms of the positive real line. Write I for the operation of taking
inverses, If = f−1, Df for f ′ and D−1 for the integration operator

D−1f(y) =

∫ y

0
f(t) dt.

Indeed, Df = g and f = D−1g are equivalent statements for functions van-
ishing at zero. From Df0 = If0 we may say that f0 is a fix point of S = ID
and of D−1I, or that (f0)−1 is a fix point of DI and ID−1. Of those transfor-
mations, the ones involving D are not defined for all homeomorphisms and
cannot be iterated. That’s why we choose working instead say with ID−1.

For a non-decreasing homeomorphism h : [0,+∞) → [0,+∞), h(0) = 0,
h(+∞) = +∞, we define Th = ID−1h, that is the map defined by the
equation ∫ Th(x)

0
h(t) dt = x.
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Clearly Th is well-defined and it is a non-decreasing homeomorphism too,
the inverse of D−1h. We consider T as a self map in the class of all non-
decreasing homeomorphisms of [0,+∞). In fact Th is differentiable and
(Th)′(x)h(Th(x)) = 1, whence (Th)′ strictly decreases and so Th is strictly
concave. Notice too that if h1(x) ≤ h2(x), then Th1 ≥ Th2.

Theorem 3.1. The golden homeomorphism h0(t) = ϕ1−α tα is not only a
fix point but an attractor for T , that is T k(h) → h0 point-wise for all non-
decreasing homeomorphisms h.

Proof. Let us first estimate Th when h = ha,b,c,d,e has the specific form

h(t) = a tb, t ≤ c; h(t) = dte, t ≥ c,

with a cb = d ce. Then ∫ x

0
h(t) dt =

a

1 + b
x1+b, x ≤ c, (3.1)

and ∫ x

0
h(t) dt =

d

1 + e
x1+e +A, A = c1+e(

a

1 + b
− d

1 + c
), x ≥ c.

If A ≤ 0, similarly as in (2.2), we bound the last quantity from below as
follows∫ x

0
h(t) dt = x1+e

(
d

1 + e
+

A

x1+e

)
≥ x1+e

(
d

1 + e
+

A

c1+e

)
= x1+e d

1 + b
, (3.2)

where we have used a cb = d ce. Now (3.1) says that x = Th(s) for s =
a

1+bx
1+b ≤ a

1+bc
1+b, that is

Th(s) = a′ sb
′
, s ≤ c′, a′ =

(
1 + b

a

) 1
1+b

, b′ =
1

1 + b
, c′ =

a

1 + b
c1+b,

Th(c′) = c.

In the same way (3.2) implies that for s ≥ c′, that is for x = Th(s) ≥ c, one
has

s =

∫ x

0
h(t) dt ≥ x1+e d

1 + b
,

which amounts to

x = Th(s) ≤ d′ se
′
, d′ =

(
1 + b

d

) 1
1+e

, e′ =
1

1 + e
, s ≥ c′.
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Thus Tha,b,c,d,e ≤ ha′,b′,c′,d′,e′ if A ≤ 0.
In a similar way we see that Tha,b,c,d,e ≥ ha′,b′,c′,d′,e′ if A ≥ 0. Notice

that A = a c1+b
(

1
1+b −

1
1+e

)
has the sign of e− b.

Now we can prove that T k(h) → h0 for an arbitrary h. By the remark
before the statement we may assume that h is strictly concave. Then there is
c > 0 such that h(c) = c and therefore h ≥ h1 = h1,1,c,1,0, defined h1(t) = t
for t ≤ c and h1(t) = c for t ≥ c. Let hn = han,bn,cn,dn,en with a1 = 1, b1 = 1,
c1 = c, d1 = 1, e1 = 0 and the an, bn, cn, dn, en recursively defined by the
map (a, b, c, d, e) → (a′, b′, c′, d′, e′), that is

an+1 =

(
1 + bn
an

) 1
1+bn

, bn+1 =
1

1 + bn
, cn+1 =

an
1 + bn

c1+bn ,

dn+1 =

(
1 + bn
dn

) 1
1+en

, en+1 =
1

1 + en
.

Notice that the recursion formula for bn, en is the same and b1 = 1, e1 = 0,
e2 = 1 = b1 whence en+1 = bn. Since Thn − hn+1 has the sign of en − bn =
en − en+1 and this keeps alternating we see that

Th1 ≤ h2, Th2 ≥ h3, Th3 ≤ h4, · · · ,

and so on. Then, h ≥ h1 implies Th ≤ Th1 ≤ h2, so T 2h ≥ Th2 ≥ h3, and
in general

T 2kh ≥ h2k+1, T 2k+1h ≤ h2k+2.

Now, it is plain that (en), (bn) have limit α = ϕ − 1. Then (an), (dn) are
easily seen to converge to ϕ1−α and (cn) to ϕ, and the theorem is proved.

4 The Golomb sequence as a discrete analogue

Given a finite set M of non-negative integers, possibly with repetitions, we
define its frequency content F (M) as the set of observed frequencies, that
is, the set consisting of the frequencies fn(M), the number of elements in
M equal to n. For instance, M might consist of the observed frequencies of
words in a book, and now we would be looking at frequencies of frequencies.
We are just interested in the values fn(M) of the frequencies, and not in n
or in general the objects having those frequencies.

One can visualize both M and F (M) as monotone sequences. For in-
stance in linguistics, frequencies are ordered in non-increasing order. It is
intuitively clear that the size of F (M) is generally much smaller than that
of M and that iteration of F leads to a singleton in a fast way. For in-
stance, if M consists of K numbers selected at random between 1 and N ,
with K ≫ N , F (M) will consist of N numbers from 1 to K, that most likely
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would be all different, so that F 2(M) would consist in N ones and F 3(M)
is a singleton.

To avoid that one might consider countable sets M instead, presented
as a non decreasing sequence by convenience, M = (mn). Of course, then
F (M) is not defined in general. If say mn → +∞, then F (M) is defined,
but F 2(M) is not in general. In fact, there is no natural choice of a sequence
space S in which F acts.

For a sequence M , we can view its frequency sequence as

fn(M) = #{j : mj ≤ n} −#{j : mj ≤ n− 1}. (4.1)

Now let us consider again the operator T = ID−1 of the previous section.
A formal inverse of T is then T−1 = DI. Now notice that at a formal level
the operator F in (4.1) is the discrete analogue of T−1 = DI. Indeed, for a
non-decreasing sequence M = (mn),

IM(n) = #{j : mj ≤ n},

is a sort of inverse and

DM(n) = mn −mn−1

is the discrete derivative.
Therefore, at a formal level the discrete analogue of T is the inverse of

F , that we may call the deploying operator defined as follows. Given a non-
decreasing sequence M : m1 ≤ m2 ≤ · · · , we produce another sequence E
such that F (E) = M by including m1 terms equal to 1 in E, m2 terms
equal to 2 and so on. This inverse or deploying operator makes sense for in-
finite non-decreasing sequences. We denote by S the space of non-decreasing
sequences of positive integers

M : 1 = m1 ≤ m2 ≤ · · · ≤ mn ≤ · · · ,

and by Td : S → S the deploying operator just defined: starting from M ,
Td(M) is the non-decreasing sequence consisting in one 1 followed by m2 2

′s
and so on.

Now think in a sequence G = (Gn) such that Td(G) = G, or G = F (G),
that is, for all n, Gn equals the number of n’s in the sequence. This sequence
is unique, namely

G : 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, · · ·

In fact, notice that since G1 = 1, G2 cannot be one, so G2 = 2; this implies
G3 = 2 and so on. This is a known sequence, called the Golomb sequence,
sequence A001462 in the On-line encyclopedia of integer sequences, https:
//oeis.org. It is immediate to realize that G is an attractor for Td, that is,
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starting from an arbitrary M the sequence T k
d (M) stabilizes to G. In fact

the n-th term of the sequence stabilizes to Gn in at most n iterations. In the
OEIS web page one can find references dealing with the asymptotic behavior
of G, as stated in the next theorem. The result confirms that the Golomb
sequence is the discrete analogue of the homeomorphism h0 in theorem 2.1.
We provide a proof for completeness (notice that the constant is the same
as in theorem 2.1).

Theorem 4.1. G = (Gn) behaves like ϕ1−αnα, that is, lim
n→∞

Gnn
−α = ϕ1−α.

Proof. Set cn = Gnn
−α. We show first by induction that choosing a small

enough and b big enough one has a ≤ cn ≤ b. So we assume a < 1 < b.

If Yn =
n∑

i=1
Gi = #{j : Gj ≤ n}, one has Gn = m for Ym−1 < n ≤ Ym.

It is clear that m < n, that is, Gn depends just on Gi, i < n. Assume
a ≤ cn ≤ b, n < N . Then

Yn ≤ b

n∑
i=1

iα ≤
∫ n+1

1
tα dt ≤ b

α+ 1
(n+ 1)α+1,

and similarly Yn ≥ a
α+1n

α+1. If Ym−1 < N ≤ Ym, then

a

α+ 1
(m− 1)α+1 ≤ N ≤ b

α+ 1
(m+ 1)α+1.

Therefore (
a

α+ 1

)α

(m− 1) ≤ Nα ≤
(

b

α+ 1

)α

(m+ 1),

2

3

(
α+ 1

b

)α

Nα ≤ m ≤ 2

(
α+ 1

a

)α

Nα,

and
2

3

(
α+ 1

b

)α

≤ cN =
m

Nα
≤ 2

(
α+ 1

a

)α

.

Thus it is enough to choose a, b such that 2
(
α+1
a

)α ≤ b, 2
3

(
α+1
b

)α ≥ a, that
is k1 a

−α ≤ b ≤ k2 a
− 1

α , which is indeed possible for a small enough because
1
α > α.

To prove the more precise statement about cn we need exploiting the
fact that in the above argument the tails are most important. Set L =
lim sup cn = limn dn, dn = sup

k≥n
ck, l = lim inf cn = limn en, en = inf

k≥n
ck. If

N , m are as above and p = [mα] ≪ m we use in the induction argument
that a ≤ cn ≤ b for n < p and ep ≤ cn ≤ dp for p ≤ n < N to get

ep
α+ 1

(
1− 1

p

)
mα+1 −O(m) ≤ N ≤ dp

α+ 1

(
1 +

1

p

)
mα+1 +O(m).



Joaquim Bruna 9

Therefore (
ep

α+ 1

(
1− 1

p

))α

m ≤ Nα(1 + o(1)),(
dp

α+ 1

(
1 +

1

p

))α

m ≥ Nα(1− o(1)),

that is

(1− o(1))

(
α+ 1

dp

)α(
1 +

1

p

)−α

≤ cN ≤
(
α+ 1

ep

)α(
1− 1

p

)−α

(1 + o(1)).

Taking limit as N → +∞ (so p → ∞ as well) gives(
α+ 1

L

)α

≤ l, L ≤
(
α+ 1

l

)α

,

which implies L = l = (1 + α)1−α.

Computer assisted generation of the sequence Gn shows that the conver-
gence to α of logGn

logn is very slow, see next figure. In fact, after n = 108 terms,
logGn

logn − α ≈ 0.00999
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Trigonometria esfèrica i hiperbòlica
Joan Girbau

L’objectiu d’aquestes notes és establir de forma curta i elegant les fórmules
fonamentals de la trigonometria esfèrica i de la trigonometria hiperbòlica.
La redacció consta, doncs, de dues seccions independents, una dedicada a la
trigonometria esfèrica i l’altra, a la hiperbòlica. La primera està adreçada a
estudiants de primer curs de qualsevol carrera tècnica. La segona requereix
del lector coneixements rudimentaris de varietats de Riemann.

1 Trigonometria esfèrica

Aquells lectors que ja sàpiguen què és un triangle esfèric i com es mesuren els
seus costats i els seus angles poden saltar-se les subseccions 1.1 i 1.2 i passar
directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.

A

B

O

figura 1
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