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1 Introducao

Este artigo é uma organizagao dos estudos realizados no primeiro semestre
de 2022, mais precisamente de marco a junho, pela turma do Programa
de Iniciagao Cientifica e Mestrado - PICME - da Universidade Federal de
Itajuba. As atividades foram desenvolvidas de forma remota, em funcao da
pandemia de COVID-19 que existia & época. Semanalmente foi feita uma
reunidao de sessenta minutos para discussao do assunto selecionado, além
de uma reunido extra também semanal para discussao das dividas e dos
exercicios propostos para estudo.

*Dedicado a Edinita, Larissa e Luis Gustavo, com amor e gratidao.


http://www.mat.uab.cat/web/matmat
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Como a rotagdo dos alunos do PICME é grande, uma vez que cada aluno
pode participar de, no maximo, quatro semestres, e, de um modo geral,
esses alunos estao no inicio de seus estudos universitarios e tém formagoes
muitos distintas, é um desafio grande encontrar um tema para estudo que
seja suficientemente interessante e cientificamente significativo. Para aquele
semestre, o tema selecionado foi “nimeros primos”, uma vez que, de acordo
com Albert Einstein: “If Euclid failed to kindle your youthful enthusiasm,
then you were not born to be a scientific thinker.”

Escolhido o tema de estudo, uma tarefa igualmente dificil é selecionar os
assuntos que serao estudados. Foram escolhidos os assuntos que sao os titulos
das segoes deste artigo. Muitos outros nao foram selecionados por motivos
diversos, os principais deles foram o tempo que tinhamos para estudo (15
semanas) e a maturidade da turma.

Este artigo segue exatamente os registros das atividades desenvolvidas.
Cada secao corresponde ao material estudado em uma reunido semanal. A
maioria dos teoremas tém suas demonstracoes apresentadas em um nivel bas-
tante elementar. No final de cada se¢@o sdo colocados um ou dois exercicios.
Alguns deles sao utilizados em secoes seguintes.

2 Numero primo

Nesta secao serao fixadas as nomenclaturas e os simbolos que serao utilizados
ao longo do texto. Os assuntos aqui tratados podem ser encontrados nos
excelentes livros [10], [12] e [14].

Assumiremos conhecidos os seguintes conjuntos:

(i) O conjunto dos nimero naturais

N={1,2,3,..}.

(ii) O conjunto dos nimero inteiros

Z={.,-3,-2-1,0123,..}.

O conjunto dos niimeros naturais N também sera chamado de o conjunto
dos nimeros inteiros positivos.
Assumiremos, ainda, os seguintes principios.

Principio 2.1 (Principio da Boa Ordem). Todo conjunto nao vazio de in-
teiros positivos contém um elemento minimo.

Principio 2.2 (Principio da Indugao Finita—Primeira Forma). Considere
B C N. Se B possui as sequintes duas propriedades

e 1€ B,
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Luis Fernando Mello 3

e k+1¢€ B, sempre que k € B,
entao B = N.

Principio 2.3 (Principio da Inducdo Finita-Segunda Forma). Considere
B C N. Se B possui as sequintes duas propriedades

e le B,
e k+1¢€ B, sempre que 1,2,... .,k € B,
entao B = N.

Vejamos um exemplo simples da utilizagao do Principio da Indugao Finita—
Primeira Forma.

Exemplo 2.1. Para cada n € N, defina
Sn)y=142+---+n. (1)

Considere o conjunto

B:{nEN:S(n):@}.

Queremos mostrar que B = N. Para isto, utilizaremos o Principio da In-
dugio Finita—Primeira Forma. E imediato que 1 € B, pois S(1) = 1 =
1(1+1)/2.
Hipdtese de Indugao (HI): k € B, isto é,

k(k+1)

S(k) =142+ k==

Analisaremos, sob a HI, se k+ 1 € B, isto €, se

S(k+1)=1+2+...+k+(k+1):(k+1)((k+1)+1):

2
(k +1)(k +2)
—

Da HI, resulta
Shk4+1)=1+24-+k) +(k+1) =

- (DY oy = ey (1)

b4 ) (k-2m> _ (k+1)2(k+2).
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Concluimos, assim, que k +1 € B. Pelo Principio da Inducao Finita—
Primeira Forma,
B =N,

ou seja,
1
S(n):1+2+---+n:@,

para todo n € N.

Considere a, b € Z. Dizemos que a divide b, denotando por

alb,
se existe ¢ € Z tal que
b= ac.
Se a nao divide b escrevemos
atb.

Para dar um gostinho de como utilizar a definicao acima, vejamos a seguinte
proposicao.

Proposicao 2.1. Considere a,b,c € Z. Se alb e blc, entao alc.

Demonstracao. Como alb e ble, existem ky, ko € Z tais que
b= kia, c = kob.

Assim,
c=kob= kig(kila) = (k‘lk‘g)a, com kiks € 7Z,

o que implica que alc, terminando a prova da proposigao. O
O teorema a seguir é fundamental nas discussoes ao longo deste texto.

Teorema 2.1 (Algoritmo da Divisao). Dados a,b € Z, com b > 0, existe
um unico par q,r € 7 tais que

a=qb+r, com 0<r<hb.

O nimero inteiro ¢ é chamado quociente e o niimero inteiro r é o resto
da divisao de a por b. Note que

r=0 <= bla

Considere a,b € Z com a ou b diferente de zero. O mdzimo divisor comum
de a e b, denotado por (a,b), é o maior inteiro que divide a e b.

Pode-se mostrar que o maximo divisor comum de a e b é o divisor positivo
de a e b o qual é divisivel por todo divisor comum.
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Os numeros inteiros a e b sdo chamados relativamente primos se
(a,b) = 1.

Um nidmero inteiro p > 1 é um ntmero primo se os tnicos divisores
positivos de p sdo os nameros 1 e o proprio p. Se p > 1 nao é primo dizemos
que ele é composto.

Os ntimeros

2,3, 5,7, 11, 13, 17

sao primos, enquanto que
4, 15, 3375

sao compostos.

Exercicio 2.1. Considere a,b € Z com a ou b diferente de zero e suponha
que
d = (a,b).

Mostre que existem ng, mg € Z tais que
d = noga + mgb.
Exercicio 2.2. Defina os nimeros de Fermat
F,=2" 41, com n=01,2,....
Mostre que, para todo nimero natural m > 1, vale

Fp—2=FyF - Fp1.

3 Numeros primos: Nao finitude e Teorema de Eu-
clides

Uma primeira pergunta natural a respeito dos niimeros primos é a seguinte.

Pergunta 3.1. Considere P C N o conjunto dos nimeros primos. O con-
junto P € finito ou infinito?

A primeira resposta a essa pergunta apareceu hé cerca de 2300 anos em
“Os Elementos” de Euclides [7]. Em sua homenagem, o teorema da nao
finitude dos nimeros primos é chamado de Teorema de Euclides.

Teorema 3.1 (Teorema de Euclides). O conjunto P € infinito.

Na prova do Teorema de Euclides, utilizaremos o Teorema Fundamental
da Aritmética - TFA. O TFA afirma que todos os numeros inteiros positivos
maiores que 1 podem ser decompostos num produto de niimeros primos,
sendo esta decomposigao tnica a menos de permutagoes dos fatores. O TFA
também ¢é conhecido como Teorema da Fatoracao Unica.
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Teorema 3.2 (Teorema Fundamental da Aritmética). Todo inteiro n > 1
pode ser escrito unicamente da forma
n=pi'py* - ppk,

sendo

p1<p2<---<Dpg

primos e n; > 0 para todo i € {1,2,...,k}.

Prova do Teorema de Fuclides. Suponha que P é finito. Considere
P = {p17p27 s 7p'n,} .
Defina o niimero inteiro positivo

a=pip2 - pp+ 1

Por construgao, a nao é divisivel por nenhum p; € P e, claramente, a > p;,

i€{l,2,...,n}. Assim, pelo TFA, ou a é primo ou possui um fator primo.
Em ambos os casos, temos a existéncia de um nimero primo diferente de p;,
i€{1,2,...,n}. Portanto, P nao pode ser finito. O

A seguir serdo apresentadas mais duas provas do Teorema de Euclides que
sao, na verdade, pequenas variantes da prova apresentada acima. A primeira
variante é devida a Ernst Eduard Kummer e foi feita em 1878. A segunda
variante foi apresentada por Pierre René Jean Baptiste Henri Brocard em
1915.

Prova do Teorema de Fuclides: Variante 1. Assuma que P é finito e consi-
dere

P = {plap23"'7pn}‘

Defina o niimero inteiro positivo

b=pip2 - pn>2.

Pelo TFA, existe p; € P que divide b —1 > 1. Ora, por construgao, esse
mesmo p; também divide b e, portanto, também divide a diferenca

b—(b—1)=1,

um absurdo. O
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Prova do Teorema de Euclides: Variante 2. O teorema estard demonstrado
se demonstrarmos que, dado n € N, existe um nimero primo p > n. Fixe
n € N arbitrario, n > 3. Defina o nimero natural

ap=n'+1=1-2-3---n+1.

Note que a, > n. Se a, é primo, acabou a prova. Se a, nao é primo, pelo
TFA, existe um primo p tal que pla,. Afirmamos que p > n. De fato, se
p < n, entdo p é um fator de n!, de onde p divide

anp —n! =1,
um absurdo. O

A seguir, analisaremos a prova do Teorema de Euclides apresentada por
Christian Goldbach. Essa prova apareceu em uma carta enviada a Euler em
1730. A ideia é bastante simples. Basta encontrar um sequéncia infinita de
nimeros naturais a;

I<ap<ar < - <ap<aper <---,

dois a dois primos entre si, isto é, sem fator primo comum. Assim, se p; é um
fator primo de a; (TFA), i € {0,1,2,...}, entdo todos os nimeros primos da
sequéncia infinita

Pos P1y -+ -sPny---

serao distintos.

Prova do Teorema de Fuclides: Variante 3. Considere os nimeros de Fer-
mat
n
F,=2""4+1, com n=0,1,2,....

E claro que os ntiimeros de Fermat formam um sequéncia crescente e infinita
de nimeros naturais impares

1<kl <F<---<F,<Fp<--.

Basta, portanto, mostrarmos que esses ntmeros sao dois a dois primos
entre si. Do Exercicio 2.2, para todo ntimero natural m > 1, vale

Fpp—2=FyF - Fp_y. (2)

Considere ntimeros inteiros 0 < n < m, arbitrarios. De (2), F;, ¢ um fator de
F,, —2, logo divide F},, —2. Suponha a existéncia de um niimero primo p que
divida simultaneamente F;, e F;,. Ora, esse primo p divide também F;, — 2,
pois F, é um fator de F;,, — 2. Portanto, esse primo p divide a diferenca

Fin— (B — 2) = 2.

Concluimos que p = 2, o que é um absurdo, pois F;,, é impar. ]
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Exercicio 3.1. Mostre que o nimero 8 divide
an = n>+ 2n, Vn € N.
Exercicio 3.2. Considere os nimeros de Fibonacci f;, i € N, sendo

f1:17 f2:1a fn+1:fn+fn—1u VTLZ2
Prove que:
o fi+ fo+- -+ fn=fanr2a—1, para todo n € N.

o f24+f24+ -+ f2= fufnr1, para todo n € N.

4 Teorema Fundamental da Aritmética

Em algumas das provas do Teorema de Euclides usamos de maneira essencial
o Teorema Fundamental da Aritmética (veja Teorema 3.2). Sua prova sera
apresentada a seguir.

Prova do Teorema Fundamental da Aritmética. Considere um inteiro n > 1,
arbitrario. Se n é um nimero primo, a prova acabou. Suponha, entao, que
n é composto. Considere o conjunto

Sp={meN:m>1em|n}

dos divisores positivos, maiores do que um, de n. O conjunto 5, é nao vazio,
pois n é composto. Pelo Principio da Boa Ordem (veja Principio 2.1), existe
p1 o menor elemento de S,,. Note que p; > 1 e é um divisor de n.
Afirmacao. p; é um nimero primo.

Suponha que p; néo é primo, isto é, p; é composto. Assim, existe 1 < a1 < p;
que divide p;. Ora, nesse caso, a; divide n, de onde a; € S,. Isto é um
absurdo, pois p; ¢ o menor elemento de S,. Em resumo: p; > 1 é um
nimero primo que divide n, ou seja

n = pini, n1 € N.

Se n; é primo, a prova esta completa. Se n; é composto, considere Sy, o
conjunto dos divisores positivos, maiores do que um, de n;. Repetindo os
argumentos anteriores, considere ps o menor elemento de Sp,,. Segue que py
é primo e

n = piny = pj p2 N2, ng € N.

Repetindo este procedimento, obtemos uma sequéncia decrescente de inteiros
positivos
ny >ng > >mnp > 1.
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Como todos esses niimeros sao inteiros maiores do que um, esse procedimento
termina depois de um ndmero finito de etapas, resultando em

n=pipa - pr

Como os ntimeros primos na escrita acima nao sao necessariamente distintos,
existirao
at, o, ..., ap >0,
tais que
_ 01 Q2 (893
n = pl p2 ... pk .

Com isto, estéd completa a prova da parte da existéncia. Falta mostrarmos a
unicidade (a menos da ordenagao) da decomposigao.

A prova da unicidade (a menos da ordenagao) sera feita por indugao. Mais
precisamente, utilizaremos o Principio da Indugao - Segunda Forma (veja
Principio 2.3). Para n = 2 (caso base) a unicidade é imediata.

Hipotese de Indugao: A unicidade (a menos da ordenagao) da decomposi-
¢ao em um produto de ntimeros primos é verdadeira para todos os inteiros
positivos n maiores do que um e menores do que k.

Queremos mostrar que a unicidade (a menos da ordenagao) da decomposigao
em um produto de ntimeros primos é verdadeira para n = k.

Se k ¢ um ntmero primo nao temos nada a provar. Suponha que k é composto
e que tenha duas decomposigoes

pip2 - ps=k=qq2 - - (3)

Provaremos que s = r e que cada p; no membro esquerdo ¢é igual a algum
¢; no membro direito. Isto implicard no término da prova do TFA. De (3),
como pj divide g1 q2 - - ¢, segue que p; divide pelos menos um dos fatores
gj- Sem perda de generalidade, podemos assumir que p; divide ¢;. Como
ambos sdo primos, segue que p; = ¢q;. Como p; divide k, segue que k = p; k,
com 1 < k < k. Podemos reescrever (3) da forma

pipe - ps=k=pmk=pig - g, (4)

ou, equivalentemente

P2 ps=k=q2 " q-. (5)

Como 1 < k < k, a Hipotese de Inducéo nos informa que as duas decomposi-
¢oes em (5) sao idénticas (a menos da ordenagao). Em particular, s = r. Isto
implica que as duas decomposigoes em (4) e, portanto, em (3), sdo idénticas
(a menos da ordenagao). O

Como reconhecer que o nimero inteiro 337 é primo? Mais geralmente,
como reconhecer que um ntmero inteiro n > 1 é primo?
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A maneira direta de atacar esta questao é fazer a divisao de n por inteiros
menores que n. Se n for divisivel por algum inteiro m, com 1 < m < n, entao
n & composto. Caso contrario sera primo.

Observe que, se um ntmero primo p divide n, isto é, n = ap, com p < a,
entao

p2 <ap=mn.

Portanto,
p<vn.

Assim, para verificar se n é primo ou nao basta examinar a divisibilidade de
n por nimeros primos menores ou iguais a /n.

Surge, assim, a seguinte questdo: Como encontrar todos os primos me-
nores que um dado inteiro m > 17

Uma resposta a essa questao é obtida pelo Crivo ou Algoritmo de Eratos-
tenes. Eratostenes foi um dos dirigentes da antiga biblioteca de Alexandria
e contribuiu com descobertas em varios campos da ciéncia, como Astrono-
mia, Geografia e Matematica. Seu mais famoso feito foi determinar um valor
aproximado para o raio da Terra utilizando Geometria Euclidiana. Daremos
a ideia do Crivo de Eratostenes exibindo um exemplo [8].

Queremos listar os nimeros primos menores que m = 100. Isto é feito
eliminando os ntimeros inteiros maiores que 1 com divisores primos até

Vvm =100 = 10,

ou seja, multiplos de
2,3, 5eT.

Os numeros restantes depois desse processo iterativo sdo exatamente os ni-
meros primos menores que m = 100. Veja a sequéncia das Figuras 1 a 6.

2134|156 |7|8|9]10
11112 (13|14 |15|16 |17 |18 | 19| 20
2112223242526 |27]28|29| 30
31 132(33|34|35(36|37]38]|39| 40
41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50
91 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 39 | 60
61 | 62 | 63 |64 |65 |66 | 67| 68|69 | 70
7L 7273|7475 76| 77|78 | 79| 80
81 | 82| 83|84 |8 | 86 | 8 | 88 | 89 | 90
91 1921931949596 |97 ]98] 99 | 100

Figura 1: Listar os numeros de 2 a 100.
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2 [3[4]5]6[7[8]9]10
11 [12[13[14 [ 15 [ 16 | 17 [18 [ 19 [ 20
21 [22[23[24|25[26 |27 [28 29| 30
313233 [34|35[36[37[38]39] 40
41 [42 [ 43 [ 44 [ 45[ 46 [ 47 | 48 [ 49 | 50
51 [ 52|53 | 54 | 55 [ 56 | 57 [ 58 | 59 | 60
61 [ 62| 63 |64 |65]66|67[68]69]| 70
7172 |73 |74 [ 75 [ 76 | 77 [78 [ 79| 80
81 82|83 |84 |85[86|87[8 89| 90
91 [92]93[94]95[96[97 ]98] 99100

Figura 2: Retirar os multiplos de 2 (amarelo).

2 [3[4]5]6[7]8 N 10
111213 14H16 17 |18 [ 19 | 20
N2 22 | 23 [ 24 | 25 [ 26 [127 28 | 29 | 30
31 | 32 1881 34 | 35 [ 36 | 37 | 38 1891 40
41 [42 | 43 [ 44 [JHBN 46 | 47 [ 48 | 49 | 50
IS 52 | 53 | 54 | 55 | 56 [§B@N 58 | 59 | 60
61 | 62 (637 64 | 65 | 66 | 67 | 68 69 70
7172|7374 76 | 77 | 78 | 79 | 80

82 838485 |86 88 |89 | 90
91 [ 92 94 [ 95 [ 96 | 97 | 98 [T991] 100

Figura 3: Retirar os multiplos de 3 ainda nao retirados (verde).

2 [3[4]5]6[7]8 N 10
111213 14H16 17 |18 [ 19 | 20
D200 22 [ 23 [24 | 2526 27 28 | 29 | 30
31 [ 32 1887 34 | 35 [ 36 | 37 [ 38 1891 40
41 [ 42| 43 [ 44 BN 46 | 47 | 48 | 49 | 50
B 52 | 53 [ 54 | 55 [ 56 B 58 | 59 | 60
61 | 62 |63 64 | 65 66 | 67 | 68 [69 | 70
717273 [ 74 @B 76 [ 77 |78 79 | 80

8283848586 88 |89 | 90
&92 94 [ 95 | 96 | 97 | 98 [199'] 100

Figura 4: Retirar os multiplos de 5 ainda néo retirados (rosa).




12 Um Passeio Pelos Ntiumeros Primos

2 [3[4[5]6[7]8 9N 10
111213 14H16 17 [ 18| 19 | 20
120 22 [ 23 [ 24| 25[26 [27] 28 [ 29 | 30
31 [ 32 1831 34 | 35 [ 36 | 37 | 33 881 40

41 [ 42 | 43 | 44 (BN 46 | 47 | 48 | 49 | 50

BB 52 | 53 | 54 | 55 | 56 58 | 59 | 60
61 | 62 [63 64| 65| 66| 67 | 68 [69 70

71 [ 72| 73 [ 74 06N 76 | 77 | 78 | 79 | 80
82 [ 838485 |36 88 | 89 | 90
91 [ 92 1037 94 [ 95 [ 96 [ 97 | 98 199 100

Figura 5: Retirar os multiplos de 7 ainda néo retirados (azul).

213 ) 7

11 13 17 19
23 29

31 37

41 43 47
93 99

61 67
71 73 79
83 89

97

Figura 6: Os nimeros restantes sao primos.

Voltemos & pergunta anterior: Como reconhecer que 337 é primo?
Para saber se o ntimero inteiro 337 é primo, basta encontrar os niimeros
primos menores ou iguais a /337 e verificar se algum deles divide 337. Como

182 = 324 < 337 < 361 = 192,

devemos analisar os primos menores que 18. Do exemplo anterior, a lista
dos nameros primos menores que 18 (veja a Figura 6) é

2,3, 5, 7, 11, 13, 17.
Como nenhum deles divide 337, segue que este niimero é primo.

Exercicio 4.1. Uma sequéncia ou progressao aritmética (de nimeros intei-
T08 positivos) é uma sequéncia, finita ou nao, de nimeros inteiros positivos
que aumenta a cada passo por uma diferenca comum. Por exemplo, os ni-
meros Primos

3, 7, 11,

formam uma sequéncia aritmética de trés primos. A diferenca comum, neste
caso, é 4. Dé um exemplo de uma sequéncia aritmética de 5 primos.
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Exercicio 4.2. Defini¢do de nimero primo em Z: um nimero inteiro n €
primo sen € diferente de 0, 1 e —1 e os seus unicos fatores inteiros sao n, seu
oposto —n, 1 e —1. Com esta defini¢do, pode-se mostrar que todo nimero
inteiro diferente de 0, 1 e —1 pode ser fatorado num produto de nimeros
primos. Mostre, no entanto, que, neste caso, essa fatoragdo pode nao ser
unica, ou seja, fatores primos em duas fatoracoes podem ser distintos.

5 Numeros primos em conjuntos de termos de pro-
gressoes aritméticas

Nesta secao, discutiremos a existéncia de ntimeros primos em conjuntos de
termos de progressoes aritméticas. Para fixar as ideias e as notagoes, consi-
dere o seguinte conjunto

S={neN:n=4k+3, ke NU{0}}
={3, 7, 11, 15, 19, 23, 27, 31, 35,...},
ou seja, S é o conjunto dos termos da progressao arimética de razao 4 e de

primeiro termo n = 3.
Notemos que os nimeros

3,7, 11,19, 23, 31 S
sao numeros primos. Considere o seguinte conjunto
Ps ={n € S :n é&namero primo}.
A seguinte pergunta é imediata.
Pergunta 5.1. O conjunto Pg € finito ou infinito?

Mostraremos que Pg ¢é infinito, ou seja, existem infinitos niimeros primos
dentre os termos da progressao aritmética 4k + 3, k € NU {0}.

Esse resultado, aparentemente simples, é surpreendente: mostra a exis-
téncia de infinitos ntimeros primos que sao escritos em uma forma especial.

Teorema 5.1. O conjunto Pg € infinito.

Demonstracao. Queremos provar que existem infinitos primos da forma 4k+
3. Dado um inteiro positivo m, pelo Algoritmo da Divisao (Teorema 2.1), os
possiveis restos da divisao de m por 4 sdo: 0, 1, 2 e 3. Segue que um nimero
primo p # 2 é da forma 4q + 1 ou 4q + 3, visto que os numeros da forma
49 = 4q + 0 e 4q + 2 sao pares.

Suponha a existéncia de somente um ntmero finito de primos da forma 4k+3.
Sejam pi,pa, ..., Pr €SSES Primos, ou seja,

p1r =4k1 4+ 3, po =4k +3, ..., pr = 4k, + 3,
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sendo k1, ko,..., k, inteiros positivos. Defina
N=4pip2---pr— 1.
E imediato que cada p;, i = 1,2,...,r nao divide N. Note que

N=dpipr--pr =1+ (=3+3)=4(pip2---pr—1)+3
=4q+ 3.

Por construgao, N > p;, paratodoi =1,2,...,r. Temos duas possibilidades:
N é primo ou N é composto. Se N é primo, acabou, pois N é da forma
N =4qg+ 3, com ¢ € N, ou seja, N € S, mas é diferente de p;, para todo
1 =1,2,...,7. Se N é composto, pelo TFA, N possui um divisor primo.
Afirmamos que algum divisor primo de N tem que ser da forma 4s + 3,
s € N. De fato, se todo divisor primo de N for da forma 45+ 1, j € N, segue
que N terd a forma N = 4t + 1, t € N, contrariando a escrita de N. Assim,
esse divisor primo p = 4s+3 € S e é diferente de p;, paratodoi =1,2,...,7,
terminando a prova do teorema. O

Imitando a demonstragdao acima, podemos provar que existem infinitos
primos da forma

6k+5  keNuU{o},

ou seja, o conjunto
T={neN:n=6k+5, ke NU{0}}

dos termos da progressao aritmética acima contém infinitos niimeros primos.
De fato, pode-se provar o seguinte teorema, devido ao matematico Peter
Gustav Lejeune Dirichlet (1805-1859).

Teorema 5.2 (Dirichlet). Considere a e b inteiros positivos primos entre s,
isto é, (a,b) = 1. O conjunto

L={neN:n=ak+b, ke NU{0}}
contém infinitos numeros primos.

O Teorema de Dirichlet sobre “ntimeros primos em progressoes aritmé-
ticas” é uma joia da Teoria dos Niimeros. Grande parte de sua beleza esta
na simplicidade do seu enunciado. Um estudante do ensino médio conhece
matematica suficiente para entender a formulagao do teorema. No entanto,
muitas idéias profundas de Algebra e Analise sdo necessarias para prové-lo.
Veja uma prova em [10].

O estudo dos “ntimeros primos em progressoes aritméticas” motivou o
nascimento da Teoria Analitica dos Nuumeros, ramo de prestigio e em desen-
volvimento na Teoria dos Nimeros.

UNRB
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Progressdo aritmética | Os 10 primeiros de infinitos nimeros primos

2n+1 3,5,7,11,13,17, 19,23, 29,31, . ..

4n+1 5,13,17,29,37,41,53,61,73,89,...

4n +3 3,7,11,19, 23,31, 43, 47,59, 67, . ..

6n+1 7,13,19,31,37,43,61,67,73,79,. ..

6n +5 5,11,17,23,29,41,47,53,59,71,. ..

8n+ 1 17,41,73,89,97, 113, 137, 103, 233, 241, . ..
8n+3 3,11,19,43,59,67,83,107,131,139, ...
8n+5 5,13,29,37,53,61, 101,109, 149, 157, . ..
8n+7 7,23,31,47,71,79, 103,127, 151, 167, . ...
10n + 1 11,31, 41,61, 71,101, 131, 151, 181, 191, . ..
10n+3 3,13,23,43,53,73,83,103,113,163, . ..
10n + 7 7,17,37,47,67, 97,107, 127, 137, 157, . ..
10n+9 19,29,59,79,89,109,139,149,179,199, ...
12n +1 13,37,61,73,97,109,157,181,193,229, ...
12n+5 5,17,29,41,53,89,101,113,137,149, ...
12n+7 7,19, 31, 43,67, 79,103, 127, 139, 151, . ...
12n + 11 11,23,47,59, 71, 83,107, 131, 167, 179, . ...

Tabela 1: Dez primeiros nimeros primos em algumas progressoes aritméticas.

Na Tabela 1 sao apresentados os dez primeiros ntmeros primos em al-
gumas progressoes aritméticas. Esta tabela pode ser acessada em: https:
//en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions.

Utilizaremos o Teorema de Euclides e o Teorema de Dirichlet para de-
monstrar o teorema seguinte devido ao matematico polonés Waclaw Fran-
ciszek Sierpinski (1882-1969).

Teorema 5.3 (Sierpinski). Dado um inteiro m > 1, existe um nimero primo
p* tal que
prElp+2,...,p"Etm

s$a0 numeros inteiros compostos.

Em outras palavras, dado m > 1, existe um nimero primo p* “isolado”
por m nameros compostos de “cada lado”.

Demonstracao. Fixe m > 1 arbitrario. Pelo Teorema de Euclides, existe um
nimero primo ¢ maior do que m. Defina o ntimero inteiro positivo

a=(q+1) (¢+2) - (g+m).

Afirmagao 1. Os nimeros a e q sao relativamente primos, isto
é (a,q) =1.

De fato, como a > g e ¢ é primo, se ¢ divide a, entao ¢ divide g + ¢,
para algum 1 < i < m < ¢. Ora, mas neste caso, g divide ¢, o que é um


https://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions
https://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions
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absurdo. Isto completa a prova da Afirmacao 1. Pelo Teorema de Dirichlet,
a progressao aritmética

{neN:n=ak+q, ke NU{0}},

contém infinitos nimeros primos. Considere um desses ntimeros primos, ou
seja, tome kg € NU {0} tal que

p=aky+q=((g+1)-(¢+2)---(¢g+m)) -ko+gq
é um numero primo. Segue da nossa construcao que

p+1=(q+1)-(g+2)---(g+m) ko+(q+1),
p+2=(q+1)-(g+2)--(g+m) ko+(q+2),

ptm=(qg+1)-(¢+2) - (¢g+m) ko+ (g+m),

sao nameros compostos. Como ¢ > m, considere, agora, o nimero inteiro
positivo

at=(q-m)-(g—(m—1))--(¢g—=1)-(¢g+1)-(¢+2)---(¢g+m).

~\~
a

Afirmacgao 2. Os nimeros a* e q sao relativamente primos.

A prova da Afirmacao 2 é exatamente a mesma da Afirmacao 1. Pelo
Teorema de Dirichlet, a progressao aritmética

{neN:n=a"k+¢q, ke NU{0}},

contém infinitos ntmeros primos. Considere um desses ntimeros primos, ou
seja, tome k* € NU {0} tal que

* k *
pr=a"k"+q
é um numero primo. Por construgao, os ntmeros

pf—m=a"k*+ (¢ —m),

pr—1=a"k"+(¢—1),
pr+1l=a"k"+(¢+1),

p 4+ m=a" k*+ (¢g+m),

sao compostos, terminando a prova do teorema. O

UNRB



Luis Fernando Mello 17

Exercicio 5.1. Prove que existem infinitos primos da forma
6k+5  keNu{o},
ou seja, o conjunto
T={neN:n=6k+5, ke NU{0}}
dos termos da progressao aritmética acima contém infinitos nimeros primos.

Exercicio 5.2. Pode-se mostrar (Teorema de Fermat) que os nimeros pri-
mos da forma
p=4k+1, keN,

podem ser escritos como a soma de dois quadrados de niumeros inteiros po-
s1tivos, 1sto €,
p=a’>+b% abeN.

Assumindo o Teorema de Fermat, mostre que um tal primo € a hipotenusa
de um tridngulo retdngulo cujos catetos sao nimeros inteiros positivos.

6 Distribuicao e espacamento de ntimeros primos

Nesta secao, discutiremos um pouco mais sobre a distribuicao e o espaga-
mento de ntmeros primos, além de discutirmos um pouco a respeito dos
primos gémeos.

O primeiro resultado informa que existem “saltos” arbitrariamente gran-
des na sequéncia dos nimeros primos.

Teorema 6.1. Para qualquer inteiro m > 1, existem m inteiros positivos
compostos consecutivos.

A prova a seguir é construtiva, no sentido de exibirmos quais sdo os m
inteiros positivos compostos consecutivos, para cada m > 1 dado.

Demonstracio. Fixe, arbitrariamente, um inteiro m > 1. Considere os m
numeros inteiros consecutivos:

(m+D!'4+2, (m+1)!4+3, (m+1)!+4,..., (m+1)!+m+ 1.
E simples verificar que
e (m+ 1)! + 2 é divisivel por 2, logo é um numero composto,
e (m+ 1)! + 3 é divisivel por 3, logo é um nimero composto,
°

e (m+ 1)l +m+1 é divisivel por m + 1, logo é um nimero composto.
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Assim, os m ntmeros inteiros acima sao compostos, terminando a prova do
teorema. ]

Exemplo 6.1. Considere m = 6. Os numeros inteiros consecutivos
64+1)!+2, (6+1)!+3, (6+1)4+4, 6+1)!+5, (64+1)!+6, (6+1)I+7,

ou seja,
5042, 5043, 5044, 5045, 5046, 5047,

sao divisiveis, respectivamente, por
2,3, 4,5,6, 7,
$a0 numeros compostos.

Mais a frente, discutiremos com mais profundidade o conhecido Postulado
de Bertrand. Em 1845, Bertrand postulou que, para todo n > 1, existe
um numero primo entre n e 2n. Ele verificou essa afirmacgao para todo
n < 3 x 10%. Em 1850, Tchebychev deu uma prova para esse postulado.

Teorema 6.2. Para todo inteiro n > 1, existe um numero primo p tal que
n<p<2n.

Um par de nameros primos cuja diferenca é igual a 2 é chamado de primos
gémeos. Denotaremos esse par por

{p.p+2}.
Alguns exemplos de primos gémeos:
{3,5}, {5,7}, {11,13}, {17,19}, {29,31}, {41,43}.

Examinemos com mais atengao os primos gémeos acima.
Observe que

5=6-1—1 e T=6-1+1,
11=6-2—1 e 13=6-2+1,
17=6-3—1 e 19=6-3+1,
29=6-5—1 e 31=6-5+1,
41=6-7-1 e 43=6-7+1.

Coincidéncia? E claro que nao.
Considere um namero inteiro positivo n. Pelo Teorema da Divisao (Te-
orema 2.1), os possiveis restos da divisao de n por 6 sao:

0, 1, 2, 3, 4, 5.

UNRB
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Segue, imediatamente, que, se o resto da divisdo de n por 6 for
0, 2, ou 4,

entdo n é par e, se o resto da divisao de n por 6 for 3, entao n é multiplo de
3. Deste modo, se p > 3 é um ntimero primo, entao as tnicas possibilidades
dos restos da divisao de p por 6 sao: 1 e 5, ou seja,

p=6-k+1, keN,

ou

p=6-k+5=6-k+5+(1-1)=6-k+6—-1=6-(k+1)—1
=6-k—1, keN.

Portanto, todo par de ntmeros primos gémeos, diferente de {3,5}, tem a
forma

{6 -k—1,6-k+ 1}, paraalgum k€N,

ou seja, o nimero composto entre dois primos gémeos é miltiplo de 6.
Uma das importantes questoes em aberto na Teoria dos Ndmeros é a
seguinte.

Conjectura 6.1 (Conjectura dos primos gémeos). Ezistem infinitos pares
de numeros primos gémeos.

Uma conjectura mais geral é a seguinte.

Conjectura 6.2 (Conjectura de Polignac). Para todo nimero inteiro posi-
tivo k, existem infinitos numeros primos p tais que p + 2k também € primo.

Se k = 1, entdo as duas conjecturas coincidem. As duas conjecturas
continuam sendo conjecturas, embora alguns avangos tenham ocorrido.

No artigo [4] foi provado que existem infinitos nimeros primos p tais que
p + 2 tem no maximo dois fatores primos. Em [17] foi publicada a prova de
que, para algum inteiro positivo n menor que 70 milhdes, existem infinitos
pares de primos que diferem por n. Posteriormente, num esforco conjunto
liderado por Terence Tao e James Maynard, essa cota baixou para 246, veja
[11] e [13].

Algumas curiosidades. Até setembro de 2018, o maior par de primos
gémeos conhecido era

2.996.863.034.895 x 21:290-000 4 1

Existem

808.675.888.577.436

nimeros primos gémeos menores que 10'8.
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Finalizaremos esta secao com mais uma prova de que o conjunto dos
nimeros primos é infinito.
Considere os nameros de Fibonacci f;, i € N, sendo

f1:17 f2:1’ fn+1:fn+fn—1, Vn > 2.

Veja Exercicio 3.2. Os vinte primeiros nimeros de Fibonacci sao:

=1, fa=1, f3=2, fi=3, fs =75,

fe =38, fr=13, fs =21, fo =34, fi0 = 55,
Juu =289,  fia=144,  f13=233,  fuu=377,  f15 =610,
f16 =987,  f17r = 1597,  fis = 2584,  fi9 =4181,  fop = 6765.

Pode-se mostrar que

(fm:fn) :f(m,n)v Vm,n € N, (6)
sendo (a,b) o maximo divisor comum dos nimeros inteiros positivos a e b.

Prova do Teorema de Fuclides. Suponha que o conjunto dos niimeros primos
é finito. Sejam

P1, P2y---, Pk

esses k numeros primos. Construa os correspondentes k& ntmeros de Fibo-
nacci

fPU fp27"'7 fpk' (7)
Considere 7,7 € {1,2,...,k} com i # j. Utilizando (6), vem

(fpi’fpj) = fpipyy = =1

Desta ultima andlise, segue que os nimeros de Fibonacci em (7) sdo 2 a
2 relativamente primos. Como temos k nimeros primos e k ntmeros de
Fibonacci 2 a 2 relativamente primos, segue que cada um desses ntimeros
de Fibonacci tem exatamente um fator primo. No entanto, o nimero de
Fibonacci

fi9 = 4181 = 37 - 113,

sendo 37 e 113 ntimeros primos, um absurdo. O

Exercicio 6.1. Use o Teorema de Dirichlet (Teorema 5.2) para provar que
existem infinitos nimeros primos que nao pertencem a qualquer par de pri-
mos gémeos. Em outras palavras, existem infinitos numeros primos p tais
que p+2 e p— 2 nao sao numMeros primos.

UNRB
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7 Algumas férmulas para ntimeros primos

As questoes que serao discutidas nesta secdo sao as seguintes.

Pergunta 7.1. Existem formulas que fornecem sé nimeros primos? Exis-
tem formulas que fornecem todos os nimeros primos? Existem formulas que
fornecem todos os nimeros primos e somente nimeros primos?

Certamente estas perguntas sdo importantes e merecem nossa atengao.
Uma das formulas estudadas para fornecer ntimeros primos é a que aparece
no polindémio de Euler

P(n)=n%—-n+41, n € N. (8)
E imediato que
e P(1) =12 — 1+ 41 = 41 é um ntmero primo,
e P(2) =22 -2+ 41 =43 é um ntmero primo,

e P(3) =32 -3+ 41 = 47 é um ntimero primo,

e P(40) = (40)? — 40 + 41 = 1601 é um ntimero primo.

No entanto,
P(41) = (41)% — 41 4 41 = (41)?

nao é um nimero primo.

E comum lermos ou escutarmos que nao existe um formula que forneca
todos os ntimeros primos e somente os nimeros primos. O préoximo teorema
informa-nos que a afirmagao acima é falsa [16].

Denotaremos por Z>p o conjunto dos inteiros nao negativos, por N o
conjunto dos inteiros positivos e por P o conjunto dos ntimeros primos.

Teorema 7.1. Considere n € Z>o e m € N. Defina o nimero inteiro
a=n(m+1)—(m!+1)

e considere f : Z>o x N — P, dada por

f(n,m):mT_lOaz—l‘—(a2—1))+2. 9)

Entao, as sequintes afirmacoes sao verdadeiras:
(1) A funcao f estd bem definida.

(ii) A funcao f € sobrejetora.
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Na prova abaixo do Teorema 7.1 faremos uso do seguinte resultado, co-
nhecido como Teorema de Wilson:

p>1éprimo <= p|(p—1)!+1

Demonstracao. Afirmagao (i). A fungdo f estd bem definida, ou seja, o
namero f(n,m) é um ntmero primo, para todo n inteiro nao negativo e para
todo m inteiro positivo. Sendo a um ntimero inteiro, entao a?
inteiro. Separaremos em dois casos: a® > 1 e a? = 0.

é um numero

Caso 1. Se a® > 1, entéo ’az - 1‘ = a? — 1, o que implica que f(n,m) = 2,
que é um numero primo.

Caso 2. Se a? = 0, entdo, a = 0 e, da definicdo de a, vem
n(m+1) =m!+ 1. (10)
Tomando a = 0 na defini¢ao de f resulta
f(n,m)=m+1. (11)
Ora, das equagoes (10) e (11) resulta que
f(n,m)=m+1|m!+ 1.

Utilizando o Teorema de Wilson, com p = f(n,m) = m + 1, concluimos
que f(n,m) é um namero primo. Dos Casos 1 e 2, concluimos que f esté
bem definida.

Afirmagao (ii). A fungao f é sobrejetora. Considere um ntimero primo
p € P arbitrario e fixado. Queremos mostrar que existem n € Z>p e m € N
tais que f(n,m) = p. Como p é primo, pelo Teorema de Wilson, existe n € N

tal que
p-—D'+1=np.

Denote
p—1D'+1
n=-———
p
e considere m = p — 1. Com essas escolhas,
p—1DI+1

a=n(m+1)—(m'+1)= p—14+1)—((p—1D'+1)

p
=@P-D+1-(p-D!+1)=0.
Assim,
f(n,m)=m—-14+2=m+1=(p—-1)+1=p.

Isso conclui a prova da Afirmacao (ii), terminando a demonstragao do teo-
rema. O
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Embora a expressdo de f seja relativamente simples e o Teorema 7.1
tenha 14 o seu charme, na verdade esse tipo de resultado nao ajuda em nada,
pois, por um lado, a “féormula” f nao é “eficiente”, no sentido de gerar niimeros
primos “distintos”, nem ajuda a responder questoes tedricas importantes,
como, por exemplo, questoes sobre distribui¢coes de niimeros primos.

A titulo de curiosidade, faca o seguinte exercicio: fixe n € Z>g e calcule
os valores de f(n,m) para uma sequéncia arbitraria de valores de m, por
exemplo, m € {2, 4, 6, ..., 30}. Alguma surpresa?

No préximo teorema utilizaremos técnicas da Anélise Real para obtermos
informagbes sobre numeros primos, veja [6].
Para x € R, denotaremos por

Ed

a parte inteira do nimero x. Denotaremos por p,, n € N, o n-ésimo ntumero
primo. Deste modo,

p1:27 p2:37 p3:5) p4:77
Faremos uso, ainda, do seguinte resultado: existe uma constante k > 0 tal

que

Pnt+1 —Pn < kpf/s, Vn € N. (12)

Teorema 7.2. Existe 0 € R tal que
16" ] (13)

€ um numero primo, para todo n € N.

Demonstracao. Se N € N ¢é tal que
N>k (14)

e pp € 0 maior nimero primo menor que N3, entdo

(12) (14)
P < N® < ppi1 < pn+ kp?/s < N3 —i—]\71/8(N3)5/8 < N3+ N?
< (N +1)—1.
Da analise anterior, concluimos: dado um inteiro N > k%, existe um ntmero

primo p tal que
N3 <p<(N+1)P>-1.

Construa, recursivamente, uma sequéncia de nimeros primos (g,)pen da
seguinte forma:
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e ¢ é um ntmero primo satisfazendo ¢; > k®.

e Paran > 1, ¢p+1 ¢ um niimero primo satisfazendo

@ < qni1 < (gn+1)° =1, (15)

sendo, por defini¢do, ¢,+1 0 menor numero primo satisfazendo essas
desigualdades.

Da sequéncia (¢, )nen construimos outras duas sequéncias, denotadas por
(Un)nen € (Un)nen, definidas por:

Up =5 vn = (g + 1%, VneN (16)

Afirmacgao. A sequéncia (u,)nen € crescente e a sequéncia (v, )pen
¢é decrescente.

De fato, para todo n € N, valem

—n—1 (15) 3—n—1 —n
Un+1 = (Qn+1)3 > (qg) = qg = Un,

gt (D) (((gn +1)° = 1) +1)

377171

Unt1 = (Gn+1 + 1)
= (g +13" =0,
Das defini¢oes das sequéncias (up)nen € (Un)neN Seguem que
Uy, < U, Vn € N.

Dessa desigualdade e das desigualdades das monotonicidades das sequéncias
(Un)nen € (Un)nen, resulta, finalmente

Up < Upt1 < Upt1 < Up, Vn € N.

Logo, ambas as sequéncias sao mondtonas e limitadas, portanto, convergen-
tes. Denote por
= lim u, e ¢= lim v,.
n—oo n—oo

Das nossas anélises, resulta
Up <0< P <vp, VYnéeN,

de onde
ud' < 0¥ < ¥ < 0¥, vneN,
ou seja,
gn <60 <g,+1, VYneN.
Isto implica que
L93nJ =qn, Vné€eN,

como queriamos demonstrar. O
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Exercicio 7.1. Prove a sequinte implicacao no Teorema de Wilson:
p>1, pllp—D!'+1 = p € primo.
Exercicio 7.2. Considere p, p1, pa e p3 niumeros primos. Suponha que
p= (1) + (p2)” + (p3)*.

Mostre que um dos primos p1, p2 ou ps € igual a 3.

8 Postulado de Bertrand, parte 1

Em 1845, Bertrand postulou que, para todo n > 1, existe um ntimero primo
entre n e 2n. Ele verificou essa afirmacio para todo n < 3 x 106, Em 1850,
Tchebychev deu uma prova para esse postulado [2].

Teorema 8.1 (Postulado de Bertrand). Para todo inteiro n > 1, existe um
numero primo p tal que
n<p<2n.
Para a prova do Teorema 8.1 precisamos de alguns preliminares. Re-
cordemos, primeiramente, o coeficiente binomial. Considere m,n € N com
m > n. O coeficiente binomial definido por m e n é o ntimero inteiro positivo

(n) = s

Dado um numero real z > 0, denotaremos por
II»
p<z

o produto dos ntimeros primos p < z.

Lema 8.1. Para todo n € N, temos
2n 22n
> —. 17
( n ) 2n (17)

Demonstracao. A prova deve ser feita por indugao. Aqui, daremos uma ideia
de que a desigualdade (17) é verdadeira. Observe que

<2n) ~@2n) 1-2-3-4---mn-(n+1)---(2n—1)-(2n)

n n!n! 1-2-3-4---n-n!

n3:5(2n—1) 2420 —2)
n! n!

2.4 (2n—2)

1.2 (n—1)n

=2

—on

2n(2n—1) _ 22n—1 - 22n

n n on
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Lema 8.2. Para todo niumero real x > 1, vale

[[r<4 (18)

p<w

Demonstracio. E suficiente mostrarmos que, para todo n € N, vale
H p <4 (19)
p<n

De fato, suponha (19) verdadeira. Dado = > 1, tome n = |x]. Assim,

[Ir=]Ir<a<a.

p<z p<n

Faremos a prova de (19) por indugao em n. Note que ela é imediata para
n=1len=2.

Fixe arbitrariamente n > 3 e considere a seguinte Hipotese de Indugao (HI):
A desigualdade (19) é verdadeira para todo k < n. Queremos mostrar que
ela é verdadeira para n.

Caso 1. n é par. Assim,

(HI)
Hp: Hpg gn=t <y,
p<n p<n—1

Caso 2. n é impar, ou seja, n = 2k + 1. Como k + 1 < n, pela HI, temos

[T p <45 (20)
p<k+1

Observe que

2k+1\  (2k+1)!  (k+2)---(2k)-(2k+1)
E ) K(k+1)! 1.2k ’
implicando em

T <) 1)

k+2<p<2k+1

2k+1\  (2k+1)!  1-2-3-4---(2k)- (2k + 1)
( k >_k!(k+1)!_ 1-2-3-4--k-(k+1)!
_ k35 (k1) 460 (2k+2)
- G+l (k+1)!

p 46 (2k+2)

1-2--k-(k+1)

=2k .9k = 4 (22)
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Deste modo,

II »=11» II »

p<n=2k+1 p<k+1 k+2<p<2k+1
(20)
< 4k+1 . H P
k+2<p<2k-+1
CD g1 <2k + 1) ) gkt gk _ g2k
—_— k .
Dos Casos 1 e 2, concluimos a prova do lema. O

A prova do préoximo lema serd omitida e ficard como exercicio. Veja a
Figura 7.

Lema 8.3. Para todo nimero real x > 10, vale

27 > 13, (23)

2000 [
1500
1000 |

s00[

7 8 9 10 "

Figura 7: Ilustracdo dos graficos de 2% e z®.

A prova do préximo lema também sera omitida.

Lema 8.4. Considere n € N e p um numero primo. Suponha que exista
0y € Z>o tal que
pep <o < p9p+1‘

Entao, o expoente da maior poténcia de p que divide o coeficiente binomial

()

¢ menor ou igual a 6.
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Em particular, se p > v/2n, entao o expoente dessa maxima poténcia de
p é menor ou igual a 1. De fato,

Von <p = 2n<p? = O,+1=2 = 0,=1. (24)

Prova do Teorema 6.2. A prova estara concluida se mostrarmos que

H p>1.

n+1<p<2n

Como

(2:) _ (2n)! _ (n+1)- (n+2)---2n’ (25)

nln! 1-2---n

segue que os numeros primos entre n + 1 e 2n, se existirem, dividem o coe-
ficiente binomial (25). Além disto, qualquer primo divisor deste coeficiente
binomial é menor que 2n. Pelo Teorema Fundamental da Aritmética, pode-
mos escrever

n

(2”> —hfo b, (26)

sendo

A= 10w 2% I » 6% I »

pi<v2n V2n<p;<n n<py<2n

Para todo namero real = > 0, defina II(x) como o ntimero de primos menores
que z. Deste modo,
fi < (2n)0V20), (27)

Considere um namero primo p satisfazendo

2n< <
— n.
3 p=

Entao,

4
?n<2p§2n e 2n < 3p<3n.

Assim, p é um fator do denominador de (25), mas 2p nao é, enquanto que 2p
¢ um fator do numerador de (25), mas 3p nao é. Ou seja, o namero primo
p aparece no numerador e no denominador de (25) e, portanto, é cancelado.
Assim,

(18
o= JI »= I w» <

V2n<p;<n V2n<p;j<2n/3

)
42n/3, (28)

Em resumo,

2n (17 (27)(28)
227 (<) <2n> =fi fafs = @IV g2/ p
n n
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de onde
92n/3

_ 2
(2n)0(V2n )+1 (29)

f3 >

Hipo6tese. Considere n > 113.

Assim, v2n > 15. Como II(v/2n ) é menor que o nimero de nimeros
inteiros positivos fmpares menores do que v2n e considerando que 9 e 15
sao nimeros compostos, temos

V2 1 V2 1
H(\/2n)+1§< "2+ —2)4+1= ”2+ 1
_ 2n 1< 2n
2 2 2

Substituindo a desigualdade acima em (29), obtemos

. (30)

h s 92n/3 92n/3 92n/3 < oV2n )\/%/3
3

> — =
(zn)n(\/%)ﬂ (Qn)\/%/z (\/%)\/% (v2n )3
Considerando z = v/2n > 15 (Hipotese), segue de (23) que

2\/27
VI 9t s g3 = (Vo ) = S >,
x (vV2n) Van P

a qual aplicada em (30) resulta em

NG
"S5

fs= ][ pe>1, pois

n<pr<2n
Em outras palavras, o teorema estd demonstrado para n > 113 (Hipotese).
Por exaustao, verificando os casos possiveis, prova-se o teorema para 1 <
n < 113, terminando, assim, a sua prova. O
Exercicio 8.1. Encontre todos os niumeros n € N tais que 0s nimeros
n+1l, n+3, n+7 n+9, n+13, n+ 15,
540 NUMEros primos.

Exercicio 8.2. Por exaustdo, verificando os casos possiveis, prove o Teo-
rema 6.2 para 1 < n < 113.
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|
9 Postulado de Bertrand, parte 2

Nesta secao serao estudadas algumas consequéncias do Postulado de Ber-
trand.

As estimativas que aparecem no Postulado de Bertrand podem ser me-
lhoradas se n > 2. De fato, como vimos na demonstracao do Postulado de
Bertrand, existe um nimero primo p, tal que n < p < 2n.

A primeira utilizacdo do Postulado de Bertrand aparecera na generali-
zacao da seguinte construcdo. Considere k = 2 e n = 5. Note que n > 2.
Procuremos os k = 2 primeiros niimeros inteiros que sao maiores que n = 5
e relativamente primos com n! = 120.

O namero inteiro 6 nao serve, pois, 6 e 120 nao sao relativamente primos.
O numero inteiro 7 serve, pois, 7 e 120 sdo relativamente primos. Os ntmeros
inteiros 8, 9 e 10 nao servem, pois, cada um deles e 120 nao sido relativamente
primos. O numero inteiro 11 serve, pois, 11 e 120 s&o relativamente primos.

Assim, os k = 2 primeiros nimeros inteiros que sdo maiores que n =5 e
relativamente primos com n! = 120 sdo 7 e 11.

Note que eles sao nimeros primos. De fato, a construcao acima pode ser
generalizada, resultando na seguinte proposigao.

Proposicao 9.1. Considere k € N en > 2F. Entdo, os k primeiros nimeros
inteiros que sao maiores que n e relativamente primos com n! sao nimeros
Primos.

Demonstracao. Como, por hipotese,
n > 2]“, entdo n? > 2Fn.
Considere a sequéncia com k + 1 termos de ntimeros inteiros positivos
n, 2n, 4n, 8n, ..., 2°n (< n?).

Pelo Teorema de Bertrand, existe um ntmero primo entre quaisquer dois
termos consecutivos desta sequéncia. Portanto, entre n e n?
menos, k nameros primos. Em particular, os k primeiros ntimeros inteiros
que sdo maiores que n e relativamente primos com n! estdo entre n e n?.
Suponha que um de tais niimeros, denotado por a, ndo é um nimero primo.

Assim, a é composto. Sem perda de generalidade, considere

existem, pelo

a=bc, com 1l<b<ec

Assim,
P <bec=a< n2,
de onde
b<mn,
ou seja, b divide a e também divide n!, um absurdo. O
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Considere um conjunto A néao vazio, de natureza qualquer. Uma particao

do conjunto A é uma colecdo A1, Ag, ..., A de subconjuntos de A tais que
k
A=JA, AjnA.=0, j#n, jne{l,2,... k]
i=1

Exemplo 9.1. Uma particao do conjunto
A=1{1,2,3,4,5,6}

€ dada por
A1 = {1,3,5} & A2 = {2,4, 6}

Dado n € N, considere o conjunto
Ly, ={1,2,...,2n}.
Procuramos uma particao do conjunto Iz, com as seguintes caracteristicas:
e Cada conjunto da particao tem dois elementos;

e A soma dos dois elementos de cada conjunto da particdo é um niimero
primo.

Em outras palavras, procuramos uma particdo do conjunto I, com as se-
guintes caracteristicas

{(li,bi} c Iy, Vi€ {1,2, R ,n},
Iy, = U{ai,bi},
=1
{awbl}ﬂ{ajabj} :q)a 175.77 Za] € {1727"'7”}7
a; +b; = pi,

sendo p; um ndimero primo, para todo i € {1,2,...,n}.
Uma tal particao, se existir, é chamada de particao de I, por pares cujas
s0mas sao0 NUMEros primos.

Exemplo 9.2. Considere n = 10. Assim,
Ip =1{1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15,16, 17, 18,19, 20}.

Uma possivel particao de Isg por pares cujas somas sGo niumeros primos €
dada na Figura 8, ou seja,

{1,12}, {2,11}, {3,20}, {4,19}, {5,18},
{6,17}, {7,16}, {8,15}, {9,14}, {10,13}.
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ool

Figura 8: Particao de I3p por pares cujas somas sao niimeros primos.

A proposicao a seguir garante que, para cada n € N, Iy, possui uma
particao por pares cujas somas Sao NnUmeros primos.

Proposicao 9.2. Consideren € N e o conjunto Is, = {1,2,...,2n}. Entao,
existe uma particao de Is, por pares cujas somas sGo NUMET0S Primos.

Como veremos, na demonstracao da Proposigao 9.2 utilizaremos de ma-
neira essencial o Postulado de Bertrand.

Demonstracao. Faremos a prova por induc¢ao em n € N. Para n = 1, temos
I, = {1, 2}, que tem particao trivial {1, 2}, cuja soma dos elementos é 3, que
¢ um ntmero primo. Para n = 2, temos Iy = {1,2,3,4}, que tem a seguinte
particao

Iy = {1v4} U {273}5

cujas somas dos elementos é 5, um namero primo. Fixe arbitrariamente
n > 2.
Hipétese de Indugao. O teorema tem uma prova para todo m < n, ou
seja, existe uma particdo do conjunto Io,, por pares cujas somas sa0 numeros
primos.

Queremos mostrar, utilizando a Hipotese de Indugao, que existe uma
particao do conjunto Iy, por pares cujas somas sao numeros primos. Pelo
Postulado de Bertrand, existe um ntmero primo p tal que

2n < p < 4n.

Escreva p = 2n + k, para algum k impar satisfazendo 1 < k < 2n. Defina o
seguinte conjunto

Inon ={k,k+1,...,2n —1,2n}.

Afirmagao. Existe uma partigao de I}, 2, por pares cujas somas sao nimeros
primos.
De fato, considere a seguinte particao de I, oy,:

Ikgn:{k,Qn}U{k+1,2n—1}U---U{n+ V;J n+ Fﬂ}
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Esta partigdo estd bem definida (verifique!) e as somas em cada um dos
pares é
2n+k =p,

portanto, um ntmero primo. Como k é impar, entdo k£ — 1 é par, ou seja
k—1=2m. Assim,

2m=k—-1<2n = m<n.
Pela Hipotese de Inducao, existe uma particao do conjunto
Iy, = {1,2,....2m} ={1,2,...,k — 1}
por pares cujas somas sao nimeros primos. Como

L ={1,2,....k— 1} J{kk+1,...,2n — 1,20}
IQm Ik:;n

= I2m U Ik,2n7

segue que existe uma particdo do conjunto Iy, por pares cujas somas sao
nimeros primos. O

A conjectura a seguir pode ser encontrada em [5].

Conjectura 9.1. Para cada inteiro n > 2, o conjunto Iy, = {1,2,...,2n}
pode ser arranjado em um ciclo tal que a soma de quaisquer nimeros adja-
centes € um numero primo.

Exercicio 9.1. Considere n = 20. Fxiba uma particao do conjunto Iy por
pares cujas somas $Go NUMEros Primos.

Exercicio 9.2. Pode-se provar o sequinte teorema.

Teorema 9.1. Para todo inteiro n > 1, existe um nimero primo p tal que
2n < p < 3n.

Use o Teorema 9.1 para provar o sequinte teorema.
Teorema 9.2. Para todo inteiro n > 1, existe um ndamero primo p tal que

S(n—i—l)‘

<p<

Como
3(n+1)

2
seque que o Teorema 9.2 € um refinamento do Postulado de Bertrand.

<2n, Vn>3,
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10 Primos como a soma de dois quadrados

O objetivo desta secao é estudar alguns ntmeros primos que sdo escritos
como a soma de dois quadrados. Em particular, demonstraremos o Teorema
de Fermat. Mais detalhes podem ser encontrados em [1]. Comegamos com
um esboc¢o da solugao do Exercicio 5.2.

Solucao 10.1. Considere um numero primo da forma p = 4k + 1, para
algum k € N. Assim, pelo Teorema de Fermat,

p=a’+0b% abeN.

Sem perda de generalidade, podemos assumir a > b. Considere
= (a2 + b2)2 = (a2 — b2)2 +(2ab)? =+ d?,
sendoc=a?—b*c€Ned=2abeN.
Teorema 10.1 (Teorema de Fermat). Todo nimero primo da forma
p=4k+1, keN,

pode ser escrito como a soma de dois quadrados de nimeros inteiros positivos,
1sto €,

p=a’+0b% abeN.

Considere A um conjunto nao vazio e uma fungao f : A — A. Dizemos
que a funcao f é uma involucao se fo f = 1Id. Um ponto firo de f é um
ponto g € A tal que f(zo) = xo.

Prova do Teorema 10.1. Fixe, arbitrariamente, um ntmero primo p = 4k+1,
k € N. Queremos mostrar que p é a soma de dois quadrados de ntmeros
inteiros positivos. Defina o conjunto

S. :{(w,y,z)EZ3:4wy+z2:p, r>1, y>1}.
Afirmacgao. S, ¢ um conjunto finito. De fato,
dry+22=p = 0<222=p—-dazy = dzy<p,
de onde » »
1€ 1§y§17

ou seja, apenas uma quantidade finita de valores de x e de y sao possiveis e,
consequentemente apenas uma quantidade finita de valores de z também é
possivel, de onde .S}, é finito.

Parte 1. Defina

fiSp — S, flxy,2) = (y,2,—2).
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A funcao f esta bem definida. De fato,
f(,y,2) = (y,2,—2) € Sp,

uma vez que

4(y)(x) + (=2 =dazy+ 22 =p, pois (2,y,2) €S,
A funcao f é uma involugao. De fato,

f(f(@,y,2)) = fly, 2, —2) = (2,9, 2),  V(,y,2) € 5p.
A funcao f néo tem ponto fixo. Um ponto fixo de f satisfaz

(z,y,2) = f(z,9,2) = (y,2,—2) — w=yez=0,

de onde,
p=Adzy+ 22 =422,

0 que nao pode acontecer, pois, p € um niamero primo. Considere o conjunto
T ={(z,y,2) € Sp:z>0}.

Tome (z,y,2) € T. Como f(z,y,2) = (y,x,—2) € Sp, segue que a terceira
coordenada de f(z,y, z) é negativa, de onde f(x,y,z) ¢ T, ou seja, f aplica
o conjunto T'em S, \ 7. Os pontos (x,y, z) € Z? tais que x — y + z = 0 ndo
pertencem a Sp. De fato, se um deles pertencesse a .S, terfamos

p=dzy+2=dzy+(z—y)?=(x+y)?

0 que nao é possivel, pois, p € um numero primo. Da afirmacao anterior e,
como f reverte os sinais de x — y e de z, entao f aplica o conjunto

U={(z,y,2) € Sp:x—y+2>0}

no conjunto S, \ U. Como f aplica os conjuntos T e U nos seus comple-
mentares em Sy, entdo f aplica T\ U em U \ T' e reciprocamente. Veja a
Figura 9.

Figura 9: A funcéo f.
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Deste modo, os conjuntos T" e U sdo finitos e tém a mesma cardinalidade.

Parte 2. Defina
g:U—>U, g(x,y,z)=($—y+z,y,2y—z).

A funcado g estd bem definida (verifique!). A fungao g é uma involugao. De
fato,

9(9(x,y,2) = g(x —y + 2,y,2y — 2)
(r—y+2)—y+(2y—2),y,2y — (2y — 2))
= (z,y,2), V(z,y,2)eU.

A fungao g tem um tnico ponto fixo. Veja a Figura 10.

Figura 10: A fungao g.
Um ponto fixo de g satisfaz

(x,y,z):g(x,y,z)z(x—y—i—z,y,Qy—z) == y==z

Assim,
p:41‘y+22 :43:y—|—y2 =y(dz +y).

Como p é primo, a Unica possibilidade é

o que esta de acordo com a hipotese de que p = 4k+1, kK € N. Em resumo, a
fungdo g é uma involugdo em U com exatamente um ponto fixo. Isto implica
que a cardinalidade de U é impar.

Parte 3. Defina
h:T—T, h(x,y,z) = (y,z,2).

A func@o h estd bem definida e é uma involugao (verifique!). Como a cardi-
nalidade de T é igual & cardinalidade de U e a cardinalidade de U é impar,
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Figura 11: A funcéo h.

segue que a cardinalidade de T' é fmpar. Sendo h uma involugao em T e
tendo T' cardinalidade impar, segue que h tem um ponto fixo em 7T'. Veja a
Figura 11.

Portanto, existe (z,y,z) € T tal que

(x,y,2) = h(z,y,2) = (y,2,2) = x=yez>0.

Assim,
p=dxy+2°=dax(x) + 22 = 42”4+ 22 = (22)? + 22,

com x > 1 e z > 1, terminando a prova do teorema. ]

Por outro lado, pode-se mostrar que nenhum nimero primo da forma
p = 4k + 3, kK € N, pode ser escrito como a soma de dois quadrados de
numeros inteiros positivos.

Combinando o Teorema de Fermat e o paragrafo acima, pode-se demons-
trar o seguinte teorema.

Teorema 10.2. Um niumero n € N pode ser escrito como a soma de dois
quadrados de niumeros inteiros ndo negativos se, e somente se, na decompo-
si¢do de n como um produto de nimeros primos, cada fator primo da forma
4k + 3 aparece com uma poténcia par.

Exercicio 10.1. Mostre que a fun¢do g na prova do Teorema 10.1 estd bem
definida. Mostre, ainda, que a funcdo h estd bem definida e € uma involucao.

Exercicio 10.2. Suponha que os nimeros n,m € N podem ser escritos como
a soma de dois quadrados de nimeros inteiros nao negativos. Mostre que o
produto mn € N também pode ser escrito como a soma de dois quadrados de
2 sendo z
um numero inteiro nao negativo, também pode ser escrito como a soma de
dois quadrados de nimeros inteiros nao negativos.

numeros inteiros nao negativos. Mostre ainda que o mimero n z

11 Teorema de Euclides: Algum primo foi esque-
cido?

Na Secao 3 discutimos a seguinte questao.

Pergunta 11.1. Considere P C N o conjunto dos numeros primos. O
conjunto P € finito ou infinito?
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A primeira resposta a esta pergunta apareceu ha cerca de 2300 anos
na Proposigao 20 do Livro IX de “Os Elementos” de Euclides [7]. Em sua
homenagem, o teorema da nao finitude dos nimeros primos é chamado de
Teorema de Euclides.

Na prova do Teorema de Euclides, utilizamos o Teorema Fundamental
da Aritmética (TFA), estudado nas Segoes 3 e 4. O TFA afirma que todos
0s numeros inteiros positivos maiores que 1 podem ser decompostos num
produto de niimeros primos, sendo essa decomposi¢ao Unica a menos de
permutagoes dos fatores.

Prova do Teorema de Fuclides. Suponha que P é finito. Considere

P = {plap2a--'7pn}-

Defina o ntimero inteiro positivo

a=pi-p2 - pn+L

Por construgao, a nao é divisivel por nenhum p; € P e a > p;, i € {1,2,
...,n}. Assim, ou a é primo ou possui um fator primo (TFA). Em ambos
0s casos, temos a existéncia de um namero primo p diferente de p;, i €
{1,2,...,n}. Portanto, P nao pode ser finito. O

O teorema apresentado acima ¢é na verdade um pouco diferente do teo-
rema que Fuclides escreveu. Como os gregos antigos nao tinham a nogao
moderna de infinito, Euclides nao poderia ter escrito “ha infinitos primos”
ou o “conjuntos dos nimeros primos € infinito”.

Ele escreveu: “a quantidade de nimeros primos é maior do que qualquer
quantidade atribuida de ntmeros primos”, ou seja, existem mais ntmeros
primos do que em qualquer lista finita de niimeros primos.

Como os primos sao a matéria prima com a qual temos que construir a
Aritmética, o Teorema de Euclides nos garante que temos bastante material
para a tarefa.

A prova do Teorema de Euclides é muito simples. Entretanto, ela nao
nos fornece informacao alguma a respeito do ntimero primo p, a nao ser que
ele é, no maximo, igual a

a=pi-p2 - pp+1

Denote por P¥ o conjuntos dos ntimero primos que podem ser obtidos pelo
“método” de Euclides, ou seja, o conjunto dos niimeros primos obtidos se-
gundo a “ideia” apresentada na prova do Teorema de Euclides. Por constru-
cao, PF é um conjunto infinito.

Pergunta 11.2. Considere PE C P. O conjunto P¥ coincide com o con-
junto P, ou seja, P¥ =P?
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Em outras palavras, tera Euclides “esquecido” algum numero primo?
Para tentar entender a Pergunta 11.2 precisamos, antes de mais nada, en-
tender o que significa “método” de Euclides ou “ideia” apresentada na prova
do Teorema de Euclides.

Dado um ntmero primo p, defina

p* = H ¢, sendo ¢ um numero primo,
q<p

isto é, p* é o produto dos ntimeros primos g menores ou iguais a p.
Defina o seguinte subconjunto do conjunto dos nimeros primos

P*={pe€P:p*+1¢&um namero primo}.

Afirmacao 1. O conjunto P* é nédo vazio.
De fato, os ntumeros primos p = 2, p = 3, p = 5 e p = 7 pertencem ao
conjunto P*, pois

2"+1=24+1=3€P, 3+1=2-341=T7€P,
541=2-3-5+1=31€P, 7+1=2-3-5-T+1=211€P.

Afirmagao 2. O conjunto P* é diferente de P.
De fato, o niimero primo p = 13 nao pertence a P*, pois

13*+1=2-3-5-7-11-134+1=30031 =59 -509 ¢ P.
Coloca-se, assim, a seguinte questao.
Pergunta 11.3. Considere P* C P. O conjunto P* € finito ou infinito?

Nao se tem, até o momento, uma resposta a esta pergunta.
Considere, agora, a seguinte sequéncia (py,)nen, definida recursivamente
por: p1 = 2 e, para todo n € N, n > 2, p,, ¢ o maior divisor primo de

p1-DP2 - Pn-1+ L

Denote por PM C P o conjunto dos termos dessa sequéncia. Por construcio,
PM & um conjunto infinito.
Podemos colocar as seguintes questdes com relacio ao conjunto PM e a

sequéncia (pp)nen-

Pergunta 11.4. Considere PM C P. O conjunto PM coincide com o con-
junto P, ou seja, PM =P? Se PM ¢ P, PM omite uma quantidade finita
ou infinita de nimeros primos?

Pergunta 11.5. A sequéncia (pp)nen € mondtona crescente?
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Comegaremos nossa anélise pela ultima pergunta. Por defini¢do, p; = 2
e p2 é o maior divisor primo de

m+1=24+1=3 = py=3.
p3 é o maior divisor primo de
p1-p2+1=2-34+1=7 = p3="T.
P4 € 0 maior divisor primo de
pL-p2-p3+1=2-3.-7T+1=43 = ps=43.

ps € o maior divisor primo de
pr-p2-p3-pa+1=2-3-7-4341=1807=13-139 = p5=139.
Repetindo esse procedimento, obtemos

pe = 00207, pr = 340999, pg = 2365347734339,
pg = 4680225641471129, p1o = 1368845206580129,

Observe que p1g < py, de onde a sequéncia (py, )nen D40 € mondtona crescente.
Vale comentar que os termos ps, pg, P7, Ps, P9 € Pio, listados acima, da
sequéncia (pn)nen foram obtidos com o software Mathematica.
Observe que o niimero primo 5 nao apareceu entre os termos iniciais
da sequéncia (pp)nen. Assim, 5 € PM? Como a sequéncia (p,)nen ndo é
monoétona, nao podemos, pelos argumentos anteriores, decidir essa questao.

Afirmacao 3. 5 ¢ PV,
Como vimos acima, p; = 2, po = 3 e p3 = 7. Dos dois primeiros termos,
para n > 3,
PL P2P3 - Pn—1=2-3:p3  Pp-1

é miltiplo de 2 e também é miiltiplo de 3. Portanto,

P1rop2p3Pno1+t1=2-3:-pg-pp1+1

nao é multiplo de 2 e também nao é multiplo de 3. Segue ainda que p, é
impar.

Dessa discussao,

P1-P2-P3-"Pn-1

nao é miltiplo de 4.

Suponha que exista n > 4 tal que p, = 5, ou seja, o maior divisor primo
de

P1-p2-P3- - Pn-1+1
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¢ 5. Como 2 e 3 ndo dividem

P1 P2 P33 Pp—1+1,

segue que existe k € N, tal que

P1L-p2- P3Pt + 1= 5"

Portanto,
pLop2p3 pao1=5"—1=(5-1) <5k*1+5’“*2+---+5+1).

Portanto, 4 divide
P1-P2-P3- " Pn-1;

0 que é uma contradicao, pelo que vimos acima.
Pode-se mostrar que

11, 13, 17, 19, 23, 29, 31, 37, 41, 47 ¢ PM.

Pelo que vimos, PM ¢ P.
A resposta a Pergunta 11.4, se PM omite uma quantidade finita ou infi-
nita de nameros primos, é dada pelo seguinte teorema, veja [3].

Teorema 11.1. O conjunto PM omite uma quantidade infinita de nimeros
primos. De modo mais preciso, o conjunto P\ PM ¢ infinito.

Podemos alterar a defini¢ao da sequéncia (py,)nen, de modo a obter uma
outra sequéncia. Considere, agora, a sequéncia (g, )nen, definida recursiva-
mente da seguinte maneira: ¢ = 2 e, para todon € N, n > 2, ¢, é o menor
divisor primo de

@-q2qn—1+ 1L
Denote por P™ C P o conjunto dos termos dessa sequéncia. Por construgao,
P™ & um conjunto infinito.
Podemos colocar a seguinte questao com relacao ao conjunto P™.

Pergunta 11.6. Considere P™ C P. O congunto P™ coincide com o con-
gunto P, ou seja, P™ =P? Se P™ & P, P™ omite uma quantidade finita
ou infinita de nimeros primos?

Por definicao, g1 = 2 e g2 é o menor divisor primo de
G+1=2+1=3 = g =3.
q3 € o menor divisor primo de

q-q@+1=2-3+1=7 = qg3=17T.
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g4 é 0 menor divisor primo de
G- -@3+1=2-3-T+1=43 = q4 =43.
@5 € o menor divisor primo de
qG1-q2-qG-qu+1=2-3-7-43+1=1807=13-139 = ¢5=13.

Da analise acima, segue que a sequéncia (g )nen nd0 é monodtona crescente.

O que poder ser dito a respeito da Pergunta 11.67 Muito pouco! Na
referéncia [15] sdo apresentados argumentos probabilisticos de que P™ = P.
No entanto, ainda nao se tem uma prova dessa afirmagao. Se essa afirmagao
for provada, concluiremos que Euclides nao esqueceu primo algum!

Exercicio 11.1. Um quadrado mdgico € uma matriz quadrada cujas entradas
sao numeros inteiros positivos e tal que as somas dos numeros em cada linha,
em cada coluna e nas duas diagonais sao as mesmas. Essa soma comum €
chamada soma mdgica. Complete a matriz abaizo com numeros primos de
modo que ela seja um quadrado mdgico com soma mdgica 111.

12 A Conjectura de Goldbach

Em 1742, em carta enviada a Euler, Goldbach escreveu
Afirmagao 1. Todo ntimero inteiro n > 5 é a soma de trés niimeros primos.

Euler respondeu que a afirmagao feita por Goldbach era equivalente a
seguinte afirmagao.

Afirmagao 2. Todo namero inteiro par 2n > 4 é a soma de dois ntmeros
primos.

A Afirmacéao 2 ficou conhecida como a Conjectura de Goldbach.

Conjectura 12.1 (Conjectura de Goldbach). Todo nimero inteiro par maior
ou igual a quatro € a soma de dois numeros primos.

A seguir, serd apresentada uma prova da equivaléncia das Afirmagdes 1
e 2.
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Demonstracgao.

Parte 1: Suponha a Afirmacao 2 verdadeira, ou seja, todo ntmero inteiro
par 2n > 4 é a soma de dois niimeros primos.

Queremos mostrar que a Afirmacéo 1 é verdadeira, ou seja, que todo niimero
inteiro n > 5 é a soma de trés ntimeros primos. Considere k > 3. Assim,
2k — 2 é par e € maior ou igual a quatro. Pela Afirmacéo 1, existem ntmeros
primos p; e p2 tais que

%k—2=pi+p = 2k=2+p +ps e 2k+1=3+p +ps,

provando, assim, a Afirmagdo 1 para n > 7. Para n = 6 é imediato.

Parte 2: Suponha que a Afirmagdo 1 é verdadeira, ou seja, todo niimero
inteiro n > 5 é a soma de trés nimeros primos. Queremos mostrar que a
Afirmacao 2 verdadeira, ou seja, que todo ntmero inteiro par 2n > 4 é a
soma de dois numeros primos. Considere 2n > 4. Pela Afirmacao 1, existem
nameros primos qi, g2 € g3, tais que

n+2=q +q+gs.

Como 2n + 2 é par, segue da igualdade anterior que um dos nimeros primos
g1, g2 ou g3 € par. Suponha g3 = 2. Assim,

M+2=q+et+@Ea=qn+@p+2 = 2n=q+qp,
provando a Afirmagao 2. O

Na correspondéncia entre Goldbach e Euler, este ultimo escreveu: “Que
todo inteiro par é uma soma de dois primos, considero um teorema comple-
tamente certo, embora nao possa prova-lo.”

A Conjectura de Goldbach foi verificada verdadeira para ntimeros inteiros
pares até 10%, mas ela permanece sem uma prova para todo ntimero inteiro
par.

Suponha, por um momento, que a Conjectura de Goldbach é verdadeira.
Considere n > 2. Assim, existem ntmeros primos p < ¢ tais que

_ptyg

2Zn=p+q = n 2

ou seja,
p=n—k e g=n+k,
para algum nimero inteiro 0 < k < n — 2. Deste modo,
pg=(n—k)(n+k)=n*—k.

Suponha, agora, que para cada numero inteiro n > 2, exista um nimero
inteiro k satisfazendo 0 < k < n — 2 e nimeros primos p < ¢ tais que

n? —k?>=pq.
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Figura 12: Numeros pares como a soma de dois primos.

Deste modo,
pg=n*—k=(n—-k)(n+k),

de onde, pelo TFA,
p=n—k e g=n+k,

implicando que
2n=p+q.

O que acabamos de mostrar é que a Conjectura de Goldbach é equivalente
& seguinte afirmagao.

Afirmagao 3. Para todo nimero inteiro n > 2, existem ntmeros inteiros k,
pegq,com()<k<n-—2 pe qnimeros primos e tais que

n?—k?>=pq.

Considerando k& = 1 na Afirmacao 3, colocamos a seguinte conjectura.

Conjectura 12.2. FExistem infinitos numeros inteiros n > 2 para 0s quais
existem numeros primos p e q tais que

n?—1=pq. (31)

Recordemos a Conjectura dos Primos Gémeos, discutida na Segao 6.
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Conjectura 12.3 (Conjectura dos Primos Gémeos). Ezistem infinitos ni-
meros primos p para 0s quais p + 2 € um numero primo.

Suponha, por um momento, que a Conjectura 12.3 é verdadeira. Consi-
dere p e ¢ = p + 2 ntimeros primos. Assim,

pa+1l=pp+2)+1=p"+2p+1=(p+1)
o que implica que
Pq:(p+1)2—1:n2—1, sendo n=p+ 1.

Concluimos, assim, que existem infinitos nimeros inteiros n > 2 para os
quais existem numeros primos p e ¢ = p + 2, tais que

n*—1=pgq,

ou seja, a Conjectura 12.2 é verdadeira.
Por outro lado, suponha que a Conjectura 12.2 é verdadeira e fixe um tal
ntimero inteiro n satisfazendo-a. Assim,

n—1=pqg e n*—1=(n-1)(n+1).

Logo,
p=n—1 e g=n+1,

implicando que
g—p=Mm+)-n-1)=2 = qg=p+2

Em resumo, a Conjectura 12.3 é verdadeira.

O que acabamos de provar é que a Conjectura 12.2 é equivalente a Con-
jectura 12.3.

Como a Conjectura 12.2 esta relacionada com a Conjectura 12.1 (Gold-
bach), mostramos que existe uma estreita ligagdo entre ela e a Conjec-
tura 12.3 (Primos Gémeos).

Recordemos o conteudo da Afirmacao 1: Todo nimero inteiro n > 5 é a
soma, de trés ntiimeros primos. Considere a seguinte conjectura.

Conjectura 12.4 (Conjectura Fraca de Goldbach). Todo nimero inteiro
impar n > 5 € a soma de trés numeros primos.

E imediato que a sua veracidade decorre da eventual veracidade da Con-
jectura 12.1 (Goldbach). Suponha, por um momento, que a Conjectura 12.4
(Fraca de Goldbach) é verdadeira.

Tome, arbitrariamente, n > 5 e assim, 2n > 10. Considere o nimero
inteiro impar 2n — 3. Da veracidade da Conjectura 12.4, existem nimeros
primos p1, p2 € p3, tais que

2n—=3=pi1+p2+p3 = 2n=pi+p2+p3+3,
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ou seja, o nimero inteiro par 2n é a soma de quatro ntimeros primos. Pode-
mos, entao, concluir que todo ntimero inteiro par maior ou igual a oito é a
soma de quatro ntimeros primos.

Ha fortes indicios de que essa afirmacao seja, de fato, um teorema, em
virtude da seguinte afirmacao.

Afirmagao 4. [Helfgott] A Conjectura Fraca de Goldbach é verdadeira.

THE TERNARY GOLDBACH CONJECTURE IS TRUE

H. A. HELFGOTT

ABSTRACT. The ternary Goldbach conjecture, or three-primes problem, as-
serts that every odd integer n greater than 5 is the sum of three primes. The
present paper proves this conjecture.

Both the ternary Goldbach conjecture and the binary, or strong, Goldbach
conjecture had their origin in an exchange of letters between Euler and Gold-
bach in 1742. We will follow an approach based on the circle method, the
large sieve and exponential sums. Some ideas coming from Ilardy, Littlewood
and Vinogradov are reinterpreted from a modern perspective. While all work
here has to be explicit, the focus is on qualitative gains.

The improved estimates on exponential sums are proven in the author’s
papers on major and minor arcs for Goldbach’s problem. One of the highlights
of the present paper is an optimized large sieve for primes. Its ideas get
reapplied to the circle method to give an improved estimate for the minor-arc
integral.

Figura 13: http://arxiv.org/pdf/1312.7748.pdf.

O que sabemos até o momento com relagdo aos estudos de Helfgott [9]:
Em 2013 e 2014, Helfgott divulgou a sua prova da Conjectura Fraca de
Goldbach, mas ela ainda nao foi publicada em um periédico revisado por
pares. A prova vem passando por mais revisoes desde entao.

Exercicio 12.1. Escreva cada um dos nimeros inteiros pares abairzo como
uma soma de nUmMeros primos:

10, 20, 50, 992, 1382, 1856, 1928.

Exercicio 12.2. Defina a fungio f : R?> — R, por f(z,y) = 2% — o>
Dados p e ¢ numeros primos impares com p < q, mostre que os dois pares
abaizro sao duas solucoes com coordenadas inteiras nao negativas da equagao

f(z,y) =pq:

(wy) = (PE4 4=P (2, 1) = pgtl pg—1
1, Y1 9 ' 9 ) 2,Y2 2 ) 2 .
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|
13 Numeros perfeitos e primos de Mersenne
Considere os primeiros ntimeros primos

2,3, 5eT.
Com eles, contruimos os seguintes nimeros primos

My=22—-1=4—-1=3,
M;=22-1=8-1=71,
M;=2°-1=32—-1=31,
M;=2"-1=128—1=127.

O que podemos afirmar sobre os niimeros inteiros positivos da forma abaixo?

M, =27 -1, pé primo. (32)

A primeira afirmacdo é que p ser um nimero primo é uma condi¢do
necessaria para M, ser um nimero primo.

Proposicao 13.1. Se M,, € um nimero primo, entao p € um nimero primo.

Demonstracao. Faremos a prova pela contrapositiva, ou seja, mostraremos
que se p ¢ um nimero composto, entdo M, é um nimero composto. Sendo
p um namero composto, existem a,b € N, a,b > 1, tais que p = ab. Em
particular, 2* — 1 > 1. Agora,

M,=2" —1=2%0_1=(29"—1
=(2*—1) ((2“)b‘1+(2‘1)”‘2+~-+2a+1).

Desta tltima expressao, inferimos que 2% — 1 > 1 divide M, o que implica
que M, € um ntmero composto, como queriamos demonstrar. L]

Observamos, agora, que p ser um namero primo, embora seja uma con-
di¢ao necessaria, nao ¢ suficiente para M, ser um ntmero primo. De fato,
considere o nimero primo p = 11 e o nimero Mi;. Por defini¢do

My =21 —1=2048 — 1 = 2047 = 23 - 89,

o qual ¢ um nimero composto. Se o numero M, é um nimero primo ele é
chamado de primo de Mersenne.

Tabela 2 lista os ntimeros primos de Mersenne conhecidos até o momento.
Esses nimeros s6 puderam ser conhecidos devido ao grande esforgo coletivo
do “Grupo de Busca dos Numeros Primos de Mersenne”, Great Internet Mer-
senne Prime Search - GIMPS.
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# n M, Digitos | Data de descobrimento Descobridor

1 2 3 1 Antiguidade Antiguidade

2 3 7 1 Antiguidade Antiguidade

3 5 31 2 Antiguidade Antiguidade

4 7 127 3 Antiguidade Antiguidade

b) 13 8.191 4 1456 Anénimo

6 17 131.071 6 1588 Cataldi

7 19 524.287 6 1588 Cataldi

8 31 2.147.483.647 10 1772 Euler

9 61 2.305.843.009.213.693.951 19 1883 Pervushin
10 89 618970019. ..449.562.111 27 1911 Powers
11 107 162259276...010.288.127 33 1914 Powers
12 127 170141183. ..884.105.727 39 1876 Lucas
13 521 686479766. ..115.057.151 157 | 30 de janeiro de 1952 Robinson
14 607 531137992...031.728.127 183 | 30 de janeiro de 1952 Robinson
15 1.279 104079321. ..168.729.087 386 25 de junho de 1952 Robinson
16 2.203 147597991. ..697.771.007 664 | 7 de outubro de 1952 Robinson
17 2.281 446087557...132.836.351 687 | 9 de outubro de 1952 Robinson
18 3.217 259117086. ..909.315.071 969 | 8 de setembro de 1957 Riesel
19 4.253 190797007. . . 350.484.991 1.281 | 3 de novembro de 1961 Hurwitz
20 4.423 285542542. .. 608.580.607 1.332 | 3 de novembro de 1961 Hurwitz
21 9.689 478220278...225.754.111 2.917 11 de maio de 1963 Gillies
22 9.941 346088282. ..789.463.551 2.993 16 de maio de 1963 Gillies
23 11.213 281411201...696.392.191 3.376 2 de junho de 1963 Gillies
24 19.937 431542479...968.041.471 6.002 4 de marco de 1971 Tuckerman
25 21.701 448679166. ..511.882.751 6.533 | 30 de outubro de 1978 Noll e Nickel
26 23.209 402874115...779.264.511 6.987 | 9 de fevereiro de 1979 Noll
27 44.497 854509824...011.228.671 13.395 8 de abril de 1979 Nelson e Slowinski
28 86.243 536927995. . . 433.438.207 25.962 | 25 de setembro de 1982 Slowinski
29 110.503 521928313. ..465.515.007 33.265 | 25 de setembro de 1988 Colquitt e Welsh
30 132.049 512740276...730.061.311 39.751 | 20 de setembro de 1983 Slowinski
31 216.091 746093103. .. 815.528.447 65.050 | 6 de setembro de 1985 Slowinski
32 756.839 174135906. . . 544.677.887 227.832 | 19 de setembro de 1992 Slowinski e Gage
33 859.433 129498125. ..500.142.591 258.716 | 10 de janeiro de 1994 Slowinski e Gage
34 1.257.787 412245773...089.366.527 378.632 | 3 de setembro de 1996 Slowinski e Gage
35) 1.398.269 814717564...451.315.711 420.921 | 13 de novembro de 1996 GIMPS /Joel Armengaud
36 2.976.221 623340076. ..729.201.151 895.932 | 24 de agosto de 1997 GIMPS /Gordon Spence
37 3.021.377 127411683. ..024.694.271 909.526 | 27 de janeiro de 1998 GIMPS /Roland Clarkson
38 6.972.593 437075744...924.193.791 | 2.098.960 1 de junho de 1999 GIMPS/Nayan Hajratwala
39 | 13.466.917 924947738...256.259.071 | 4.053.946 | 14 de novembro de 2001 GIMPS /Michael Cameron
40| 20.996.011 125976895. .. 855.682.047 | 6.320.430 | 17 de novembro de 2003 GIMPS /Michael Shafer
41| 24.036.583 299410429...733.969.407 | 7.235.733 15 de maio de 2004 GIMPS /Josh Findley
42| 25.964.951 122164630. ..577.077.247 | 7.816.230 | 18 de fevereiro de 2005 GIMPS/Martin Nowak
43| 30.402.457 315416475...652.943.871 | 9.152.052 | 15 de dezembro de 2005 | GIMPS/Curtis Cooper&Steven Boone
44| 32.582.657 124575026. ..053.967.871 | 9.808.358 | 4 de setembro de 2006 | GIMPS/Curtis Cooper&Steven Boone
45| 37.156.667 202254406. . . 308.220.927 [ 11.185.272 | 6 de setembro de 2008 GIMPS /Hans-Michael Elvenich
46 | 42.643.801 169873516...562.314.751 | 12.837.064 12 de abril de 2009 GIMPS/Odd M. Strindmo
47| 43.112.609 316470269...697.152.511 | 12.978.189 | 23 de agosto de 2008 GIMPS/Edson Smith
48 | 57.885.161 581887266. ..724.285.951 | 17.425.171 | 25 de janeiro de 2013 GIMPS /Curtis Cooper
49 | 74.207.281 | 300376418084. .. 391086436351 | 22.338.618 7 de janeiro de 2016 GIMPS/Curtis Cooper
50 | 77.232.917 | 467333183359...069762179071 | 23.249.426 | 26 de dezembro de 2017 GIMPS /Jonathan Pace
51| 82.589.933 | 148894445742 ..325217902591 | 24.862.048 | 7 de dezembro de 2018 GIMPS /Patrick Laroche
52 [ 136.279.841 | 881694327503. .. 219486871551 | 41.024.320 | 21 de outubro de 2024 GIMPS/Luke Durant

Tabela 2: http://pt.wikipedia.org/wiki/Primo_de_Mersenne.

Analisemos os ntmeros inteiros positivos 6 e 28. As somas dos divisores
proprios de 6 e de 28 sao:

6:1+2+3=6,
28:14+2+4+7+14 =28,

ou seja, em ambos o0s casos, as somas dos divisores proprios desses ntimeros
resultam nos proprios nimeros. Dizemos que um ntmero inteiro positivo n
é um numero perfeito se as somas dos seus divisores proprios é n. Equiva-
lentemente, um nimero inteiro positivo n é um numero perfeito se as somas
dos seus divisores é 2n.

Dado um numero inteiro positivo n, denotamos por o(n) a soma dos
divisores de n, e por og(n) a soma dos divisores proprios de n. Resulta que
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oo(n) = o(n) —n. Também resulta, imediatamente, que o(1) = 1 e que
o(p) =p+1, se, e somente se, p é um niamero primo.

O lema a seguir da importante informagao a respeito da o(n) no caso em
que n é um numero composto, produto de fatores relativamente primos.

Lema 13.1. Considere um nimero inteiro positivo n = ab, sendo (a,b) = 1.
Entao,

o(n) =oc(ab) =o(a)o(d).

Demonstracao. Como n = ab e (a,b) = 1, segue que qualquer divisor d de
n tem a forma d = a;b;, sendo a; um divisor de a e b; um divisor de b.
Denotando os divisores de a e de b, respectivamente, por

1, ai, ..., Q, 1, bl,...,b,

entao
ola)=14a1+---+a e ob)=14+b+---+0.

Fixe um divisor de a da forma ap. Considere todos os divisores de n da
forma dj = apb;. Assim,

dezzakblzakl—i-akbl‘F+akb:aka<b)

Variando os possiveis valores de ay, obtemos
o(n) = Zde = Zaka(b) =1lo(b)+aiob)+---+aoc(b)
k ) k
= o(a)a(b),
como querfamos demonstrar. O

A prova do préximo teorema, utilizando-se o Principio da Inducao, é
imediata e ficard como exercicio.

Teorema 13.1. Considere um inteiro positivo n > 2 e sua fatoracdo unica
(TFA)

_ (e

como um produto de niumeros primos. Entao,
o(n)=o(p") -+ o (pp")- (33)

Calculemos o (p?j) para j € {1,2,...,m} em (33). Como os divisores
de p?j sa0

17 by, p??"'a p?jv
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segue que, para cada j € {1,2,...,m},

Qj-i-l _1
pj—1
Substituindo em (33), obtemos
a1+1 am—+1
o(n) = 2L ... Pm . (34)
p1 — 1 Pm — 1

Exemplo 13.1. Utilizando (34), obtemos

o+l 1 31+l _ 1 41 9—-1

o0 =03 =""7 3T T 2

ou seja, n =6 € um numero perfeito.
Exemplo 13.2. Utilizando (34), obtemos

g —1 51
45) = 2.5) = .
o(45) = o(3% - 5) 31 o

=13-6="78#90 =2-45.

Concluimos que n = 45 ndo é um niumero perfeito.

O préximo teorema estabelece uma relagao entre nitimeros perfeitos e
primos de Mersenne.

Teorema 13.2. Se M, ¢ um nimero primo de Mersenne, entao
n =201 M, (35)
€ um numero perfeito par. Além disso, todo nimero perfeito par € da forma
2r=1 M,
para algum nimero primo p e M, um nimero primo de Mersenne.

Antes de demonstrarmos o teorema acima, observamos: nao se conhece
um nimero perfeito impar.

Prova do Teorema 13.2. Supondo que (35) é valida, segue que p é primo e,
portanto, p — 1 > 1, de onde 2P~! é multiplo de 2 e, assim, n é par. Por
hipétese, M, ¢ um primo de Mersenne, de onde or—1l ¢ M, = 2P — 1 sao
relativamente primos. Do Lema 13.1,

or—i+l g
on)=o (2p_1) o(2P—-1)= ST

=2.271 (2P — 1) =2n,

(2P —141)= (2" —1)2°
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ou seja, n é um numero perfeito, como queriamos demonstrar.
Seja n um numero perfeito par, ou seja, o(n) = 2n. Como n é par, tome
2% a maior poténcia de 2 que divide n. Assim,

n=2Fp, (36)
sendo b impar. Como 2 e b sao relativamente primos, segue que
2k+1 -1
261y = 2n = o(n) = o(2) o (b) = 1 o(b)

- (2k+1 - 1) o (b),
ou seja,
ok+1p — <2k+1 - 1) o (b).

Como

2k+1 e 2k‘+1 -1

sdo relativamente primos, segue que b divide 28Tt — 1, ou seja,
b= (2k+1 - 1) ¢, (37)
para algum inteiro positivo ¢. Assim,
o(b) = 28 1e, (38)

Pelo que vimos acima,
1,21 ¢ b

dividem b. Suponha que ¢ > 1. Neste caso, de (37) e de (38), temos
I (2’““ - 1) +b+e=2"14b+e,
o que resulta numa contradi¢ao. Logo,
c=1, b=2"1_1¢0(b) =21
Isso implica que b = Mj1q é primo e, pela Proposicao 13.1, segue que p =
k+ 1 é primo. Em resumo, de (36), resulta
n @ ok —or-ty,

como querfamos demonstrar. O

Exercicio 13.1. Dé uma prova para o Teorema 13.1.

Exercicio 13.2. Dizemos que um numero inteiro positivo n € wm namero
deficiente se as somas dos seus divisores proprios € menor que n. De modo
andlogo, dizemos que um numero inteiro positivo n é um nimero abundante
se as somas dos seus divisores proprios € maior que n. Mostre que existem
infinitos numeros deficientes. Mostre também que existem infinitos nimeros
abundantes. Decida se n = 945 € deficiente, perfeito ou abundante, justifi-
cando a sua resposta.
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14 Congruéncias e aplicacoes I: Teoremas de Wil-
son e de Fermat

Iniciamos esta se¢ao estudando em exemplo.

Exemplo 14.1. Este exemplo é uma questao do nivel 1 da primeira etapa
da Olimpiada Brasileira de Matemdtica das Escolas Publicas (OBMEP) de
2012 e pode ser encontrado em http://www.obmep.org.br. Um quadrado de
lado 1 ¢m roda em torno de um quadrado de lado 2 c¢cm, como na Figura 14,
partindo da posicao inicial e completando um giro cada vez que um de seus
lados fica apoiado em um lado do quadrado maior.

o

8rg .
posicdo posicao posicao

inicial ap6s 1° giro ap0s 2° giro

Figura 14: Posi¢oes do quadrado de lado 1 cm.

Qual das figuras esbocadas na Figura 15 representa a posi¢do dos dois
quadrados apds 2012 giros?

A)q B>D 0 :h D) E)E

Figura 15: Possiveis posi¢oes dos dois quadrados apés 2012 giros.

Verifica-se que apds oito giros sucessivos o quadrado menor retorna & sua
posicao inicial. Deste modo, basta encontrar o resto da divisao de 2012 por
8,

2012 =8-251 + 4.

Assim, apds 251 woltas no quadrado maior, o quadrado menor retorna a
posi¢cao inicial. Sobram, na andlise, apenas 4 giros. Portanto, a resposta
correta € a alternativa A.

Daremos uma ideia da aritmética dos ‘“restos” proposta por Gauss. Con-
sidere a,b € Z e m € N. Dizemos que a € congruente a b moédulo m se

m | (a—b).

Denotaremos isso por
a=b (modm).
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Se
m'f(a_b)a

dizemos que a € incongruente a b modulo m ou a € ndo congruente a b médulo
m e denotamos por

a#b (modm).
Exemplo 14.2. 11 =3 (mod 2), pois 2 | (11 — 3) = 8.
Exemplo 14.3. 17 # 11 (mod 5), pois 51 (17 — 11) = 6.

Veremos, a seguir, alguns resultados a respeito da ideia de congruéncia.
Alguns serdao demonstrados aqui, outros terdao suas demonstracoes deixadas
como exercicio.

Proposicao 14.1. Considere a,b € Z e m € N. Assim, a =b (mod m) se,
e somente se, existe k € Z tal que a = b+ km.

Demonstragao. Se a =b (mod m), por definigdo, m | (a —b), ou seja, existe
k € Z tal que a—b = k'm, o que implica a = b+k m. Por outro lado, se existe
k € Z tal que a — b = km, entdo m | (a — b), ou seja, a =b (mod m). O

Proposicao 14.2. Considere a,b € Z e m € N. As seguintes afirmacoes
sao verdadeiras:

e a =a (mod m);

e Sea=0b (modm), entao b =a (mod m);

e Sea=b (mod m) eb=c (mod m), entio a = c (mod m).

A prova da Proposicao 14.2 ficard como exercicio. Por esta proposi¢ao
verificamos que a relagdo de congruéncia é uma relacdo de equivaléncia no
conjunto dos nimeros inteiros.

Proposicao 14.3. Considere a,b,c € Z e m € N. Suponha que a = b
(mod m). As sequintes afirmagoes sao verdadeiras:

1. a+c=b+c (mod m);
2. a—c=b—c (mod m);

3. ac=bc (mod m).
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Demonstracao. Por hipotese, a = b (mod m), ou seja, existe k € Z, tal que
a—b=km. Agora,

(a+c)—(b+c)=a—-b=km,

o que implica que a + ¢ = b+ ¢ (mod m), provando o item 1.
De modo anélogo,

(a—c)—(b—c)=a—-b=km,

implicando que a — ¢ = b — ¢ (mod m), provando o item 2.
Por dltimo,
ac—bec=cla—0b)=ckm,

o que implica que m | (ac — be) e, portanto, ac =bc (mod m). O
A prova da préxima proposicao ficard como exercicio.
Proposicao 14.4. Considere a,b,c,d € Z e m € N. Suponha que
a=b (modm) e c=d (modm).
As sequintes afirmacoes sao verdadeiras:
1. a+c=b+d (mod m));
2. a—c=b—d (mod m);
3. ac=bd (mod m).

Proposicao 14.5. Considere a,b,c € Z e m € N. Suponha que d = (c,m) e
que ac =bc (mod m). Entao, a = b(modm/d). Em particular, se (¢,m) =
d =1, entao, a =b (mod m).

Demonstragao. Por hipotese, ac — be = ¢(a — b) = km. Dividindo ambos
os membros por d, temos
(¢/d)(a —b) = k(m/d), com c¢/d, m/d€EZ,
ou seja, (m/d) | (¢/d)(a —b). Como (m/d,c/d) =1, segue que
(m/d) | (a—b) = a=b (modm)/d,
como queriamos provar. O

Considere h,k € Z e m € N, com h = k (mod m). Neste caso, dizemos
que k € um residuo de h modulo m.
O conjunto de ntimeros inteiros

{le T2y, TS}

é um sistema completo de residuos modulo m se:
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e r; #r; (mod m), com i # j;
e para todo n € Z existe um r; tal que n = r; (mod m).

Exemplo 14.4. Dado m € N, o conjunto {0, 1,..., m — 1} € um sistema
completo de residuos maodulo m.

As provas das seguintes duas proposigoes serdo omitidas.

Proposicao 14.6. Se um conjunto com k nimeros inteiros {ri, ro,..., r}
€ um sistema completo de residuos modulo m, entao k = m.

Proposicao 14.7. Se o conjunto {ry, ro,..., rm} € um sistema completo
de residuos modulo m e a, b € Z, com (a,m) =1, entao o conjunto

{ar1+0b, arg+b,..., ary, + b}
também € um sistema completo de residuos mddulo m.

Considere a,b € Z e m € N. Chamamos de congruéncia linear em uma
varidvel a uma congruéncia da forma

ar=>b (modm), z¢€lZ. (39)
Suponha que xg € Z é uma solug¢do da congruéncia linear (39), isto é,
axg=b (mod m).

Suponha que z1 € Z satisfaz 1 = xp (mod m). Entao, 1 também é solugao
da congruéncia linear (39). De fato,

1 =29 (modm) = axi=axg (modm)=0>b (modm).

Dada uma congruéncia linear, axz = b (mod m), quantas sdo as suas
solugoes incongruentes (nao congruentes), caso exista alguma?

A proxima proposigdo responde a esta pergunta. A sua prova sera omi-
tida.

Proposicao 14.8. Considere a,b € Z e m € N, com (a,m) = d. Valem as
sequintes afirmagoes.

e Sed1b, a congruéncia ax =b (mod m) ndao possui solucao.

e Sed|b, acongruéncia ax =b (mod m) possui exatamente d solugées
incongruentes modulo m.

Dizemos que uma solucao zy € Z da congruéncia linear az = b (mod m)
é unica mddulo m quando qualquer outra solugdo x1 € Z for congruente a
zo modulo m.

Uma solu¢ao @ € Z de ax = 1 (mod m) é chamada de inverso de a € Z
mddulo m. Se (a,m) = 1, entdo, da Proposigao 14.8, segue que a € Z possui
um tdnico inverso moédulo m.

A préxima proposicdo da informacoes quando a € Z é o seu proprio
inverso médulo um niimero primo p.
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Proposicao 14.9. Considere p um primo. O numero a € N € o seu proprio
inverso mddulo p se, e somente se, a =1 (mod p) ou a =—1 (mod p).

Demonstracio. Se a é o seu proprio inverso moédulo p, entdo a? = 1 (mod p),
o que significa que
pl(@®—=1)=(a+1)(a—1).

Assim, p| (a—1)oup| (a+1),deondea =1 (mod p) oua=—1 (mod p).
Por outro lado, se a = 1 (mod p) ou a = —1 (mod p), entdo p | (a — 1) ou
p | (a+1). Portanto,

pl(a+1)(a—1)=a®—1.

Assim, a® = 1 (mod p), ou seja, a é o seu proprio inverso moédulo p, como
querfamos demonstrar. O

Como aplicagoes da ideia de congruéncia, faremos, na proxima secao, as
provas completas dos seguintes dois teoremas.

Teorema 14.1 (Teorema de Wilson). O nidmerop € N € primo se, e somente
se, p| (p— 1)+ 1, ou equivalentemente,

(p—1!'=-1 (mod p).

Teorema 14.2 (Pequeno Teorema de Fermat). Considere p € N um nimero
primo. Se p{a, entdo
a?1=1 (mod p).

Faremos, agora, a prova de uma parte do Teorema 14.1 (Wilson).

Demonstracao. Parte 1. Se p | (p — 1)! 4+ 1, ent@o p é primo.
Faremos a prova por contradi¢do. Suponha que p néo é um nimero
primo, ou seja, existem ntmeros inteiros a > 1 e b > 1, tais que

p=ab.

Em particular, b < p, o que implica que b | (p — 1)!. Agora, por hipotese,
p|(p—1!4+1ecomo b | p, segue, por transitividade, que b | (p — 1)! + 1.
Assim, do que vimos, b | (p—1)! e b | (p—1)!+1, de onde b divide a diferenca

p—-D+1—-(p—1!=1,

um absurdo.
Parte 2. Se p é primo, entao p | (p — 1)! 4+ 1, ou equivalentemente,

(p—1!'=-1 (mod p).

A prova da Parte 2 ficard para a proxima secao. O
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Observacgao 14.1. A afirmacao da Parte 2 do Teorema 14.1 (Wilson) é: se
p € primo, entao p | (p — 1)! + 1, ou equivalentemente,

(p—1D!'=-1 (mod p).

Afirmamos que p € o menor nimero primo com essa propriedade. De fato,
suponha que exista um nimero primo q < p, tal que q | (p — 1)! + 1. Como
q < p, entao q é um fator de (p — 1)!. Portanto, q | (p — 1)! e, assim, divide
a diferenca

(p—DI+1-(p-1!=1,

um absurdo.
Exercicio 14.1. Utilizando o Teorema 14.1 (Wilson), encontre o menor

residuo positivo de
6-7-8-9 mddulo 5.
Exercicio 14.2. Utilizando o Teorema 14.2 (Pequeno Teorema de Fermat),
encontre o resto da divisao de
9100000 17,

15 Congruéncias e aplicagoes 1I: Teoremas de Wil-
son e de Fermat

Nesta segdo estudaremos as provas do Teorema de Wilson e do Pequeno
Teorema de Fermat. Antes de exibirmos a prova do Teorema 14.1 (Wilson),
discutiremos a ideia dessa prova no exemplo a seguir.

Exemplo 15.1. Considere o nimero primo p = 13. Dentre os nimeros
1, 2, 3,4, 5,6, 7,8, 9, 10, 11, 12,

somente os numeros 1 e 12 sao os seus proprios inversos modulo 13. De
fato, pela Proposicao 14.9,

1=1 (mod13) e 12=-1 (mod 13),

e nenhum dos numeros restantes € congruente a 1 ou a —1 mddulo 13. Como
08 numeros
2,3,4,5,6,7 8 9, 10, 11,

sao relativamente primos com 13, pela Proposicao 1.8, cada um deles possui
um unico inverso mddulo 13. Eles podem ser agrupados em

13-3

)
2
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pares da forma

2-7=1 (mod13), 3:-9=1 (mod13), 4-10=1 (mod 13),
5-8=1 (mod13), 6-11=1 (mod 13).

Pelo item &8 da Proposicio 1.4, podemos multiplicar essas congruéncias
membro a membro, obtendo

2:3-4-5-6-7-8-9-10-11=1 (mod 13).
Multiplicando ambos os membros por 12, teremos
2:3-4-5-6-7-8-9-10-11-12=12 (mod 13).

O membro esquerdo € 12! = (13 —1)!. Por outro lado, o membro direito pode
ser escrito da forma 12 = —1 (mod 13). Assim,

(13—1)!'=-1 (mod 13),

como queriamos mostrar.

Prova do Teorema 14.1 (Wilson). Parte 1. Se p | (p — 1)! + 1, entdo p ¢
primo. Faremos a prova por contradi¢do. Suponha que p néo é primo, ou
seja, existem niimeros inteiros a > 1 e b > 1, tais que

p=ab.
Em particular, b < p, o que implica que b | (p — 1)!. Agora, por hipotese,
p|l(p—1)!+1ecomob]|p, segue que b | (p — 1)! + 1, por transitividade.
Assim, b| (p—1)!eb| (p—1)!+ 1, de onde b divide a diferenca

p-D+1—-(p-1!=1,

um absurdo.
Parte 2. Se p é primo, entao

plp—1)+1 <= (p-DI=-1 (modp).
Considere o nimero primo p = 2. Assim,
p-D+1=2-)+1=14+1=2,

é divisivel por p = 2. Considere, agora, um ntimero primo p > 3, arbitrario,
fixado e a congruéncia linear

ar=1 (mod p). (40)
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Considere o conjunto
C={1,2,..., p—1}.

Se a € C, entao (a,p) = 1. Segue, assim, da Proposi¢ao 14.8, que a congru-
éncia linear (40) tem uma tnica solu¢ao para todo a € C'. Segue ainda que,
no conjunto C, apenas a = 1 e a = p— 1 s@o seus proprios inversos modulo p.
De fato, da Proposigao 14.9, a = 1 é congruente a 1 moédulopea=p—1¢
congruente a —1 médulo p.

Afirmacgao. Pode-se agrupar os elementos restantes do conjunto C, quais
sejam, 2, 3, ..., p—2, em (p — 3)/2 pares cujos produtos sdo congruentes
a 1 moédulo p.

Multiplicando essas congruéncias membro a membro (item 3 da Propo-
sigao 14.4), obtemos

2:3-4---(p—2)=1 (mod p).

Multiplicando ambos os membros da congruéncia acima por p—1 (item 3 da
Proposi¢ao 14.3), teremos

2:3:4--(p=2)(p-1)=(p—1) (modp).

Como p—1 = —1 (mod p), segue da congruéncia acima que
(p—D!'=(—-1) (modp)=-1 (modp),
terminando a prova da Parte 2. ]

No exemplo a seguir, ilustraremos a ideia da prova do Teorema 14.2
(Pequeno Teorema de Fermat).

Exemplo 15.2. Considere p=11 ea=5. Como p=1115 = a, queremos
mostrar que aP~' =5 =1 (mod p = 11). Considere a sequinte lista:

1-5=5 (mod 11), 2:5=10 (mod 11),
3:5=4 (mod 11), 4-5=9 (mod 11),
5-5=3 (mod 11), 6-5=8 (mod 11),
7-5=2 (mod 11), 8:-5=7 (mod 11),
9. (mod 11), 10-5=6 (mod 11).

Note que 11 nao divide nenhum dos produtos
j-5, je{l, 2,...,9, 10},

que estao nos membros esquerdos das congruéncias da lista acima. Note
também que esses produtos sao dois a dois incongruentes modulo 11. De
fato,

5-j=5-k (mod1ll) = j=k (mod1l1l),
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com j, k€{l, 2,..., 9, 10}, de onde j = k. Das duas observagoes acima,
resulta que cada produto da forma j -5 deve ser congruente a um numero
diferente do conjunto

D={1,2 3 4,5, 6,7 8,9, 10}.

Observe que os niumeros do conjunto D aparecem, sem repeticoes, nos mem-
bros direitos das congruéncias da lista inicial. Podemos multiplicar, membro
a membro, as congruéncias dessa lista, obtendo

(1-5)-(2-5)---(10-5)=5-10-4-9-3-8-2-7-1-6 (mod 11).
A expressao acima pode ser escrita da forma
510.10' = 10! (mod 11).

Como (10!,11) = 1, pela Proposicdo 1/.5, 51 = 1 (mod 11), como queria-
mos mostrar.

Prova do Teorema 14.2 (Pequeno Teorema de Fermat). O conjunto formado
pelos p ntimeros
E={0,1,2,..., p—1}

é um sistema completo de residuos médulo p. Isto implica, em particular, que
qualquer conjunto contendo, no méximo, p elementos incongruentes médulo
p pode ser colocado em correspondéncia bijetora com um subconjunto do
conjunto E. Considere, agora, o conjunto

F ={a, 2a, 3a,..., (p—1)a}.

Como, por hipotese, (a,p) = 1, nenhum elemento do conjunto F' é divisivel
por p, ou seja, nenhum deles é congruente a zero médulo p. Por outro lado,
quaisquer dois elementos (distintos) de F' sao incongruentes modulo p. De
fato,

aj=ak (modp) = j=k (modp)

0 que s6 é possivel se 7 = k, uma vez que ambos j e k sao positivos e menores
que p. Em resumo, o conjunto F' contém p—1 niimeros incongruentes moédulo
p e nao divisiveis por p. Logo, cada um deles é congruente a exatamente um
dentre os ntmeros

1,2 3,...., p— 1

Se multiplicarmos essas congruéncias membro a membro, teremos
a-(2a)-(3a)---((p—1a)=1-2-3---(p—1) (mod p),

ou seja,
a7t (p—1)!=(p—-1) (mod p).
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Como ((p — 1)I,p) = 1, podemos cancelar o fator (p — 1)! em ambos os
membros, obtendo
a?'=1 (mod p),

como querfamos demonstrar. ]
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