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Numbers that commute

under exponentiation
in complex plane

Mateja Grasi¢, Dusan Pagon

The raising to the a-th power and the expo-
nential function with base a are defined for all pos- x
itive arguments z, if @ is any positive real number.

For various a we calculate the coordinates of the
non-trivial common point of the graphs of the above mentioned functions.
We also discuss a similar problem for complex numbers defining a power dual
number and show that there exist infinitely many numbers commuting with
a given one under the exponentiation operation.

a — g%

1 Introduction

Each of us has —while learning elementary arithmetic— noticed that 2% =
4% = 16 and probably got curious whether there exist other pairs of integers
(a,z), a # x commuting this way: z* = a*. Obviously, each such pair
corresponds to a non-trivial common point (x,y) # (a,a®) of the graphs of
functions y = z® and y = a”.

On Fig. 1(a) the graphs of functions y = 22 and y = 2% are presented,
passing through common points (2,4) = (2,22) and (4, 16), the last of which
is non-trivial. During the last three centuries a lot of investigations have
been done on this topics, mainly independent on each other. We refer the
interested reader to Knoebel (1981) who attached to his article an impressive
list of over 120 collected references. Our intention here is to briefly summarize
the results previously obtained for positive real numbers and then extend
them to the field of complex numbers. For the last case the mentioned
problem was not much examined earlier due to limited use of numerical
methods in the pre-computer age.

Definition 1. Let a # b be two positive real numbers. We call b a power
dual number of a when a® = b®.
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2 Numbers that commute under exponentiation in complex plane

(a) Graphs of functions y = z? and (b) Graph of function “‘Tz
y = 2%,

Figure 1: Some preliminary examples.

Obviously, the numbers 0 and 1 have no real power duals: for any x # 0
we have 0% = 0 # 1 = 2° and from 1 = 1¥ = 2! = z it follows that z = 1. In
this paper we show that for any non-zero complex number infinitely many
power duals exist in the complex plain and we derive equations from which
they (their approximate values) may be calculated.

We start with positive numbers a,x and take the logarithms of both

sides of equality z® = a® to obtain the equation alnz = xlna or lnTx =

IHT" suggesting the study of mapping = > IHT*T
several times so let us denote it by I. As l'(z) = l_x# the graph of this
function is increasing from minus infinity to the maximum point (e, %) and
then decreasing towards z-axis (Fig. 1(b)).

Therefore we have the following result.

It will occur in this paper

Theorem 1. For each a>1, a # e there exists a unique positive power dual
number b = b(a). While a belongs to the interval (1,e) we have b € (e, 00)
and vice versa. By additionally defining b(e) = e we obtain an decreasing
function b of argument a on the interval (1,00) whose graph is presented on
Fig. 2(a). On the other hand, the power a’@ is an increasing function of a
on the interval (e,00) with the image (e®,00) (Fig. 2(b)). Finally, we find
out that the numbers from the interval (0,1) have no positive power duals.

Proof. We have already checked the content of the first two sentences. Next,

let us consider b as a function of a € (1,00). As we assume that blna = alnb
Inb—2
Ina—

deriving by variable a gives us b Ina + g =1Inb+ ¢¥. Thus V/ =

ZEZIIEZ:Z)) = 222((11?12:3 < 0, for all a # e. And for the derivative of the

SIS S]

function p(a) = Ina® = blna we obtain p’ = V' Ina+ & = %. As the
logarithm function is a 1-1 mapping this yields that the power a® = b® vxiill
reach its extreme value exactly when Inb = ﬁ or, equivalently, b = ehe.

1
But in this case -~ = ﬁ =blna = e Ina, so the variable a must satisfy
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(a) Graph of the power dual b(a). (b) Graph of the resulting power
a® @ = (b(a)).

Figure 2: Power dual of any number greater than 1 and the related power.

the condition ae ma — (Ina)? = 0. The only solutions of this equation are
a = e, yielding b = e, and a = % ¢ (1,00). So the minimal value of a’ is
e® & 15.1543. For a > e we have Inb < Ine =1 and Inalnb < 1 yielding
p’ > 0, so the function p(a) = Ina’® is increasing and so are the values of
our powers a’@ (Fig. 2(b)).

Finally, let a € (0,1). Suppose that its power dual number b > a is
greater than 1. Then, according to the properties of the power function, a® <
a < 1 while b* > 1. Therefore, a® # b®. Similarly, we get a contradiction
supposing that b € (a, 1), as then the properties of the power and exponential
functions yield inequalities a® < b < b®. O

Corollary 1. The only pairs of integers m # n satisfying the condition
m" = n"™ are {2,4} and {—2,—4} for which the value of the power m™ is

equal to 16 and %6, respectively.

Slobin (1931) gave a complete description of all pairs of positive numbers
x # y for which ¥ = y*, admitting between them the pairs of rational
numbers. Let y = tx where t = 1—|—%,u > 0. Thena¥ =y* orylnx =xlny

1
yields tlnz = Int + Inz. So Inz = 2L = ln(lj_“). Thus z = (1 + 1)

u

and y = (1 + %)““. If u runs over all positive integers we get all pairs
0 27y (64 256 (625 3125)
9y ? y

of rational solutions of our problem: (2,4), (7, %), (57, 57)> (5585 1051
Later, in Sato (1972), it was proved that both components of the solution
will be algebraic numbers iff the parameter u is a rational number. Examples
of such pairs are, for instance, (v3,3v/3), (3v/15,32v15 ), (V/4,4V/4 ) and
(% /490, %8(1) /490 ). The solutions which we obtain while parameter u
runs over positive numbers are presented on Fig. 2(a).

In Table 1 we give some examples of number a from the interval (1,e)
with (approximate) values of its power dual number b € (e,o0) and the
resulting power a’ = b,

The next problem consists in finding a power dual of a given real number

1
x > 1. As our equation z¥ = y*, z,y > 0 is equal to rF = yv, to find



4 Numbers that commute under exponentiation in complex plane

Table 1: Power duals of some a > 1 and the values of resulting powers.

a | 115 1.3 145938 | V3 | 2 5 | 2.38218 | 2.47805
b || 27.1710 | 12.5246 | 8.05408 | 3v3 | 4 | X ™ 3

bl 44588 | 26736 | 21 [17.362 ] 16 ] 15439 | 15.286 | 15.217

the power dual of a number x > e it is sufficient to have inverse function

yy +— y, mapping the interval [1, ee] onto [1,e]. Knoebel (1981) proved that
such partial inverse exists and it is given as infinitely iterated exponentiation

Y nh_}I{)lo (fyo fyo---o fy)(y) where fy(x)=y* for all > 0.

n-times

On Fig. 3(a) the graphs of function x 2> and its partial inverse are
presented. In the last section we suggest an efficient algorithm for finding
all power dual numbers of an arbitrary non-zero complex number 2.

151

101

0.5 1
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(a) Graphs of function z +— 27 and its (b) Power duals of some negative num-

1
partial inverse for 1 < x < e-. bers.

Figure 3: Real power duals of real numbers.

2 First generalization

To extend the above results to all real numbers we need to switch to complex
arithmetic. By definition of the exponential function for every real ¢ we have
el? = cos ¢ +isin g, so it is more convenient to work with complex numbers
written in polar form. Let z = 7 el where r = |z| is a non-negative number
and ¢ is the so called principal argument of the given complex number,
for instance, belonging to the interval (—m,7]. Then the complex logarithm
function defined as In z = In(r e'¥) = In7 +i¢ has many properties similar to
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those of real-valued logarithms. Basic facts and several examples of complex
exponential and logarithm functions can be found in Sochi (2021).

For every real s we have z° = r*¢*?. But due to the periodicity of sine
an cosine functions the value of a power is now not necessarily uniquely
determined. For instance, (—1)% can be —1, %—i—i@ or % - i@ and for 161
we obtain four different values: 8, —8, 8i and —8i. More than that, 2v3 —
e‘/g(ln%%”i), k € Z has infinitely many different values in the complex
plane. To distinguish between them we will (when necessary) add to the
power a lower index related to the number of multiples of period 27 added
to the principal argument of the base of the given power. For instance,

2V3 & 3.322, 2V3 5 &~ 1.103 + 3.1341 and 23 _; ~ —0.374 + 3.301 1.

Definition 2. Let z # w be two complex numbers. We will call w a power
dual number of z (and vice versa) when one of the powers z* matches with
one of the powers w?, i.e. there exist such k,m € Z that 2%y, = w®,,. When
Z% = w?y we call w the main power dual of z.

As we will see, a number can have several power duals in the complex
plane. Figure 4 shows some points on few rays running from the coordinate
beginning (left pictures) and their main power duals (right pictures). The
rays presented are chosen in the first two quadrants as choosing them in the
lower complex half plane we would obtain symmetric pictures with respect
to the real axes.

10 *

-8 -6 -4 -2

Figure 4: Some complex numbers and their main power duals.



6 Numbers that commute under exponentiation in complex plane

The rest of this section is dedicated to the description of all pairs of
real numbers (z,y) where y is a power dual of x (and vice versa). Let us
start in the third quadrant, taking x < 0 and y = tx with ¢ > 1. Suppose
that 2V = V"% = eV = o As ylnz — 2lny = ta(ln|z| + (2k + 1)7i) —
z(In|z|+1Int+ (2m+1)7i), k,m € Z, this yields (t—1)zln|z| —zlnt = 0 and
(2m+1)x—(2k+1)y € 2Z. From In |z| = tli—tl we obtain the solutions (z,y) =

(—tﬁ, —tﬁ) with ¢ satisfying pT (2m+1—(2k+1)t) = 2n for some integer
n. This is clearly true for all rational numbers ¢ of the form 2273111 ,m>k>0
(in this case n=0). But there are also infinitely many other pairs of negative
numbers that can be obtained this way. A few examples are given in Table 2.
By substitution ¢t = “H we get z = —(14+ )% and y = —(1 + 1)1 s0 our
solutions lay on the curve symmetric to the one obtained in the first quadrant
(Fig. 3(b)). But now not every point of this curve represents a solution of
our problem. For instance, (—%)_%7 = (%)%\S/j # (—%)_% = (%)277 v—1.
This is the answer to one of the questions from Moulton (1916) and shows
that the right choice of the parameter t is essential here.

Table 2: Some negative numbers with their negative power duals.

—
~

H T y H e =y",
3.762 | —1.6156 | —6.0780 0.0526 — 0.01311
1.381 || —2.3333 | —3.2222 0.0326 + 0.0565 i
4.411 || —1.5451 | —6.8156 || —0.0431 — 0.02821
1.093 || —2.6023 | —2.8432 0.0513 — 0.0414
3.971 | —1.5907 | —6.3163 0.0291 — 0.0447 i
3 -3 | -3v3 0.0158 + 0.0554 i
1.739 || —2.1144 | —3.6765 || —0.0635 + 0.00593 i

RlR|lolv|olr|olf
e ||| S
Slo|lk ||~ —]]3

It remains to examine the situation in the even quadrants. We take
x <0,y = —tx, where ¢ > 0. Then 2¥ = y* iff (t+ 1)In|z|+Int =0
and (2k + 1)tz — 2ma € 2Z. From the first condition we have (z,y) =

1 t
(=t~ #1,tw1). The last condition is obviously satisfied if ¢ is a rational

number of the form %, m > ?, k > 0, while in general the parameter ¢
must satisfy the condition 2nt#1 + (2k 4+ 1)t — 2m = 0 for some integers
k,m,n.

Let T' be the set {(x,y) : 2¥ = y*,zy < 0}. The points (z,y) that we
just obtained lay above the bisector of even quadrants (|z| < |y|) iff t > 1.
Replacing any ¢t > 1 with its inverse t' = % < 1 we obtain a symmetric point
(—tlfﬁ,t/ﬁ) = (—tt%l,tft%l) = (—y, —z). This means that (—y, —x) €
[ iff the equality on /T + (2k + 1)t" — 2m = 0 holds for some integers
k,m,n. But the condition that (z,y) € T was 2T 4 (2k+1)t—2m =0,

UNRB
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for some integers k, m,n, yielding 2nt/ﬁ + 2k +1—2mt’ = 0. Thus the
bisector of even quadrants is not the line of symmetry of the graph I'.

As the binary relation x ~ y iff x¥ = y* is clearly symmetric, the point
(y,x) in the fourth quadrant belongs to graph I' at the same time as (z,y)
in the second quadrant. So the bisector of the odd quadrants is a line of
symmetry of I'. Clearly, (1,—1) and (—1,1) are not elements of I as 17! =
1 # —1 = (=1)!. So we can extend the graph from Fig. 2(a) to the whole
real plane, obtaining Fig. 3(b). A sketch of this curves was already given in
Moulton (1916) but he did not mention their parametric equations.

The upper left curve on Fig. 3(b) has a local minimum. As % = yt'(’;fil)gt,
=1
it is reached when Int = —t — 1 or t = t¢g = 0.2785. Then x = —téOH =

—Intg
—e-mi = —e and y = tgpe ~ 0.7569. But the points (—e,tpe) and (—tge,e)
do not belong to graph T since the equality (—e)!® = (tge)™® would yield
(2k + 1)ty = 2m for some integers k,m. As we know that ¢y = e fo—1
J
D p+q

supposing that tg = q is a rational number we would get that e = (%)

is an algebraic number what is a contradiction.
Thus we obtained the following theorem.

Theorem 2. For real numbers with absolute value less or equal to tge ~
0.757 no real power dual number exist. If toe < |z| < 1 number x has at
most one real power dual while for |xz| > 1 up to two real power duals may
exist.

Some examples of points on the left (upper) branch of T' are listed in
Table 3.

Table 3: Positive power duals of some negative numbers.

klmi|n ﬂ t ﬂ x Yy ﬂ Y =y",,
0o|1]0| 2 —3V/4 V4 0.188 — 0.667 i
0|4(0] 8 —3V4 4v4 0.105 + 0.205
1/1/0| 3 —3V108 | V108 | —0.196 + 1.214i
3020 2 || —1WV2877 | 1V2877 | 0.823 — 1.054i
021 6565 | —0.77978 | 5.1191 | —0.2605 — 0.1023i
2 |2 1] 4411 || —0.90833 | 1.1267 | 0.3649 — 0.8198i
114 ]1]0.3922| —1.9586 | 0.7682 || 0.8494 —1.445i

3 Numbers with conjugated power duals

In the first section we found out that every real number greater then e® can
be represented as a® = b® for some positive numbers a # b. The use of



8 Numbers that commute under exponentiation in complex plane

complex numbers leads to a similar representation of real numbers from the
interval (1,e°).

Let z = re'? and w = se'¥ where r, s are positive numbers and ¢, 1 argu-
ments of the given complex numbers, belonging to the interval (—m, 7w]. Then
I(z) = thZ = &% = %(gosingp + Inrcosp +i(pcosp — Inrsiny))
and l(w) = 1(¢sing + Inscosy + i(¢costy — Inssine)). Suppose that
these Values are real numbers Then their imaginary parts are 0 and we get
Thus the numbers z, w lay on the curve C given in

Inr = tmw, Ins = tanw

e
polar coordinates by equation r = etan¢ .

(a) Curve C with equation r = etans | (b) Solutions of equations sin 2z = = and
cos2ztanx = x.

Figure 5: On complex numbers with conjugated power duals.

The curve C is continuous if we additionally define r(0) = e, 7(£5) = £1,
r(m) = 0 and is presented on Fig. 5(a). As y(¢) = rsing = s sin ©,
we get the extremal values of the imaginary part of number z when dy

dyo
e —pcos—2p - . . .
gtany (m@taﬁ# sinp 4 cosp) = 0 or sin2¢p = ¢. Non-trivial solutions

of this equation ¢ ~ £0.9477 (Fig. 5(b)) result in z ~ 1.1529 £ 1.6046 1.
Similarly we get the left most points z ~ —0.17036 + 0.443971 on the curve
C when cos2ptang = ¢ or ¢ ~ £1.937 (Fig. 5(b)).

The equality z* = w? holds iff the real parts of the logarithms of these
powers also match, thus s(psing + tamp cosp) = r(¢siny + tan'z/) cos 1))

or w — Is¥ G4 we are searching for the points on curve C deter-

©
mined by angles ¢, for which f(¢) = f(¥) where the function f is de-
fined as f(¢ ) = S“S;V’ efane . The function f is clearly even and its deriva-

L
tive f'(p) = (p +((2cosp — Sm@)(p —sing) = 52 Sm(p(Qcpsmcpcosgp p? —
®
sin? ) = — ;;:?nip (¢ —sin )% +2¢sin (1 — cos p)) is negative on the inter-
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val (0,7). The graph of the function f on interval (—m,7) with additional
points (—,0),(0,e) and (7, 0) is shown on Fig. 6(a).

3 2 1 1 2 3 3 2 1 o 1 2 3

(a) Graph of function z Si%eﬁ.

€T
L _otanx

(b) Graph of function x + esnz

Figure 6: Two auxiliary functions.

We found that f(¢) = f(¢) iff ©» = £¢ yielding that the numbers z # w
are conjugated. In this case our powers equal to 2% = e"(cosp—ising)(Inrtip)

_P
ro wetango

and substituting Inr = —£— we obtain z* = 2* = esne = e ¢ = h(p).
For ¢ € (0,7) we have h(y) € (1,e°) and these were precisely the values of
our powers missing in the previous section. The graph of function h with
additional points (—m, 1), (0,e°), (m,1) is presented on Fig. 6(b). On the
other hand, r = ene is the necessary condition that the power dual of a
complex number z = rel¥ is its conjugate z. As 22 = 2% from 7* = 27 it
follows that the power, obtained in this case, must be some real number.
But Im(r ei“")reiw = Ime(nr+i)(reosp=irsing) — (4 cosp — Inrsing) = 0

yields Inr = taﬁ(p. Thus we obtained the following two statements.

Theorem 3. Complex numbers z of the form ens 1% are the only ones for

which their power dual number is the conjugate number Z. In this case the
%)
_ potaneg
obtained power z* = e ¢ s a real number from the interval (1,e°).
Corollary 2. Each number t # €° from the interval (1,00) can be in a
unique way presented as r¥ = y*, x #* y where x,y are either real numbers
ory==.

Corollary 3. The binary relation x ~ y iff x¥ = y* is an equivalence relation
on the set (1,00)UC\ {0, e}, breaking it into equivalence classes consisting of
two elements: a number and its power dual number (the curve C was defined
at the beginning of this section).

Proof. The relation ~ is clearly reflexive and symmetric by its definition,
but it is also transitive as u* = z* and z¥ = y* yields xlnu = wlnx and
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— Inz

ylnzx =zlny. So lnT“ = ny yielding yInu = ulny and w¥ = y*. The
y

second half of our statement follows from the Theorems 1 and 3 obtained

above. O

Remark 1. As we will see in the next section the above binary relation on
the set of complex numbers is, in general, not transitive (Theorem 3).

Some examples illustrating the results of this section are presented in
Table 4.

Table 4: Examples of complex numbers with conjugated power duals.

© 3 I 3 3
r=etng 2.4766 2.1933 1.8305 1
z=re® || 2.1448 + 1.2383i | 1.5509 + 1.5509i | 0.9153 + 1.5853i | i
=2 | 133768 11.4286 9.1473 ot
2 3 5
Y 3 1 6
r=emng 0.2984 0.0948 0.0107
2 =re® || —0.1492 + 0.2585i | 0.06702 + 0.06702i | —0.0093 + 0.0054 i
=2 | 20580 1.3714 1.0578

4 On power duals of complex numbers

An early attempt to describe general situation in the complex plane was
made in Schwering (1878). Replacing the equation z" = w?* with lnTZ =
lnTw and showing that for any (non-zero) complex number C' there exists
an infinite number of solutions of the equation [(z) = C, one made the
conclusion that for a given z # 0 there are infinitely many w € C satisfying
the condition z* = w? and so being power duals of z. For this purpose one
gave a qualitative description of two curves in real plane to the equations
of which reduces the condition [(z) = C. Below we derive the equations
of these curves in polar coordinates and show the resulting sets of complex
numbers for two typical cases. If z = re¥, C = ae'® o > 0, we have
Inr+(y+2mn)i = ar e @Y for some m € Z. Thus 1h+2mr = arsin(a+1)
and Inr = arcos(a + ). Due to the periodicity of trigonometric functions
we can replace 1) € (—m, 7] with ¢ € R to obtain the system

v =arsin(e + a)
Inr = arcos(p + )

UNRB
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or
¥

rie) = asin(p + o)

Inr
©(r) = arccos — — «
ar

As r = |z| is positive, ¢ and sin(¢+«a) must have the same sign, so we obtain
the condition ¢ € {((2k — 1)m — o, 2km — «); k < 0)} U (0,7 — a) U {(2k7 —
a,(2k + 1)m — a); k > 1)}, for the parameter ¢ in the first case, while the

parameter 7 in the second case must satisfy the condition @ <a. Ifa> %
the last inequality holds for all positive r. On Fig. 7 two examples of the
infinite number of connected sets of complex numbers of the form 7(p)e'¥
intersected by the set {re¥(") : |Inr| < ar} are presented.

40 4
20 4
—40 -30 ’ZU\LL

o= g. (b) Case a = 2,0 = <.

Inr

Figure 7: Intersections of curves with equations r(yp) = and ¢(r) = arccos —-- —

Q.

P
asin(p+a)

If we replace in the equation cos(y + a) — 12—73" = 0 variable r with the

= 0, so we
intersection

fraction m we obtain the condition ™ eTa — W
can find values of the angle ¢ and the corresponding points o
of our curves, representing the solutions of our problem.

In computer algebra program SageMath (see, for instance, Bard (2015))
which we have used, the necessary numeric calculation is produced by exe-
cuting the command find_root (expr.subs(a==..., a==...), Low, Upp)
where expr is the left side of the given equation, Low and Upp are the lower
and upper boundaries of the interval on which we are searching for the solu-
tion and the appropriate values of variables a, a are inserted instead of the
dots. All the figures in this paper were also produced by SageMath software.

In the first of the above two cases (when C' = % + é) in this way we
obtain the following values of parameter ¢: ..., p_o =~ —7.991, p_; =


https://sagecell.sagemath.org/?z=eJy1kN9ugyAUh--b9B3OXUEBBaTMi177Fl2cazIzNxyajMcfgl2WJi7pMi7Pv3y_8zVwGlvbvl1m23eP42BmhGTmss5MyOFi6t-RgxzGvjhiAssktG4mmCBHSqKypaKM-93ODMaeDk9D270eMOx3DeT_huI8kHKmCNcrVCVmChmZnHEi6gjliZk0PpeXTFSExj_Lyl8FKiTD8vrK1b6QW4Y3qNOHnZE7C6BQZ8PCOAtcCI-QWZhJHNuFIHBtbB1Rf7Quh2xMa1ETzh6U5j9E2MvztoakgSqm5FERVX7b-TULvSsMvSsN_NFP6kyroupG0X43vZhP1OAvXPdD0w==&lang=sage&interacts=eJyLjgUAARUAuQ==
https://sagecell.sagemath.org/?z=eJy90EEOgjAQBdC9iXfojk6Z1g5QdcOaYxhEE4loCZjY4ytU3ShBo3HTZDKT__KbsbTOm_ywPTVlsaore-LcicK2PO-e6sgdzHgkHICMRF3OYkAn2vI4vAfkDpWOkSLAwla2SYNmuwlgOsnCIU2OccMHvaeVJiT9PuhjumTHQvaIYl57vfUSdoNUOrle9xpLg3WVF_sAWC-yz8hRMemHUCta4kJ4PTKPqt_Y43VJe10ZpNjjWhkz1P3XvFzey8cGpbm3_xtPt89X8ytPdPPnz_500u7smWdwAUAl7dg=&lang=sage&interacts=eJyLjgUAARUAuQ==
http://www.sagemath.org
http://www.sagemath.org
https://sagecell.sagemath.org/?z=eJxL1EnMKchIVLBVKEss0lBPVNdRBwuo6yik5OcmZubZBgVp8nKlZealxBfl55doaKRWFGhU6Jck5mlUaIOVamrqVuhrJGoVZyIJaeoVlyYVayTa2hrqG0PssLUtyNQ309TRtdDRVTDXBABEhCVH&lang=sage&interacts=eJyLjgUAARUAuQ==
https://sagecell.sagemath.org/?z=eJxL1EnMKchIVLBVKEss0lBPVNdRBwuo6yik5OcmZubZBgVp8nKlZealxBfl55doaKRWFGhU6Jck5mlUaIOVamrqVuhrJGoVZyIJaeoVlyYVayTa2hrqG0PssLUtyNQ309TRNdLRVTDUBABEVCU7&lang=sage&interacts=eJyLjgUAARUAuQ==
https://sagecell.sagemath.org/?z=eJxL1EnMKchIVLBVKEss0lBPVNdRBwuo6yik5OcmZubZBgVp8nKlZealxBfl55doaKRWFGhU6Jck5mlUaIOVamrqVuhrJGoVZyIJaeoVlyYVayTa2hrqG0PssLUtyNQ309TRNdLRVTDUBABEVCU7&lang=sage&interacts=eJyLjgUAARUAuQ==
https://sagecell.sagemath.org/?z=eJxL1EnMKchIVLBVKEss0lBPVNdRBwuo6yik5OcmZubZBgVp8nKlZealxBfl55doaKRWFGhU6Jck5mlUaIOVamrqVuhrJGoVZyIJaeoVlyYVayTa2hrqG0PssLUtyNQ309TRNdLRVTDUBABEVCU7&lang=sage&interacts=eJyLjgUAARUAuQ==

12 Numbers that commute under exponentiation in complex plane

—1.033, ¢ =~ 0.338, ¢1 =~ 6.906, @y ~ 13.341,... and the corresponding
power dual numbers are ..., z_o &~ —3.533 — 25.6411, z_1 ~ 3.255 — 5.4581,
zo ~ 1.261 4 0.4431, 21 ~ 18.475 4 13.2551, 29 ~ 29.695 + 29.0711,...
In Table 5 we list also the powers determined by the pairs of these numbers:

Zm . L2k
Zk B me.

Table 5: Powers obtained by different numbers that all commute under exponentiation.

K\m [ -1 0 1 2
—2 || (4.45 4+ 0.98i)107'° | —1469 — 1488i | (—8.60 + 9.431)107" | (—1.66 + 6.831)10*2
-1 14.41 — 7.55i | (3.97 — 4.60i)10%° | (—3.60 — 6.881)10%°
0 —1.89 — 1.49i 0.276 — 0.109i
1 (1.07 + 0.68i)10™*7

At the end of the first section we mentioned the algorithm suggested in
Knoebel (1981) for finding the unique real power dual number of an arbitrary
positive number greater than e. Here we suggest an efficient algorithm for
calculating an arbitrary power dual of a given non-zero complex number
w = se'. In this case [(w) = % = L(Inscos + (+2km)sine +
i((¢p + 2km)cosy —Inssiny)) = Cp(w).

Defining
\/In2 s+ (Y + 2km)?
ap =
s
and
arctan Y+2km if P42k >0
,8 o Ins ’ Ins
e =
7+ arctan LE2ET i wiZhT

Ins Ins

we translate our problem to previously discussed search of numbers z for
which I(z) = Cy(w) = ae!P—¥) if 5 # 1, while for power duals of a number
w from the unit circle we have the condition 1(z) = ¢ + 2kn|e!(Z¥). We
already know that for each k € Z there exist infinitely many complex num-
bers 2y, m € Z for which I(zk,,) = aiePe=¥)  Therefore we always obtain
a 2-parametric family of power duals for a given non-zero complex number
w. (When k = m the result of this algorithm is the number w itself.)

As an example let us take w = $(1+iv/3). Then ay = 1/1+ (5 + 2km)?
and B = arctan(§ + 2km). A few power duals of the number w and the
resulting powers are listed in tables 6 and 7.

From the equality z¥ = z? it follows that the condition z¥ = w? yields
Z% = w7, therefore power duals of a real number w always appear in pairs:
z and z. In Table 8 we present some power duals of numbers % and —1.

As for every w we have w' = w power duals of number 1 are the solutions
of the equation 1¥ = w. Examples of such complex numbers are: —0.5293 +
0.098541, —0.2769 + 0.097524, 0.04444 + 0.091084 1, 0.08313 £+ 0.1431i and
0.1516 = 0.21331

UNRB


https://sagecell.sagemath.org/?z=eJxL1EnMKchIVLBVKEss0lBPVNdRBwuo6yik5OcmZubZBgVp8nKlZealxBfl55doaKRWFGhU6Jck5mlUaIOVamrqVuhrJGoVZyIJaeoVlyYVayTa2hrqG0PssLUtyNQ309TRNdLRVTDUBABEVCU7&lang=sage&interacts=eJyLjgUAARUAuQ==
https://sagecell.sagemath.org/?z=eJxL1EnMKchIVLBVKEss0lBPVNdRBwuo6yik5OcmZubZBgVp8nKlZealxBfl55doaKRWFGhU6Jck5mlUaIOVamrqVuhrJGoVZyIJaeoVlyYVayTa2hrqG0PssLUtyNQ309TRNdLRVTDUBABEVCU7&lang=sage&interacts=eJyLjgUAARUAuQ==
https://sagecell.sagemath.org/?z=eJxL1EnMKchIVLBVKEss0lBPVNdRBwuo6yik5OcmZubZBgVp8nKlZealxBfl55doaKRWFGhU6Jck5mlUaIOVamrqVuhrJGoVZyIJaeoVlyYVayTa2hrqG0PssLUtyNQ309TRNdLRVTDUBABEVCU7&lang=sage&interacts=eJyLjgUAARUAuQ==
https://sagecell.sagemath.org/?z=eJxL1EnMKchIVLBVKEss0lBPVNdRBwuo6yik5OcmZubZBgVp8nKlZealxBfl55doaKRWFGhU6Jck5mlUaIOVamrqVuhrJGoVZyIJaeoVlyYVayTa2hrqG0PssLUtyNQ309TRM9Yx1AQA-hIk8A==&lang=sage&interacts=eJyLjgUAARUAuQ==
https://sagecell.sagemath.org/?z=eJxL1EnMKchIVLBVKEss0lBPVNdRBwuo6yik5OcmZubZBgVp8nKlZealxBfl55doaKRWFGhU6Jck5mlUaIOVamrqVuhrJGoVZyIJaeoVlyYVayTa2hrqG0PssLUtyNQ309Qx0zHXBADVOyTL&lang=sage&interacts=eJyLjgUAARUAuQ==
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https://sagecell.sagemath.org/?z=eJyFj0tuwkAMhvdI3MFSF7HTIQEhsZtLcIHINEGxFGYiz6RNOX3NINTuuvDztz7bb5DHAS6c5ANSnJYsMcAOonU1AesA17iEHiQAQ5KbTKzwxd_bDTue5pHdPEq3d2p27_bg4ZMVK65cVWSLZcCiFn9_eOjjjSX485m2m6L7q4S-0xgz4rDOuLaZA67vBUK0W1vkOsmfFjVpuSRk7w_t8XmL97O0J3LN0R0IjKwSMha-7bH9Hp_VC1aK_4HUBPzlaaHZH96y-nFswdRCrwnT6AeRI2ne&lang=sage&interacts=eJyLjgUAARUAuQ==
https://sagecell.sagemath.org/?z=eJx9ksGOmzAQhu-V-g4j7SE2GGIMGDj4Jfa4h0Qk8SYWAVzb2UKevgPNSl017WEkM_PPfL_NdKwHBR-tI5tuwzb9hp3GvjWDenuj8P2bZY55Ftj8KbIochgeI2DMGwaPjtfXpaN151uvvDkPZKZRexw9mbb-hwtk2ol43glKY5IlD0HSuXHQx067_UlfQ0tmxmlE1upE44xuQcQi6mlkDbxAGGE8BIRBuGg4aW-cPsGK1EOA8X3ND7f-oB3c1RSbGe8w_tRO6ckSH10HYtGGQxtbkUCI1t7U3w5oUynLZqUc65XqKI2WFoNm_iOKw5eRgLf7y-bxMno9wGoDiI2doTvi42AoenNmCGQt_Z5vlcrqtKiKquFcylJIwRzm8lSUJZeCy6YsK8k85lIheS0zzqu8qmXOglI8LYo8l0WZcVGIqsxYh0KaDqQoKfJe4L7Pdvc9hyds_4QdnrDtE7b7B5t_ZXNkZ3gkhzFc4Dj2fTucPDjtb9cAjwfzba-Xmr3q6fNnJlla1zUObXhZlXz5LuqqrkXDq0YWBhK42eXh_1gAXIdlkcy7ObbBfODCmLMJPqW_AB362uk=&lang=sage&interacts=eJyLjgUAARUAuQ==
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Table 6: Some zx,m € C commuting with (14 iv/3) under the exponentiation operation.

K\m [ -1 0 1 2

-1 w —1.5380 — 1.2478i [ —4.0118 — 3.3549i [ —6.3021 — 5.6325i
0 || 1.2407 —1.0960i w 1.5497 + 15.3576i | —0.2503 + 27.271i
1 [[-0.3779 — 0.6723i| 0.03158 + 0.5893i w 2.4452 + 4.4111i
2 [[-0.3312 — 0.3538i | —0.03013 4 0.3795i | 0.7057 + 1.2849i w

Table 7: The resulting powers zj,, = w* ™.

k\m][ -1 0 1 2

—1 [[(4.38 4- 87.671)10*| (2.71 + 1.561)10™* | (1.55 — 3.961)107*° | (=1.75 + 2.25i)107*6
0 10.67 + 2.20i —0.266 — 0.1971 | (—1.44 — 4.671)1077 |(—0.927 4 2.97i)10~ '3
1 —90.4 42811 |(9.36 4 10.04i)107%| (12.09 — 3.081)107% | (—9.84 — 3.531)107**
2 || 13.30 +87.651 |(5.53 — 0.170i)10~%|(—0.527 — 5.101)10®| (—1.99 + 4.26i)10~**

Table 8: Some power duals z = zj,», of numbers % and —1 with the resulting powers

¥ =w?
w = %; z ||—0.8665 £ 3.209i|—1.494 + 7.7951|—1.821 £ 12.36i|—2.045 + 16.91i
z = (%)z 1.108 F1.4471 | 1.795 4+ 2.1721 |—2.319 F 2.675i| 2.737 4 3.089i
w = %, z |[—2.215 £ 21.451|—2.353 & 26.00i|—2.469 £ 30.54i|—2.568 + 35.071
z = (%)Z 3.111 F 3.445i | 3.446 £+ 3.772i |—3.753 F 4.0681| 4.037 £ 4.344i

w= —1;2|—6.9718 £ 0.6194i| —4.9673 £ 0.5119i| —2.9628 £ 0.3479i|0.2660 £ 0.2943i
L' — (—1)%]|-0.1423 7 0.0126i] 0.1992 F 0.0205i |—0.3329 F 0.0391i[1.6904 F 1.8699i

w = —1;2({1.9650 £ 0.2169i|3.9648 £ 0.4404i|5.9697 £ 0.5702i| 7.974 £+ 0.6619i
% = (—1)7|/0.5028 F 0.05551|0.2491 F 0.0277i|0.1660 F 0.0159i{0.1246 F 0.0103i

5 Conclusion

Through the article we intended to show that the exponentiation function
over the field of complex numbers behaves quite differently than in the real
domain. Summarizing the above results we come to the following statement.

Theorem 4. For each number w € C\ {0} there exists an infinite set
of complex numbers zgm(w), k,m € Z such that (zj,,(w))” = wm) in
the sense of Definition 2 from Section 2. In general, if k # n, we have
(2 m ()74 (W) £ (2, o (w))*m @) for any values m,q, so the relation ‘is a
power dual of’ is not transitive in the complex plane.

Proof. To verify the content of the last sentence let zj,,(w) = re¥ and
w = se¥. Comparing the modules and arguments of the powers (zj,, (w))®
and w?m(®) results in the system of equations:

s(Inrcosy — ¢siny) = r(lnscos — Psinp)
s(¢cost + Inrsiny) = r(y cos p + Inssing) 4+ 2k, k € Z.
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Suppose that we also have (2, 4(w))" = w*() where 2, ,(w) = t ¢, yield-
ing

s(Intcostyp — Esiny) = t(lnscos& — P sing)
s(§cost + Intsiny) = t(ycosé + Inssiné) + 2nw, n € Z.

Then from

s Inscosp—1¢sing t Intcost —Esiny

r Inrcost — psing’ s  Inscosé — Ysiné

we get
t (Intcostp — Esiny)(Inscosy — Psinp)

r (Inrcosy — @sinty)(Inscosé —siné)’
But | (25 m (w))?4) | = (2.4 (w))+m )] iff t(In 7 cos E~p sin &) =r(In t cos p—
¢sinp). So the modules of these powers in general differ and the relation ‘is
a power dual of’ is not transitive on the set of complex numbers.
An exception represent some power duals of positive real numbers. Let

w=s>0,2,mw) =7r>0. Thengozw:0andwehaveh‘%:1n?8:
tiré;tE’ o |(zk,m(w))'z"’Q(w)! = ](znyq(w))zk’m(“’” and comparing the expres-

sions for the arguments of these powers we see that lnTst siné + q%” =¢=
lnT’"t sin& + %27” So £ must be an integer. For instance, all power duals of
number 2 are also power duals of 4, while only the ‘even’ duals of number
4 (obtained by adding in the second equation an integer multiple of 47) are
power duals of 2. O
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