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1 Introdução

Este artigo é uma organização dos estudos realizados no primeiro semestre
de 2022, mais precisamente de março a junho, pela turma do Programa
de Iniciação Científica e Mestrado - PICME - da Universidade Federal de
Itajubá. As atividades foram desenvolvidas de forma remota, em função da
pandemia de COVID-19 que existia à época. Semanalmente foi feita uma
reunião de sessenta minutos para discussão do assunto selecionado, além
de uma reunião extra também semanal para discussão das dúvidas e dos
exercícios propostos para estudo.

∗Dedicado à Edinita, Larissa e Luis Gustavo, com amor e gratidão.
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Como a rotação dos alunos do PICME é grande, uma vez que cada aluno
pode participar de, no máximo, quatro semestres, e, de um modo geral,
esses alunos estão no início de seus estudos universitários e têm formações
muitos distintas, é um desafio grande encontrar um tema para estudo que
seja suficientemente interessante e cientificamente significativo. Para aquele
semestre, o tema selecionado foi “números primos”, uma vez que, de acordo
com Albert Einstein: “If Euclid failed to kindle your youthful enthusiasm,
then you were not born to be a scientific thinker.”

Escolhido o tema de estudo, uma tarefa igualmente difícil é selecionar os
assuntos que serão estudados. Foram escolhidos os assuntos que são os títulos
das seções deste artigo. Muitos outros não foram selecionados por motivos
diversos, os principais deles foram o tempo que tínhamos para estudo (15
semanas) e a maturidade da turma.

Este artigo segue exatamente os registros das atividades desenvolvidas.
Cada seção corresponde ao material estudado em uma reunião semanal. A
maioria dos teoremas têm suas demonstrações apresentadas em um nível bas-
tante elementar. No final de cada seção são colocados um ou dois exercícios.
Alguns deles são utilizados em seções seguintes.

2 Número primo

Nesta seção serão fixadas as nomenclaturas e os símbolos que serão utilizados
ao longo do texto. Os assuntos aqui tratados podem ser encontrados nos
excelentes livros [10], [12] e [14].

Assumiremos conhecidos os seguintes conjuntos:

(i) O conjunto dos número naturais

N = {1, 2, 3, . . .} .

(ii) O conjunto dos número inteiros

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} .

O conjunto dos números naturais N também será chamado de o conjunto
dos números inteiros positivos.

Assumiremos, ainda, os seguintes princípios.

Princípio 2.1 (Princípio da Boa Ordem). Todo conjunto não vazio de in-
teiros positivos contém um elemento mínimo.

Princípio 2.2 (Princípio da Indução Finita–Primeira Forma). Considere
B ⊂ N. Se B possui as seguintes duas propriedades

• 1 ∈ B,
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• k + 1 ∈ B, sempre que k ∈ B,

então B = N.

Princípio 2.3 (Princípio da Indução Finita–Segunda Forma). Considere
B ⊂ N. Se B possui as seguintes duas propriedades

• 1 ∈ B,

• k + 1 ∈ B, sempre que 1, 2, . . . , k ∈ B,

então B = N.

Vejamos um exemplo simples da utilização do Princípio da Indução Finita–
Primeira Forma.

Exemplo 2.1. Para cada n ∈ N, defina

S(n) = 1 + 2 + · · ·+ n. (1)

Considere o conjunto

B =

{
n ∈ N : S(n) =

n(n+ 1)

2

}
.

Queremos mostrar que B = N. Para isto, utilizaremos o Princípio da In-
dução Finita–Primeira Forma. É imediato que 1 ∈ B, pois S(1) = 1 =
1(1 + 1)/2.
Hipótese de Indução (HI): k ∈ B, isto é,

S(k) = 1 + 2 + · · ·+ k =
k(k + 1)

2
.

Analisaremos, sob a HI, se k + 1 ∈ B, isto é, se

S(k + 1) = 1 + 2 + · · ·+ k + (k + 1) =
(k + 1)((k + 1) + 1)

2
=

=
(k + 1)(k + 2)

2
.

Da HI, resulta

S(k + 1) = (1 + 2 + · · ·+ k) + (k + 1) =

=

(
k(k + 1)

2

)
+ (k + 1) = (k + 1)

(
k

2
+ 1

)

= (k + 1)

(
k + 2

2

)
=

(k + 1)(k + 2)

2
.
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L’objectiu d’aquestes notes és establir de forma curta i elegant les fórmules
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1 Trigonometria esfèrica

Aquells lectors que ja sàpiguen què és un triangle esfèric i com es mesuren els
seus costats i els seus angles poden saltar-se les subseccions 1.1 i 1.2 i passar
directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.

A

B

O

figura 1
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Concluímos, assim, que k + 1 ∈ B. Pelo Princípio da Indução Finita–
Primeira Forma,

B = N,

ou seja,

S(n) = 1 + 2 + · · ·+ n =
n(n+ 1)

2
,

para todo n ∈ N.

Considere a, b ∈ Z. Dizemos que a divide b, denotando por

a|b,

se existe c ∈ Z tal que
b = ac.

Se a não divide b escrevemos
a ∤ b.

Para dar um gostinho de como utilizar a definição acima, vejamos a seguinte
proposição.

Proposição 2.1. Considere a, b, c ∈ Z. Se a|b e b|c, então a|c.

Demonstração. Como a|b e b|c, existem k1, k2 ∈ Z tais que

b = k1a, c = k2b.

Assim,
c = k2b = k2(k1a) = (k1k2)a, com k1k2 ∈ Z,

o que implica que a|c, terminando a prova da proposição.

O teorema a seguir é fundamental nas discussões ao longo deste texto.

Teorema 2.1 (Algoritmo da Divisão). Dados a, b ∈ Z, com b > 0, existe
um único par q, r ∈ Z tais que

a = q b+ r, com 0 ≤ r < b.

O número inteiro q é chamado quociente e o número inteiro r é o resto
da divisão de a por b. Note que

r = 0 ⇐⇒ b|a.

Considere a, b ∈ Z com a ou b diferente de zero. O máximo divisor comum
de a e b, denotado por (a, b), é o maior inteiro que divide a e b.

Pode-se mostrar que o máximo divisor comum de a e b é o divisor positivo
de a e b o qual é divisível por todo divisor comum.
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Os números inteiros a e b são chamados relativamente primos se

(a, b) = 1.

Um número inteiro p > 1 é um número primo se os únicos divisores
positivos de p são os números 1 e o próprio p. Se p > 1 não é primo dizemos
que ele é composto.

Os números
2, 3, 5, 7, 11, 13, 17

são primos, enquanto que
4, 15, 3375

são compostos.

Exercício 2.1. Considere a, b ∈ Z com a ou b diferente de zero e suponha
que

d = (a, b).

Mostre que existem n0,m0 ∈ Z tais que

d = n0a+m0b.

Exercício 2.2. Defina os números de Fermat

Fn = 22
n
+ 1, com n = 0, 1, 2, . . . .

Mostre que, para todo número natural m ≥ 1, vale

Fm − 2 = F0 F1 · · ·Fm−1.

3 Números primos: Não finitude e Teorema de Eu-
clides

Uma primeira pergunta natural a respeito dos números primos é a seguinte.

Pergunta 3.1. Considere P ⊂ N o conjunto dos números primos. O con-
junto P é finito ou infinito?

A primeira resposta a essa pergunta apareceu há cerca de 2300 anos em
“Os Elementos” de Euclides [7]. Em sua homenagem, o teorema da não
finitude dos números primos é chamado de Teorema de Euclides.

Teorema 3.1 (Teorema de Euclides). O conjunto P é infinito.

Na prova do Teorema de Euclides, utilizaremos o Teorema Fundamental
da Aritmética - TFA. O TFA afirma que todos os números inteiros positivos
maiores que 1 podem ser decompostos num produto de números primos,
sendo esta decomposição única a menos de permutações dos fatores. O TFA
também é conhecido como Teorema da Fatoração Única.
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Teorema 3.2 (Teorema Fundamental da Aritmética). Todo inteiro n > 1
pode ser escrito unicamente da forma

n = pn1
1 pn2

2 · · · pnk
k ,

sendo
p1 < p2 < · · · < pk

primos e ni > 0 para todo i ∈ {1, 2, . . . , k}.

Prova do Teorema de Euclides. Suponha que P é finito. Considere

P = {p1, p2, . . . , pn} .

Defina o número inteiro positivo

a = p1 p2 · · · pn + 1.

Por construção, a não é divisível por nenhum pi ∈ P e, claramente, a > pi,
i ∈ {1, 2, . . . , n}. Assim, pelo TFA, ou a é primo ou possui um fator primo.
Em ambos os casos, temos a existência de um número primo diferente de pi,
i ∈ {1, 2, . . . , n}. Portanto, P não pode ser finito.

A seguir serão apresentadas mais duas provas do Teorema de Euclides que
são, na verdade, pequenas variantes da prova apresentada acima. A primeira
variante é devida a Ernst Eduard Kummer e foi feita em 1878. A segunda
variante foi apresentada por Pierre René Jean Baptiste Henri Brocard em
1915.

Prova do Teorema de Euclides: Variante 1. Assuma que P é finito e consi-
dere

P = {p1, p2, . . . , pn} .

Defina o número inteiro positivo

b = p1 p2 · · · pn > 2.

Pelo TFA, existe pj ∈ P que divide b − 1 > 1. Ora, por construção, esse
mesmo pj também divide b e, portanto, também divide a diferença

b− (b− 1) = 1,

um absurdo.
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Prova do Teorema de Euclides: Variante 2. O teorema estará demonstrado
se demonstrarmos que, dado n ∈ N, existe um número primo p > n. Fixe
n ∈ N arbitrário, n > 3. Defina o número natural

an = n! + 1 = 1 · 2 · 3 · · · n+ 1.

Note que an > n. Se an é primo, acabou a prova. Se an não é primo, pelo
TFA, existe um primo p tal que p|an. Afirmamos que p > n. De fato, se
p ≤ n, então p é um fator de n!, de onde p divide

an − n! = 1,

um absurdo.

A seguir, analisaremos a prova do Teorema de Euclides apresentada por
Christian Goldbach. Essa prova apareceu em uma carta enviada a Euler em
1730. A ideia é bastante simples. Basta encontrar um sequência infinita de
números naturais ai

1 < a0 < a1 < · · · < an < an+1 < · · · ,

dois a dois primos entre si, isto é, sem fator primo comum. Assim, se pi é um
fator primo de ai (TFA), i ∈ {0, 1, 2, . . .}, então todos os números primos da
sequência infinita

p0, p1, . . . , pn, . . .

serão distintos.

Prova do Teorema de Euclides: Variante 3. Considere os números de Fer-
mat

Fn = 22
n
+ 1, com n = 0, 1, 2, . . . .

É claro que os números de Fermat formam um sequência crescente e infinita
de números naturais ímpares

1 < F0 < F1 < · · · < Fn < Fn+1 < · · · .

Basta, portanto, mostrarmos que esses números são dois a dois primos
entre si. Do Exercício 2.2, para todo número natural m ≥ 1, vale

Fm − 2 = F0 F1 · · ·Fm−1. (2)

Considere números inteiros 0 ≤ n < m, arbitrários. De (2), Fn é um fator de
Fm−2, logo divide Fm−2. Suponha a existência de um número primo p que
divida simultaneamente Fn e Fm. Ora, esse primo p divide também Fm − 2,
pois Fn é um fator de Fm − 2. Portanto, esse primo p divide a diferença

Fm − (Fm − 2) = 2.

Concluímos que p = 2, o que é um absurdo, pois Fm é ímpar.
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www.mat.uab.cat/matmat

Trigonometria esfèrica i hiperbòlica
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Exercício 3.1. Mostre que o número 3 divide

an = n3 + 2n, ∀n ∈ N.

Exercício 3.2. Considere os números de Fibonacci fi, i ∈ N, sendo

f1 = 1, f2 = 1, fn+1 = fn + fn−1, ∀n ≥ 2.

Prove que:

• f1 + f2 + · · ·+ fn = fn+2 − 1, para todo n ∈ N.

• f2
1 + f2

2 + · · ·+ f2
n = fnfn+1, para todo n ∈ N.

4 Teorema Fundamental da Aritmética

Em algumas das provas do Teorema de Euclides usamos de maneira essencial
o Teorema Fundamental da Aritmética (veja Teorema 3.2). Sua prova será
apresentada a seguir.

Prova do Teorema Fundamental da Aritmética. Considere um inteiro n > 1,
arbitrário. Se n é um número primo, a prova acabou. Suponha, então, que
n é composto. Considere o conjunto

Sn = {m ∈ N : m > 1 e m|n}

dos divisores positivos, maiores do que um, de n. O conjunto Sn é não vazio,
pois n é composto. Pelo Princípio da Boa Ordem (veja Princípio 2.1), existe
p1 o menor elemento de Sn. Note que p1 > 1 e é um divisor de n.
Afirmação. p1 é um número primo.
Suponha que p1 não é primo, isto é, p1 é composto. Assim, existe 1 < a1 < p1
que divide p1. Ora, nesse caso, a1 divide n, de onde a1 ∈ Sn. Isto é um
absurdo, pois p1 é o menor elemento de Sn. Em resumo: p1 > 1 é um
número primo que divide n, ou seja

n = p1 n1, n1 ∈ N.

Se n1 é primo, a prova está completa. Se n1 é composto, considere Sn1 o
conjunto dos divisores positivos, maiores do que um, de n1. Repetindo os
argumentos anteriores, considere p2 o menor elemento de Sn1 . Segue que p2
é primo e

n = p1 n1 = p1 p2 n2, n2 ∈ N.

Repetindo este procedimento, obtemos uma sequência decrescente de inteiros
positivos

n1 > n2 > · · · > nr > 1.
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Como todos esses números são inteiros maiores do que um, esse procedimento
termina depois de um número finito de etapas, resultando em

n = p1 p2 · · · pr.

Como os números primos na escrita acima não são necessariamente distintos,
existirão

α1, α2, . . . , αk > 0,

tais que
n = pα1

1 pα2
2 · · · pαk

k .

Com isto, está completa a prova da parte da existência. Falta mostrarmos a
unicidade (a menos da ordenação) da decomposição.
A prova da unicidade (a menos da ordenação) será feita por indução. Mais
precisamente, utilizaremos o Princípio da Indução - Segunda Forma (veja
Princípio 2.3). Para n = 2 (caso base) a unicidade é imediata.
Hipótese de Indução: A unicidade (a menos da ordenação) da decomposi-
ção em um produto de números primos é verdadeira para todos os inteiros
positivos n maiores do que um e menores do que k.
Queremos mostrar que a unicidade (a menos da ordenação) da decomposição
em um produto de números primos é verdadeira para n = k.
Se k é um número primo não temos nada a provar. Suponha que k é composto
e que tenha duas decomposições

p1 p2 · · · ps = k = q1 q2 · · · qr. (3)

Provaremos que s = r e que cada pi no membro esquerdo é igual a algum
qj no membro direito. Isto implicará no término da prova do TFA. De (3),
como p1 divide q1 q2 · · · qr, segue que p1 divide pelos menos um dos fatores
qj . Sem perda de generalidade, podemos assumir que p1 divide q1. Como
ambos são primos, segue que p1 = q1. Como p1 divide k, segue que k = p1 k,
com 1 < k < k. Podemos reescrever (3) da forma

p1 p2 · · · ps = k = p1 k = p1 q2 · · · qr, (4)

ou, equivalentemente

p2 · · · ps = k = q2 · · · qr. (5)

Como 1 < k < k, a Hipótese de Indução nos informa que as duas decomposi-
ções em (5) são idênticas (a menos da ordenação). Em particular, s = r. Isto
implica que as duas decomposições em (4) e, portanto, em (3), são idênticas
(a menos da ordenação).

Como reconhecer que o número inteiro 337 é primo? Mais geralmente,
como reconhecer que um número inteiro n > 1 é primo?
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La redacció consta, doncs, de dues seccions independents, una dedicada a la
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A maneira direta de atacar esta questão é fazer a divisão de n por inteiros
menores que n. Se n for divisível por algum inteiro m, com 1 < m < n, então
n é composto. Caso contrário será primo.

Observe que, se um número primo p divide n, isto é, n = a p, com p ≤ a,
então

p2 ≤ a p = n.

Portanto,
p ≤

√
n .

Assim, para verificar se n é primo ou não basta examinar a divisibilidade de
n por números primos menores ou iguais a

√
n .

Surge, assim, a seguinte questão: Como encontrar todos os primos me-
nores que um dado inteiro m > 1?

Uma resposta a essa questão é obtida pelo Crivo ou Algoritmo de Eratós-
tenes. Eratóstenes foi um dos dirigentes da antiga biblioteca de Alexandria
e contribuiu com descobertas em vários campos da ciência, como Astrono-
mia, Geografia e Matemática. Seu mais famoso feito foi determinar um valor
aproximado para o raio da Terra utilizando Geometria Euclidiana. Daremos
a ideia do Crivo de Eratóstenes exibindo um exemplo [8].

Queremos listar os números primos menores que m = 100. Isto é feito
eliminando os números inteiros maiores que 1 com divisores primos até

√
m =

√
100 = 10,

ou seja, múltiplos de
2, 3, 5 e 7.

Os números restantes depois desse processo iterativo são exatamente os nú-
meros primos menores que m = 100. Veja a sequência das Figuras 1 a 6.

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Figura 1: Listar os números de 2 a 100.
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2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Figura 2: Retirar os múltiplos de 2 (amarelo).

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Figura 3: Retirar os múltiplos de 3 ainda não retirados (verde).

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Figura 4: Retirar os múltiplos de 5 ainda não retirados (rosa).

MAT 2
MATerials MATemàtics
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1 Trigonometria esfèrica

Aquells lectors que ja sàpiguen què és un triangle esfèric i com es mesuren els
seus costats i els seus angles poden saltar-se les subseccions 1.1 i 1.2 i passar
directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.

A

B

O

figura 1
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2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Figura 5: Retirar os múltiplos de 7 ainda não retirados (azul).

2 3 5 7
11 13 17 19

23 29
31 37
41 43 47

53 59
61 67
71 73 79

83 89
97

Figura 6: Os números restantes são primos.

Voltemos à pergunta anterior: Como reconhecer que 337 é primo?
Para saber se o número inteiro 337 é primo, basta encontrar os números

primos menores ou iguais a
√
337 e verificar se algum deles divide 337. Como

182 = 324 < 337 < 361 = 192,

devemos analisar os primos menores que 18. Do exemplo anterior, a lista
dos números primos menores que 18 (veja a Figura 6) é

2, 3, 5, 7, 11, 13, 17.

Como nenhum deles divide 337, segue que este número é primo.

Exercício 4.1. Uma sequência ou progressão aritmética (de números intei-
ros positivos) é uma sequência, finita ou não, de números inteiros positivos
que aumenta a cada passo por uma diferença comum. Por exemplo, os nú-
meros primos

3, 7, 11,

formam uma sequência aritmética de três primos. A diferença comum, neste
caso, é 4. Dê um exemplo de uma sequência aritmética de 5 primos.
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Exercício 4.2. Definição de número primo em Z: um número inteiro n é
primo se n é diferente de 0, 1 e −1 e os seus únicos fatores inteiros são n, seu
oposto −n, 1 e −1. Com esta definição, pode-se mostrar que todo número
inteiro diferente de 0, 1 e −1 pode ser fatorado num produto de números
primos. Mostre, no entanto, que, neste caso, essa fatoração pode não ser
única, ou seja, fatores primos em duas fatorações podem ser distintos.

5 Números primos em conjuntos de termos de pro-
gressões aritméticas

Nesta seção, discutiremos a existência de números primos em conjuntos de
termos de progressões aritméticas. Para fixar as ideias e as notações, consi-
dere o seguinte conjunto

S = {n ∈ N : n = 4k + 3, k ∈ N ∪ {0}}
= {3, 7, 11, 15, 19, 23, 27, 31, 35, . . .} ,

ou seja, S é o conjunto dos termos da progressão arimética de razão 4 e de
primeiro termo n = 3.

Notemos que os números

3, 7, 11, 19, 23, 31 ∈ S

são números primos. Considere o seguinte conjunto

PS = {n ∈ S : n é número primo} .

A seguinte pergunta é imediata.

Pergunta 5.1. O conjunto PS é finito ou infinito?

Mostraremos que PS é infinito, ou seja, existem infinitos números primos
dentre os termos da progressão aritmética 4k + 3, k ∈ N ∪ {0}.

Esse resultado, aparentemente simples, é surpreendente: mostra a exis-
tência de infinitos números primos que são escritos em uma forma especial.

Teorema 5.1. O conjunto PS é infinito.

Demonstração. Queremos provar que existem infinitos primos da forma 4k+
3. Dado um inteiro positivo m, pelo Algoritmo da Divisão (Teorema 2.1), os
possíveis restos da divisão de m por 4 são: 0, 1, 2 e 3. Segue que um número
primo p ̸= 2 é da forma 4q + 1 ou 4q + 3, visto que os números da forma
4q = 4q + 0 e 4q + 2 são pares.
Suponha a existência de somente um número finito de primos da forma 4k+3.
Sejam p1, p2, . . . , pr esses primos, ou seja,

p1 = 4k1 + 3, p2 = 4k2 + 3, . . . , pr = 4kr + 3,
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estudiants de primer curs de qualsevol carrera tècnica. La segona requereix
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1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.
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sendo k1, k2, . . . , kr inteiros positivos. Defina

N = 4 p1 p2 · · · pr − 1.

É imediato que cada pi, i = 1, 2, . . . , r não divide N . Note que

N = 4 p1 p2 · · · pr − 1 + (−3 + 3) = 4(p1 p2 · · · pr − 1) + 3

= 4q + 3.

Por construção, N > pi, para todo i = 1, 2, . . . , r. Temos duas possibilidades:
N é primo ou N é composto. Se N é primo, acabou, pois N é da forma
N = 4q + 3, com q ∈ N, ou seja, N ∈ S, mas é diferente de pi, para todo
i = 1, 2, . . . , r. Se N é composto, pelo TFA, N possui um divisor primo.
Afirmamos que algum divisor primo de N tem que ser da forma 4s + 3,
s ∈ N. De fato, se todo divisor primo de N for da forma 4j+1, j ∈ N, segue
que N terá a forma N = 4t+ 1, t ∈ N, contrariando a escrita de N . Assim,
esse divisor primo p = 4s+3 ∈ S e é diferente de pi, para todo i = 1, 2, . . . , r,
terminando a prova do teorema.

Imitando a demonstração acima, podemos provar que existem infinitos
primos da forma

6k + 5, k ∈ N ∪ {0},

ou seja, o conjunto

T = {n ∈ N : n = 6k + 5, k ∈ N ∪ {0}}

dos termos da progressão aritmética acima contém infinitos números primos.
De fato, pode-se provar o seguinte teorema, devido ao matemático Peter
Gustav Lejeune Dirichlet (1805-1859).

Teorema 5.2 (Dirichlet). Considere a e b inteiros positivos primos entre si,
isto é, (a, b) = 1. O conjunto

L = {n ∈ N : n = ak + b, k ∈ N ∪ {0}}

contém infinitos números primos.

O Teorema de Dirichlet sobre “números primos em progressões aritmé-
ticas” é uma jóia da Teoria dos Números. Grande parte de sua beleza está
na simplicidade do seu enunciado. Um estudante do ensino médio conhece
matemática suficiente para entender a formulação do teorema. No entanto,
muitas idéias profundas de Álgebra e Análise são necessárias para prová-lo.
Veja uma prova em [10].

O estudo dos “números primos em progressões aritméticas” motivou o
nascimento da Teoria Analítica dos Números, ramo de prestígio e em desen-
volvimento na Teoria dos Números.
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Progressão aritmética Os 10 primeiros de infinitos números primos
2n+ 1 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .

4n+ 1 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, . . .

4n+ 3 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, . . .

6n+ 1 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, . . .

6n+ 5 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, . . .

8n+ 1 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, . . .

8n+ 3 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, . . .

8n+ 5 5, 13, 29, 37, 53, 61, 101, 109, 149, 157, . . .

8n+ 7 7, 23, 31, 47, 71, 79, 103, 127, 151, 167, . . .

10n+ 1 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, . . .

10n+ 3 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, . . .

10n+ 7 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, . . .

10n+ 9 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, . . .

12n+ 1 13, 37, 61, 73, 97, 109, 157, 181, 193, 229, . . .

12n+ 5 5, 17, 29, 41, 53, 89, 101, 113, 137, 149, . . .

12n+ 7 7, 19, 31, 43, 67, 79, 103, 127, 139, 151, . . .

12n+ 11 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, . . .

Tabela 1: Dez primeiros números primos em algumas progressões aritméticas.

Na Tabela 1 são apresentados os dez primeiros números primos em al-
gumas progressões aritméticas. Esta tabela pode ser acessada em: https:
//en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions.

Utilizaremos o Teorema de Euclides e o Teorema de Dirichlet para de-
monstrar o teorema seguinte devido ao matemático polonês Waclaw Fran-
ciszek Sierpinski (1882-1969).

Teorema 5.3 (Sierpinski). Dado um inteiro m > 1, existe um número primo
p∗ tal que

p∗ ± 1, p∗ ± 2, . . . , p∗ ±m

são números inteiros compostos.

Em outras palavras, dado m > 1, existe um número primo p∗ “isolado”
por m números compostos de “cada lado”.

Demonstração. Fixe m > 1 arbitrário. Pelo Teorema de Euclides, existe um
número primo q maior do que m. Defina o número inteiro positivo

a = (q + 1) · (q + 2) · · · (q +m).

Afirmação 1. Os números a e q são relativamente primos, isto
é, (a, q) = 1.

De fato, como a > q e q é primo, se q divide a, então q divide q + i,
para algum 1 ≤ i ≤ m < q. Ora, mas neste caso, q divide i, o que é um
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1 Trigonometria esfèrica

Aquells lectors que ja sàpiguen què és un triangle esfèric i com es mesuren els
seus costats i els seus angles poden saltar-se les subseccions 1.1 i 1.2 i passar
directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.
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absurdo. Isto completa a prova da Afirmação 1. Pelo Teorema de Dirichlet,
a progressão aritmética

{n ∈ N : n = a k + q, k ∈ N ∪ {0}} ,

contém infinitos números primos. Considere um desses números primos, ou
seja, tome k0 ∈ N ∪ {0} tal que

p = a k0 + q = ((q + 1) · (q + 2) · · · (q +m)) · k0 + q

é um número primo. Segue da nossa construção que

p+ 1 = (q + 1) · (q + 2) · · · (q +m) · k0 + (q + 1),

p+ 2 = (q + 1) · (q + 2) · · · (q +m) · k0 + (q + 2),

...
p+m = (q + 1) · (q + 2) · · · (q +m) · k0 + (q +m),

são números compostos. Como q > m, considere, agora, o número inteiro
positivo

a∗ = (q −m) · (q − (m− 1)) · · · (q − 1) · (q + 1) · (q + 2) · · · (q +m)︸ ︷︷ ︸
a

.

Afirmação 2. Os números a∗ e q são relativamente primos.

A prova da Afirmação 2 é exatamente a mesma da Afirmação 1. Pelo
Teorema de Dirichlet, a progressão aritmética

{n ∈ N : n = a∗ k + q, k ∈ N ∪ {0}} ,

contém infinitos números primos. Considere um desses números primos, ou
seja, tome k∗ ∈ N ∪ {0} tal que

p∗ = a∗ k∗ + q

é um número primo. Por construção, os números

p∗ −m = a∗ k∗ + (q −m),

...
p∗ − 1 = a∗ k∗ + (q − 1),

p∗ + 1 = a∗ k∗ + (q + 1),

...
p∗ +m = a∗ k∗ + (q +m),

são compostos, terminando a prova do teorema.
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Exercício 5.1. Prove que existem infinitos primos da forma

6k + 5, k ∈ N ∪ {0},

ou seja, o conjunto

T = {n ∈ N : n = 6k + 5, k ∈ N ∪ {0}}

dos termos da progressão aritmética acima contém infinitos números primos.

Exercício 5.2. Pode-se mostrar (Teorema de Fermat) que os números pri-
mos da forma

p = 4k + 1, k ∈ N,

podem ser escritos como a soma de dois quadrados de números inteiros po-
sitivos, isto é,

p = a2 + b2, a, b ∈ N.

Assumindo o Teorema de Fermat, mostre que um tal primo é a hipotenusa
de um triângulo retângulo cujos catetos são números inteiros positivos.

6 Distribuição e espaçamento de números primos

Nesta seção, discutiremos um pouco mais sobre a distribuição e o espaça-
mento de números primos, além de discutirmos um pouco a respeito dos
primos gêmeos.

O primeiro resultado informa que existem “saltos” arbitrariamente gran-
des na sequência dos números primos.

Teorema 6.1. Para qualquer inteiro m > 1, existem m inteiros positivos
compostos consecutivos.

A prova a seguir é construtiva, no sentido de exibirmos quais são os m
inteiros positivos compostos consecutivos, para cada m > 1 dado.

Demonstração. Fixe, arbitrariamente, um inteiro m > 1. Considere os m
números inteiros consecutivos:

(m+ 1)! + 2, (m+ 1)! + 3, (m+ 1)! + 4, . . . , (m+ 1)! +m+ 1.

É simples verificar que

• (m+ 1)! + 2 é divisível por 2, logo é um número composto,

• (m+ 1)! + 3 é divisível por 3, logo é um número composto,

•
...

• (m+ 1)! +m+ 1 é divisível por m+ 1, logo é um número composto.
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directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.
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Assim, os m números inteiros acima são compostos, terminando a prova do
teorema.

Exemplo 6.1. Considere m = 6. Os números inteiros consecutivos

(6+ 1)!+ 2, (6+ 1)!+ 3, (6+ 1)!+ 4, (6+ 1)!+ 5, (6+ 1)!+ 6, (6+ 1)!+ 7,

ou seja,
5042, 5043, 5044, 5045, 5046, 5047,

são divisíveis, respectivamente, por

2, 3, 4, 5, 6, 7,

são números compostos.

Mais à frente, discutiremos com mais profundidade o conhecido Postulado
de Bertrand. Em 1845, Bertrand postulou que, para todo n ≥ 1, existe
um número primo entre n e 2n. Ele verificou essa afirmação para todo
n < 3× 106. Em 1850, Tchebychev deu uma prova para esse postulado.

Teorema 6.2. Para todo inteiro n ≥ 1, existe um número primo p tal que

n ≤ p ≤ 2n.

Um par de números primos cuja diferença é igual a 2 é chamado de primos
gêmeos. Denotaremos esse par por

{p, p+ 2}.

Alguns exemplos de primos gêmeos:

{3, 5}, {5, 7}, {11, 13}, {17, 19}, {29, 31}, {41, 43}.

Examinemos com mais atenção os primos gêmeos acima.
Observe que

5 = 6 · 1− 1 e 7 = 6 · 1 + 1,

11 = 6 · 2− 1 e 13 = 6 · 2 + 1,

17 = 6 · 3− 1 e 19 = 6 · 3 + 1,

29 = 6 · 5− 1 e 31 = 6 · 5 + 1,

41 = 6 · 7− 1 e 43 = 6 · 7 + 1.

Coincidência? É claro que não.
Considere um número inteiro positivo n. Pelo Teorema da Divisão (Te-

orema 2.1), os possíveis restos da divisão de n por 6 são:

0, 1, 2, 3, 4, 5.
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Segue, imediatamente, que, se o resto da divisão de n por 6 for

0, 2, ou 4,

então n é par e, se o resto da divisão de n por 6 for 3, então n é múltiplo de
3. Deste modo, se p > 3 é um número primo, então as únicas possibilidades
dos restos da divisão de p por 6 são: 1 e 5, ou seja,

p = 6 · k + 1, k ∈ N,

ou

p = 6 · k + 5 = 6 · k + 5 + (1− 1) = 6 · k + 6− 1 = 6 · (k + 1)− 1

= 6 · k̂ − 1, k̂ ∈ N.

Portanto, todo par de números primos gêmeos, diferente de {3, 5}, tem a
forma

{6 · k − 1, 6 · k + 1}, para algum k ∈ N,

ou seja, o número composto entre dois primos gêmeos é múltiplo de 6.
Uma das importantes questões em aberto na Teoria dos Números é a

seguinte.

Conjectura 6.1 (Conjectura dos primos gêmeos). Existem infinitos pares
de números primos gêmeos.

Uma conjectura mais geral é a seguinte.

Conjectura 6.2 (Conjectura de Polignac). Para todo número inteiro posi-
tivo k, existem infinitos números primos p tais que p+ 2k também é primo.

Se k = 1, então as duas conjecturas coincidem. As duas conjecturas
continuam sendo conjecturas, embora alguns avanços tenham ocorrido.

No artigo [4] foi provado que existem infinitos números primos p tais que
p+ 2 tem no máximo dois fatores primos. Em [17] foi publicada a prova de
que, para algum inteiro positivo n menor que 70 milhões, existem infinitos
pares de primos que diferem por n. Posteriormente, num esforço conjunto
liderado por Terence Tao e James Maynard, essa cota baixou para 246, veja
[11] e [13].

Algumas curiosidades. Até setembro de 2018, o maior par de primos
gêmeos conhecido era

2.996.863.034.895× 21.290.000 ± 1.

Existem
808.675.888.577.436

números primos gêmeos menores que 1018.
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1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.
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Finalizaremos esta seção com mais uma prova de que o conjunto dos
números primos é infinito.

Considere os números de Fibonacci fi, i ∈ N, sendo

f1 = 1, f2 = 1, fn+1 = fn + fn−1, ∀n ≥ 2.

Veja Exercício 3.2. Os vinte primeiros números de Fibonacci são:

f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5,

f6 = 8, f7 = 13, f8 = 21, f9 = 34, f10 = 55,

f11 = 89, f12 = 144, f13 = 233, f14 = 377, f15 = 610,

f16 = 987, f17 = 1597, f18 = 2584, f19 = 4181, f20 = 6765.

Pode-se mostrar que

(fm, fn) = f(m,n), ∀m,n ∈ N, (6)

sendo (a, b) o máximo divisor comum dos números inteiros positivos a e b.

Prova do Teorema de Euclides. Suponha que o conjunto dos números primos
é finito. Sejam

p1, p2, . . . , pk

esses k números primos. Construa os correspondentes k números de Fibo-
nacci

fp1 , fp2 , . . . , fpk . (7)

Considere i, j ∈ {1, 2, . . . , k} com i ̸= j. Utilizando (6), vem(
fpi , fpj

)
= f(pi,pj) = f1 = 1.

Desta última análise, segue que os números de Fibonacci em (7) são 2 a
2 relativamente primos. Como temos k números primos e k números de
Fibonacci 2 a 2 relativamente primos, segue que cada um desses números
de Fibonacci tem exatamente um fator primo. No entanto, o número de
Fibonacci

f19 = 4181 = 37 · 113,

sendo 37 e 113 números primos, um absurdo.

Exercício 6.1. Use o Teorema de Dirichlet (Teorema 5.2) para provar que
existem infinitos números primos que não pertencem a qualquer par de pri-
mos gêmeos. Em outras palavras, existem infinitos números primos p tais
que p+ 2 e p− 2 não são números primos.
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7 Algumas fórmulas para números primos

As questões que serão discutidas nesta seção são as seguintes.

Pergunta 7.1. Existem fórmulas que fornecem só números primos? Exis-
tem fórmulas que fornecem todos os números primos? Existem fórmulas que
fornecem todos os números primos e somente números primos?

Certamente estas perguntas são importantes e merecem nossa atenção.
Uma das fórmulas estudadas para fornecer números primos é a que aparece
no polinômio de Euler

P (n) = n2 − n+ 41, n ∈ N. (8)

É imediato que

• P (1) = 12 − 1 + 41 = 41 é um número primo,

• P (2) = 22 − 2 + 41 = 43 é um número primo,

• P (3) = 32 − 3 + 41 = 47 é um número primo,

•
...

• P (40) = (40)2 − 40 + 41 = 1601 é um número primo.

No entanto,
P (41) = (41)2 − 41 + 41 = (41)2

não é um número primo.
É comum lermos ou escutarmos que não existe um fórmula que forneça

todos os números primos e somente os números primos. O próximo teorema
informa-nos que a afirmação acima é falsa [16].

Denotaremos por Z≥0 o conjunto dos inteiros não negativos, por N o
conjunto dos inteiros positivos e por P o conjunto dos números primos.

Teorema 7.1. Considere n ∈ Z≥0 e m ∈ N. Defina o número inteiro

a = n(m+ 1)− (m! + 1)

e considere f : Z≥0 × N −→ P, dada por

f(n,m) =
m− 1

2

(∣∣a2 − 1
∣∣− (a2 − 1

))
+ 2. (9)

Então, as seguintes afirmações são verdadeiras:

(i) A função f está bem definida.

(ii) A função f é sobrejetora.
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π, (vegeu la figura 1) tal com explicarem a continuació.
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Na prova abaixo do Teorema 7.1 faremos uso do seguinte resultado, co-
nhecido como Teorema de Wilson:

p > 1 é primo ⇐⇒ p | (p− 1)! + 1.

Demonstração. Afirmação (i). A função f está bem definida, ou seja, o
número f(n,m) é um número primo, para todo n inteiro não negativo e para
todo m inteiro positivo. Sendo a um número inteiro, então a2 é um número
inteiro. Separaremos em dois casos: a2 ≥ 1 e a2 = 0.

Caso 1. Se a2 ≥ 1, então
∣∣a2 − 1

∣∣ = a2 − 1, o que implica que f(n,m) = 2,
que é um número primo.

Caso 2. Se a2 = 0, então, a = 0 e, da definição de a, vem

n(m+ 1) = m! + 1. (10)

Tomando a = 0 na definição de f resulta

f(n,m) = m+ 1. (11)

Ora, das equações (10) e (11) resulta que

f(n,m) = m+ 1 |m! + 1.

Utilizando o Teorema de Wilson, com p = f(n,m) = m+ 1, concluímos
que f(n,m) é um número primo. Dos Casos 1 e 2, concluimos que f está
bem definida.
Afirmação (ii). A função f é sobrejetora. Considere um número primo
p ∈ P arbitrário e fixado. Queremos mostrar que existem n ∈ Z≥0 e m ∈ N
tais que f(n,m) = p. Como p é primo, pelo Teorema de Wilson, existe n ∈ N
tal que

(p− 1)! + 1 = n p.

Denote
n =

(p− 1)! + 1

p

e considere m = p− 1. Com essas escolhas,

a = n(m+ 1)− (m! + 1) =
(p− 1)! + 1

p
(p− 1 + 1)− ((p− 1)! + 1)

= (p− 1)! + 1− ((p− 1)! + 1) = 0.

Assim,
f(n,m) = m− 1 + 2 = m+ 1 = (p− 1) + 1 = p.

Isso conclui a prova da Afirmação (ii), terminando a demonstração do teo-
rema.
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Embora a expressão de f seja relativamente simples e o Teorema 7.1
tenha lá o seu charme, na verdade esse tipo de resultado não ajuda em nada,
pois, por um lado, a “fórmula” f não é “eficiente”, no sentido de gerar números
primos “distintos”, nem ajuda a responder questões teóricas importantes,
como, por exemplo, questões sobre distribuições de números primos.

A título de curiosidade, faça o seguinte exercício: fixe n ∈ Z≥0 e calcule
os valores de f(n,m) para uma sequência arbitrária de valores de m, por
exemplo, m ∈ {2, 4, 6, . . . , 30}. Alguma surpresa?

No próximo teorema utilizaremos técnicas da Análise Real para obtermos
informações sobre números primos, veja [6].

Para x ∈ R, denotaremos por

⌊x⌋

a parte inteira do número x. Denotaremos por pn, n ∈ N, o n-ésimo número
primo. Deste modo,

p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . . .

Faremos uso, ainda, do seguinte resultado: existe uma constante k > 0 tal
que

pn+1 − pn < k p5/8n , ∀n ∈ N. (12)

Teorema 7.2. Existe θ ∈ R tal que⌊
θ3

n⌋
(13)

é um número primo, para todo n ∈ N.

Demonstração. Se N ∈ N é tal que

N > k8 (14)

e pn é o maior número primo menor que N3, então

pn < N3 < pn+1

(12)
< pn + k p5/8n

(14)
< N3 +N1/8(N3)5/8 < N3 +N2

< (N + 1)3 − 1.

Da análise anterior, concluímos: dado um inteiro N > k8, existe um número
primo p tal que

N3 < p < (N + 1)3 − 1.

Construa, recursivamente, uma sequência de números primos (qn)n∈N da
seguinte forma:
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• q1 é um número primo satisfazendo q1 > k8.

• Para n ≥ 1, qn+1 é um número primo satisfazendo

q3n < qn+1 < (qn + 1)3 − 1, (15)

sendo, por definição, qn+1 o menor número primo satisfazendo essas
desigualdades.

Da sequência (qn)n∈N construímos outras duas sequências, denotadas por
(un)n∈N e (vn)n∈N, definidas por:

un = q3
−n

n , vn = (qn + 1)3
−n

, ∀n ∈ N. (16)

Afirmação. A sequência (un)n∈N é crescente e a sequência (vn)n∈N
é decrescente.

De fato, para todo n ∈ N, valem

un+1 = (qn+1)
3−n−1 (15)

>
(
q3n
)3−n−1

= q3
−n

n = un,

vn+1 = (qn+1 + 1)3
−n−1 (15)

<
((
(qn + 1)3 − 1

)
+ 1
)3−n−1

= (qn + 1)3
−n

= vn.

Das definições das sequências (un)n∈N e (vn)n∈N seguem que

un < vn, ∀n ∈ N.

Dessa desigualdade e das desigualdades das monotonicidades das sequências
(un)n∈N e (vn)n∈N, resulta, finalmente

un < un+1 < vn+1 < vn, ∀n ∈ N.

Logo, ambas as sequências são monótonas e limitadas, portanto, convergen-
tes. Denote por

θ = lim
n→∞

un e ϕ = lim
n→∞

vn.

Das nossas análises, resulta

un < θ ≤ ϕ < vn, ∀n ∈ N,

de onde
u3

n

n < θ3
n ≤ ϕ3n < v3

n

n , ∀n ∈ N,

ou seja,
qn < θ3

n
< qn + 1, ∀n ∈ N.

Isto implica que ⌊
θ3

n⌋
= qn, ∀n ∈ N,

como queríamos demonstrar.
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Exercício 7.1. Prove a seguinte implicação no Teorema de Wilson:

p > 1, p | (p− 1)! + 1 =⇒ p é primo.

Exercício 7.2. Considere p, p1, p2 e p3 números primos. Suponha que

p = (p1)
2 + (p2)

2 + (p3)
2.

Mostre que um dos primos p1, p2 ou p3 é igual a 3.

8 Postulado de Bertrand, parte 1

Em 1845, Bertrand postulou que, para todo n ≥ 1, existe um número primo
entre n e 2n. Ele verificou essa afirmação para todo n < 3× 106. Em 1850,
Tchebychev deu uma prova para esse postulado [2].

Teorema 8.1 (Postulado de Bertrand). Para todo inteiro n ≥ 1, existe um
número primo p tal que

n ≤ p ≤ 2n.

Para a prova do Teorema 8.1 precisamos de alguns preliminares. Re-
cordemos, primeiramente, o coeficiente binomial. Considere m,n ∈ N com
m ≥ n. O coeficiente binomial definido por m e n é o número inteiro positivo(

m

n

)
=

m!

n! (m− n)!
.

Dado um numero real x > 0, denotaremos por∏
p≤x

p

o produto dos números primos p ≤ x.

Lema 8.1. Para todo n ∈ N, temos(
2n

n

)
>

22n

2n
. (17)

Demonstração. A prova deve ser feita por indução. Aqui, daremos uma ideia
de que a desigualdade (17) é verdadeira. Observe que(

2n

n

)
=

(2n)!

n!n!
=

1 · 2 · 3 · 4 · · ·n · (n+ 1) · · · (2n− 1) · (2n)
1 · 2 · 3 · 4 · · ·n · n!

= 2n
3 · 5 · · · (2n− 1)

n!
> 2n

2 · 4 · · · (2n− 2)

n!

= 2n
2 · 4 · · · (2n− 2)

1 · 2 · · · (n− 1) · n

=
2n(2n−1)

n
=

22n−1

n
=

22n

2n
.
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Lema 8.2. Para todo número real x > 1, vale∏
p≤x

p ≤ 4x. (18)

Demonstração. É suficiente mostrarmos que, para todo n ∈ N, vale∏
p≤n

p ≤ 4n. (19)

De fato, suponha (19) verdadeira. Dado x > 1, tome n = ⌊x⌋. Assim,∏
p≤x

p =
∏
p≤n

p ≤ 4n ≤ 4x.

Faremos a prova de (19) por indução em n. Note que ela é imediata para
n = 1 e n = 2.
Fixe arbitrariamente n ≥ 3 e considere a seguinte Hipótese de Indução (HI):
A desigualdade (19) é verdadeira para todo k < n. Queremos mostrar que
ela é verdadeira para n.
Caso 1. n é par. Assim,∏

p≤n

p =
∏

p≤n−1

p
(HI)

≤ 4n−1 < 4n.

Caso 2. n é ímpar, ou seja, n = 2k + 1. Como k + 1 < n, pela HI, temos∏
p≤k+1

p ≤ 4k+1. (20)

Observe que(
2k + 1

k

)
=

(2k + 1)!

k! (k + 1)!
=

(k + 2) · · · (2k) · (2k + 1)

1 · 2 · · · k
,

implicando em ∏
k+2≤p≤2k+1

p ≤
(
2k + 1

k

)
. (21)

(
2k + 1

k

)
=

(2k + 1)!

k! (k + 1)!
=

1 · 2 · 3 · 4 · · · (2k) · (2k + 1)

1 · 2 · 3 · 4 · · · k · (k + 1)!

= 2k
3 · 5 · · · (2k + 1)

(k + 1)!
< 2k

4 · 6 · · · (2k + 2)

(k + 1)!

= 2k
4 · 6 · · · (2k + 2)

1 · 2 · · · k · (k + 1)

= 2k · 2k = 4k. (22)
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Deste modo, ∏
p≤n=2k+1

p =
∏

p≤k+1

p ·
∏

k+2≤p≤2k+1

p

(20)
< 4k+1 ·

∏
k+2≤p≤2k+1

p

(21)
≤ 4k+1 ·

(
2k + 1

k

)
(22)
< 4k+1 · 4k = 42k+1.

Dos Casos 1 e 2, concluímos a prova do lema.

A prova do próximo lema será omitida e ficará como exercício. Veja a
Figura 7.

Lema 8.3. Para todo número real x ≥ 10, vale

2x > x3. (23)

Figura 7: Ilustração dos gráficos de 2x e x3.

A prova do próximo lema também será omitida.

Lema 8.4. Considere n ∈ N e p um número primo. Suponha que exista
θp ∈ Z≥0 tal que

pθp ≤ 2n < pθp+1.

Então, o expoente da maior potência de p que divide o coeficiente binomial(
2n

n

)
é menor ou igual a θp.
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de la Universitat Autònoma de Barcelona
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del lector coneixements rudimentaris de varietats de Riemann.

1 Trigonometria esfèrica
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Em particular, se p >
√
2n , então o expoente dessa máxima potência de

p é menor ou igual a 1. De fato,
√
2n < p =⇒ 2n < p2 =⇒ θp + 1 = 2 =⇒ θp = 1. (24)

Prova do Teorema 6.2. A prova estará concluída se mostrarmos que∏
n+1≤p≤2n

p > 1.

Como (
2n

n

)
=

(2n)!

n!n!
=

(n+ 1) · (n+ 2) · · · 2n
1 · 2 · · ·n

, (25)

segue que os números primos entre n+ 1 e 2n, se existirem, dividem o coe-
ficiente binomial (25). Além disto, qualquer primo divisor deste coeficiente
binomial é menor que 2n. Pelo Teorema Fundamental da Aritmética, pode-
mos escrever (

2n

n

)
= f1 · f2 · f3, (26)

sendo

f1 =
∏

pi≤
√
2n

pαi
i , f2

(24)
=

∏
√
2n<pj≤n

pj , f3
(24)
=

∏
n<pk≤2n

pk.

Para todo número real x > 0, defina Π(x) como o número de primos menores
que x. Deste modo,

f1 ≤ (2n)Π(
√
2n ). (27)

Considere um número primo p satisfazendo

2n

3
< p ≤ n.

Então,
4n

3
< 2p ≤ 2n e 2n < 3p ≤ 3n.

Assim, p é um fator do denominador de (25), mas 2p não é, enquanto que 2p
é um fator do numerador de (25), mas 3p não é. Ou seja, o número primo
p aparece no numerador e no denominador de (25) e, portanto, é cancelado.
Assim,

f2 =
∏

√
2n<pj≤n

pj =
∏

√
2n<pj≤2n/3

pj
(18)
≤ 42n/3. (28)

Em resumo,

22n

2n

(17)
<

(
2n

n

)
= f1 · f2 · f3

(27)(28)
≤ (2n)Π(

√
2n ) · 42n/3 · f3,
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de onde

f3 >
22n/3

(2n)Π(
√
2n )+1

. (29)

Hipótese. Considere n ≥ 113.

Assim,
√
2n > 15. Como Π(

√
2n ) é menor que o número de números

inteiros positivos ímpares menores do que
√
2n e considerando que 9 e 15

são números compostos, temos

Π(
√
2n ) + 1 ≤

(√
2n + 1

2
− 2

)
+ 1 =

√
2n + 1

2
− 1

=

√
2n

2
− 1

2
<

√
2n

2
.

Substituindo a desigualdade acima em (29), obtemos

f3 >
22n/3

(2n)Π(
√
2n )+1

>
22n/3

(2n)
√
2n /2

=
22n/3

(
√
2n )

√
2n

=

(
2
√
2n

(
√
2n )3

)√
2n /3

. (30)

Considerando x =
√
2n > 15 (Hipótese), segue de (23) que

2
√
2n = 2x > x3 = (

√
2n )3 =⇒ 2

√
2n

(
√
2n )3

> 1,

a qual aplicada em (30) resulta em

f3 =
∏

n<pk≤2n

pk > 1, pois
√
2n

3
> 5 > 1.

Em outras palavras, o teorema está demonstrado para n ≥ 113 (Hipótese).
Por exaustão, verificando os casos possíveis, prova-se o teorema para 1 ≤
n < 113, terminando, assim, a sua prova.

Exercício 8.1. Encontre todos os números n ∈ N tais que os números

n+ 1, n+ 3, n+ 7, n+ 9, n+ 13, n+ 15,

são números primos.

Exercício 8.2. Por exaustão, verificando os casos possíveis, prove o Teo-
rema 6.2 para 1 ≤ n < 113.
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del lector coneixements rudimentaris de varietats de Riemann.

1 Trigonometria esfèrica

Aquells lectors que ja sàpiguen què és un triangle esfèric i com es mesuren els
seus costats i els seus angles poden saltar-se les subseccions 1.1 i 1.2 i passar
directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.
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9 Postulado de Bertrand, parte 2

Nesta seção serão estudadas algumas consequências do Postulado de Ber-
trand.

As estimativas que aparecem no Postulado de Bertrand podem ser me-
lhoradas se n ≥ 2. De fato, como vimos na demonstração do Postulado de
Bertrand, existe um número primo p, tal que n < p < 2n.

A primeira utilização do Postulado de Bertrand aparecerá na generali-
zação da seguinte construção. Considere k = 2 e n = 5. Note que n > 2k.
Procuremos os k = 2 primeiros números inteiros que são maiores que n = 5
e relativamente primos com n! = 120.

O número inteiro 6 não serve, pois, 6 e 120 não são relativamente primos.
O número inteiro 7 serve, pois, 7 e 120 são relativamente primos. Os números
inteiros 8, 9 e 10 não servem, pois, cada um deles e 120 não são relativamente
primos. O número inteiro 11 serve, pois, 11 e 120 são relativamente primos.

Assim, os k = 2 primeiros números inteiros que são maiores que n = 5 e
relativamente primos com n! = 120 são 7 e 11.

Note que eles são números primos. De fato, a construção acima pode ser
generalizada, resultando na seguinte proposição.

Proposição 9.1. Considere k ∈ N e n > 2k. Então, os k primeiros números
inteiros que são maiores que n e relativamente primos com n! são números
primos.

Demonstração. Como, por hipótese,

n > 2k, então n2 > 2kn.

Considere a sequência com k + 1 termos de números inteiros positivos

n, 2n, 4n, 8n, . . . , 2kn (< n2).

Pelo Teorema de Bertrand, existe um número primo entre quaisquer dois
termos consecutivos desta sequência. Portanto, entre n e n2 existem, pelo
menos, k números primos. Em particular, os k primeiros números inteiros
que são maiores que n e relativamente primos com n! estão entre n e n2.
Suponha que um de tais números, denotado por a, não é um número primo.
Assim, a é composto. Sem perda de generalidade, considere

a = b c, com 1 < b ≤ c.

Assim,
b2 ≤ b c = a ≤ n2,

de onde
b ≤ n,

ou seja, b divide a e também divide n!, um absurdo.
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Considere um conjunto A não vazio, de natureza qualquer. Uma partição
do conjunto A é uma coleção A1, A2, . . . , Ak de subconjuntos de A tais que

A =

k⋃
i=1

Ai, Aj ∩An = ∅, j ̸= n, j, n ∈ {1, 2, . . . , k}.

Exemplo 9.1. Uma partição do conjunto

A = {1, 2, 3, 4, 5, 6}

é dada por
A1 = {1, 3, 5} e A2 = {2, 4, 6}.

Dado n ∈ N, considere o conjunto

I2n = {1, 2, . . . , 2n} .

Procuramos uma partição do conjunto I2n com as seguintes características:

• Cada conjunto da partição tem dois elementos;

• A soma dos dois elementos de cada conjunto da partição é um número
primo.

Em outras palavras, procuramos uma partição do conjunto I2n com as se-
guintes características

{ai, bi} ⊂ I2n, ∀i ∈ {1, 2, . . . , n},

I2n =

n⋃
i=1

{ai, bi} ,

{ai, bi}
⋂

{aj , bj} = ∅, i ̸= j, i, j ∈ {1, 2, . . . , n},

ai + bi = pi,

sendo pi um número primo, para todo i ∈ {1, 2, . . . , n}.
Uma tal partição, se existir, é chamada de partição de I2n por pares cujas

somas são números primos.

Exemplo 9.2. Considere n = 10. Assim,

I20 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}.

Uma possível partição de I20 por pares cujas somas são números primos é
dada na Figura 8, ou seja,

{1, 12}, {2, 11}, {3, 20}, {4, 19}, {5, 18},
{6, 17}, {7, 16}, {8, 15}, {9, 14}, {10, 13}.
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1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
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Figura 8: Partição de I20 por pares cujas somas são números primos.

A proposição a seguir garante que, para cada n ∈ N, I2n possui uma
partição por pares cujas somas são números primos.

Proposição 9.2. Considere n ∈ N e o conjunto I2n = {1, 2, . . . , 2n}. Então,
existe uma partição de I2n por pares cujas somas são números primos.

Como veremos, na demonstração da Proposição 9.2 utilizaremos de ma-
neira essencial o Postulado de Bertrand.

Demonstração. Faremos a prova por indução em n ∈ N. Para n = 1, temos
I2 = {1, 2}, que tem partição trivial {1, 2}, cuja soma dos elementos é 3, que
é um número primo. Para n = 2, temos I4 = {1, 2, 3, 4}, que tem a seguinte
partição

I4 = {1, 4} ∪ {2, 3},

cujas somas dos elementos é 5, um número primo. Fixe arbitrariamente
n > 2.
Hipótese de Indução. O teorema tem uma prova para todo m < n, ou
seja, existe uma partição do conjunto I2m por pares cujas somas são números
primos.

Queremos mostrar, utilizando a Hipótese de Indução, que existe uma
partição do conjunto I2n por pares cujas somas são números primos. Pelo
Postulado de Bertrand, existe um número primo p tal que

2n < p < 4n.

Escreva p = 2n+ k, para algum k ímpar satisfazendo 1 ≤ k < 2n. Defina o
seguinte conjunto

Ik,2n = {k, k + 1, . . . , 2n− 1, 2n}.

Afirmação. Existe uma partição de Ik,2n por pares cujas somas são números
primos.

De fato, considere a seguinte partição de Ik,2n:

Ik,2n = {k, 2n}
⋃

{k + 1, 2n− 1}
⋃

· · ·
⋃{

n+

⌊
k

2

⌋
, n+

⌈
k

2

⌉}
.
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Esta partição está bem definida (verifique!) e as somas em cada um dos
pares é

2n+ k = p,

portanto, um número primo. Como k é ímpar, então k − 1 é par, ou seja
k − 1 = 2m. Assim,

2m = k − 1 < 2n =⇒ m < n.

Pela Hipótese de Indução, existe uma partição do conjunto

I2m = {1, 2, . . . , 2m} = {1, 2, . . . , k − 1}

por pares cujas somas são números primos. Como

I2n = {1, 2, . . . , k − 1}︸ ︷︷ ︸
I2m

⋃
{k, k + 1, . . . , 2n− 1, 2n}︸ ︷︷ ︸

Ik,2n

= I2m
⋃

Ik,2n,

segue que existe uma partição do conjunto I2n por pares cujas somas são
números primos.

A conjectura a seguir pode ser encontrada em [5].

Conjectura 9.1. Para cada inteiro n ≥ 2, o conjunto I2n = {1, 2, . . . , 2n}
pode ser arranjado em um ciclo tal que a soma de quaisquer números adja-
centes é um número primo.

Exercício 9.1. Considere n = 20. Exiba uma partição do conjunto I40 por
pares cujas somas são números primos.

Exercício 9.2. Pode-se provar o seguinte teorema.

Teorema 9.1. Para todo inteiro n > 1, existe um número primo p tal que

2n < p < 3n.

Use o Teorema 9.1 para provar o seguinte teorema.

Teorema 9.2. Para todo inteiro n ≥ 1, existe um número primo p tal que

n < p <
3(n+ 1)

2
.

Como
3(n+ 1)

2
< 2n, ∀n > 3,

segue que o Teorema 9.2 é um refinamento do Postulado de Bertrand.
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directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.
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10 Primos como a soma de dois quadrados

O objetivo desta seção é estudar alguns números primos que são escritos
como a soma de dois quadrados. Em particular, demonstraremos o Teorema
de Fermat. Mais detalhes podem ser encontrados em [1]. Começamos com
um esboço da solução do Exercício 5.2.

Solução 10.1. Considere um número primo da forma p = 4k + 1, para
algum k ∈ N. Assim, pelo Teorema de Fermat,

p = a2 + b2, a, b ∈ N.

Sem perda de generalidade, podemos assumir a > b. Considere

p2 =
(
a2 + b2

)2
=
(
a2 − b2

)2
+ (2 a b)2 = c2 + d2,

sendo c = a2 − b2 ∈ N e d = 2 a b ∈ N.

Teorema 10.1 (Teorema de Fermat). Todo número primo da forma

p = 4k + 1, k ∈ N,

pode ser escrito como a soma de dois quadrados de números inteiros positivos,
isto é,

p = a2 + b2, a, b ∈ N.

Considere A um conjunto não vazio e uma função f : A −→ A. Dizemos
que a função f é uma involução se f ◦ f = Id. Um ponto fixo de f é um
ponto x0 ∈ A tal que f(x0) = x0.

Prova do Teorema 10.1. Fixe, arbitrariamente, um número primo p = 4k+1,
k ∈ N. Queremos mostrar que p é a soma de dois quadrados de números
inteiros positivos. Defina o conjunto

Sp =
{
(x, y, z) ∈ Z3 : 4x y + z2 = p, x ≥ 1, y ≥ 1

}
.

Afirmação. Sp é um conjunto finito. De fato,

4x y + z2 = p =⇒ 0 ≤ z2 = p− 4x y =⇒ 4x y ≤ p,

de onde
1 ≤ x ≤ p

4
e 1 ≤ y ≤ p

4
,

ou seja, apenas uma quantidade finita de valores de x e de y são possíveis e,
consequentemente apenas uma quantidade finita de valores de z também é
possível, de onde Sp é finito.

Parte 1. Defina

f : Sp −→ Sp, f(x, y, z) = (y, x,−z).
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A função f está bem definida. De fato,

f(x, y, z) = (y, x,−z) ∈ Sp,

uma vez que

4(y)(x) + (−z)2 = 4x y + z2 = p, pois (x, y, z) ∈ Sp.

A função f é uma involução. De fato,

f(f(x, y, z)) = f(y, x,−z) = (x, y, z), ∀(x, y, z) ∈ Sp.

A função f não tem ponto fixo. Um ponto fixo de f satisfaz

(x, y, z) = f(x, y, z) = (y, x,−z) =⇒ x = y e z = 0,

de onde,
p = 4x y + z2 = 4x2,

o que não pode acontecer, pois, p é um número primo. Considere o conjunto

T = {(x, y, z) ∈ Sp : z > 0} .

Tome (x, y, z) ∈ T . Como f(x, y, z) = (y, x,−z) ∈ Sp, segue que a terceira
coordenada de f(x, y, z) é negativa, de onde f(x, y, z) /∈ T , ou seja, f aplica
o conjunto T em Sp \ T . Os pontos (x, y, z) ∈ Z3 tais que x− y + z = 0 não
pertencem a Sp. De fato, se um deles pertencesse a Sp teríamos

p = 4x y + z2 = 4x y + (x− y)2 = (x+ y)2,

o que não é possível, pois, p é um número primo. Da afirmação anterior e,
como f reverte os sinais de x− y e de z, então f aplica o conjunto

U = {(x, y, z) ∈ Sp : x− y + z > 0}

no conjunto Sp \ U . Como f aplica os conjuntos T e U nos seus comple-
mentares em Sp, então f aplica T \ U em U \ T e reciprocamente. Veja a
Figura 9.

Sp

f

T

U

Figura 9: A função f .
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A cada dos punts A i B de la circumferència unitat, no diametralment opo-
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π, (vegeu la figura 1) tal com explicarem a continuació.
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Deste modo, os conjuntos T e U são finitos e têm a mesma cardinalidade.

Parte 2. Defina

g : U −→ U, g(x, y, z) = (x− y + z, y, 2y − z).

A função g está bem definida (verifique!). A função g é uma involução. De
fato,

g(g(x, y, z)) = g(x− y + z, y, 2y − z)

= ((x− y + z)− y + (2y − z), y, 2y − (2y − z))

= (x, y, z), ∀(x, y, z) ∈ U.

A função g tem um único ponto fixo. Veja a Figura 10.

g

U

Figura 10: A função g.

Um ponto fixo de g satisfaz

(x, y, z) = g(x, y, z) = (x− y + z, y, 2y − z) =⇒ y = z.

Assim,
p = 4x y + z2 = 4x y + y2 = y(4x+ y).

Como p é primo, a única possibilidade é

y = z = 1 e x =
p− 1

4
∈ N,

o que está de acordo com a hipótese de que p = 4k+1, k ∈ N. Em resumo, a
função g é uma involução em U com exatamente um ponto fixo. Isto implica
que a cardinalidade de U é ímpar.

Parte 3. Defina

h : T −→ T, h(x, y, z) = (y, x, z).

A função h está bem definida e é uma involução (verifique!). Como a cardi-
nalidade de T é igual à cardinalidade de U e a cardinalidade de U é ímpar,
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hT

Figura 11: A função h.

segue que a cardinalidade de T é ímpar. Sendo h uma involução em T e
tendo T cardinalidade ímpar, segue que h tem um ponto fixo em T . Veja a
Figura 11.

Portanto, existe (x, y, z) ∈ T tal que

(x, y, z) = h(x, y, z) = (y, x, z) =⇒ x = y e z > 0.

Assim,
p = 4x y + z2 = 4x(x) + z2 = 4x2 + z2 = (2x)2 + z2,

com x ≥ 1 e z ≥ 1, terminando a prova do teorema.

Por outro lado, pode-se mostrar que nenhum número primo da forma
p = 4k + 3, k ∈ N, pode ser escrito como a soma de dois quadrados de
números inteiros positivos.

Combinando o Teorema de Fermat e o parágrafo acima, pode-se demons-
trar o seguinte teorema.

Teorema 10.2. Um número n ∈ N pode ser escrito como a soma de dois
quadrados de números inteiros não negativos se, e somente se, na decompo-
sição de n como um produto de números primos, cada fator primo da forma
4k + 3 aparece com uma potência par.

Exercício 10.1. Mostre que a função g na prova do Teorema 10.1 está bem
definida. Mostre, ainda, que a função h está bem definida e é uma involução.

Exercício 10.2. Suponha que os números n,m ∈ N podem ser escritos como
a soma de dois quadrados de números inteiros não negativos. Mostre que o
produto mn ∈ N também pode ser escrito como a soma de dois quadrados de
números inteiros não negativos. Mostre ainda que o número n z2, sendo z
um número inteiro não negativo, também pode ser escrito como a soma de
dois quadrados de números inteiros não negativos.

11 Teorema de Euclides: Algum primo foi esque-
cido?

Na Seção 3 discutimos a seguinte questão.

Pergunta 11.1. Considere P ⊂ N o conjunto dos números primos. O
conjunto P é finito ou infinito?
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1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.
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A primeira resposta a esta pergunta apareceu há cerca de 2300 anos
na Proposição 20 do Livro IX de “Os Elementos” de Euclides [7]. Em sua
homenagem, o teorema da não finitude dos números primos é chamado de
Teorema de Euclides.

Na prova do Teorema de Euclides, utilizamos o Teorema Fundamental
da Aritmética (TFA), estudado nas Seções 3 e 4. O TFA afirma que todos
os números inteiros positivos maiores que 1 podem ser decompostos num
produto de números primos, sendo essa decomposição única a menos de
permutações dos fatores.

Prova do Teorema de Euclides. Suponha que P é finito. Considere

P = {p1, p2, . . . , pn} .

Defina o número inteiro positivo

a = p1 · p2 · · · pn + 1.

Por construção, a não é divisível por nenhum pi ∈ P e a > pi, i ∈ {1, 2,
. . . , n}. Assim, ou a é primo ou possui um fator primo (TFA). Em ambos
os casos, temos a existência de um número primo p diferente de pi, i ∈
{1, 2, . . . , n}. Portanto, P não pode ser finito.

O teorema apresentado acima é na verdade um pouco diferente do teo-
rema que Euclides escreveu. Como os gregos antigos não tinham a noção
moderna de infinito, Euclides não poderia ter escrito “há infinitos primos”
ou o “conjuntos dos números primos é infinito”.

Ele escreveu: “a quantidade de números primos é maior do que qualquer
quantidade atribuida de números primos”, ou seja, existem mais números
primos do que em qualquer lista finita de números primos.

Como os primos são a matéria prima com a qual temos que construir a
Aritmética, o Teorema de Euclides nos garante que temos bastante material
para a tarefa.

A prova do Teorema de Euclides é muito simples. Entretanto, ela não
nos fornece informação alguma a respeito do número primo p, a não ser que
ele é, no máximo, igual a

a = p1 · p2 · · · pn + 1.

Denote por PE o conjuntos dos número primos que podem ser obtidos pelo
“método” de Euclides, ou seja, o conjunto dos números primos obtidos se-
gundo a “ideia” apresentada na prova do Teorema de Euclides. Por constru-
ção, PE é um conjunto infinito.

Pergunta 11.2. Considere PE ⊂ P. O conjunto PE coincide com o con-
junto P, ou seja, PE = P?
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Em outras palavras, terá Euclides “esquecido” algum número primo?
Para tentar entender a Pergunta 11.2 precisamos, antes de mais nada, en-
tender o que significa “método” de Euclides ou “ideia” apresentada na prova
do Teorema de Euclides.

Dado um número primo p, defina

p∗ =
∏
q≤p

q, sendo q um número primo,

isto é, p∗ é o produto dos números primos q menores ou iguais a p.
Defina o seguinte subconjunto do conjunto dos números primos

P∗ = {p ∈ P : p∗ + 1 é um número primo} .

Afirmação 1. O conjunto P∗ é não vazio.
De fato, os números primos p = 2, p = 3, p = 5 e p = 7 pertencem ao

conjunto P∗, pois

2∗ + 1 = 2 + 1 = 3 ∈ P, 3∗ + 1 = 2 · 3 + 1 = 7 ∈ P,

5∗ + 1 = 2 · 3 · 5 + 1 = 31 ∈ P, 7∗ + 1 = 2 · 3 · 5 · 7 + 1 = 211 ∈ P.

Afirmação 2. O conjunto P∗ é diferente de P.
De fato, o número primo p = 13 não pertence a P∗, pois

13∗ + 1 = 2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 · 509 /∈ P.

Coloca-se, assim, a seguinte questão.

Pergunta 11.3. Considere P∗ ⊂ P. O conjunto P∗ é finito ou infinito?

Não se tem, até o momento, uma resposta a esta pergunta.
Considere, agora, a seguinte sequência (pn)n∈N, definida recursivamente

por: p1 = 2 e, para todo n ∈ N, n ≥ 2, pn é o maior divisor primo de

p1 · p2 · · · pn−1 + 1.

Denote por PM ⊂ P o conjunto dos termos dessa sequência. Por construção,
PM é um conjunto infinito.

Podemos colocar as seguintes questões com relação ao conjunto PM e à
sequência (pn)n∈N.

Pergunta 11.4. Considere PM ⊂ P. O conjunto PM coincide com o con-
junto P, ou seja, PM = P? Se PM ⊊ P, PM omite uma quantidade finita
ou infinita de números primos?

Pergunta 11.5. A sequência (pn)n∈N é monótona crescente?
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Começaremos nossa análise pela última pergunta. Por definição, p1 = 2
e p2 é o maior divisor primo de

p1 + 1 = 2 + 1 = 3 =⇒ p2 = 3.

p3 é o maior divisor primo de

p1 · p2 + 1 = 2 · 3 + 1 = 7 =⇒ p3 = 7.

p4 é o maior divisor primo de

p1 · p2 · p3 + 1 = 2 · 3 · 7 + 1 = 43 =⇒ p4 = 43.

p5 é o maior divisor primo de

p1 · p2 · p3 · p4 + 1 = 2 · 3 · 7 · 43 + 1 = 1807 = 13 · 139 =⇒ p5 = 139.

Repetindo esse procedimento, obtemos

p6 = 50207, p7 = 340999, p8 = 2365347734339,

p9 = 4680225641471129, p10 = 1368845206580129, . . . .

Observe que p10 < p9, de onde a sequência (pn)n∈N não é monótona crescente.
Vale comentar que os termos p5, p6, p7, p8, p9 e p10, listados acima, da

sequência (pn)n∈N foram obtidos com o software Mathematica.
Observe que o número primo 5 não apareceu entre os termos iniciais

da sequência (pn)n∈N. Assim, 5 ∈ PM? Como a sequência (pn)n∈N não é
monótona, não podemos, pelos argumentos anteriores, decidir essa questão.

Afirmação 3. 5 /∈ PM .
Como vimos acima, p1 = 2, p2 = 3 e p3 = 7. Dos dois primeiros termos,

para n ≥ 3,
p1 · p2 · p3 · · · pn−1 = 2 · 3 · p3 · · · pn−1

é múltiplo de 2 e também é múltiplo de 3. Portanto,

p1 · p2 · p3 · · · pn−1 + 1 = 2 · 3 · p3 · · · pn−1 + 1

não é múltiplo de 2 e também não é múltiplo de 3. Segue ainda que pn é
ímpar.

Dessa discussão,
p1 · p2 · p3 · · · pn−1

não é múltiplo de 4.
Suponha que exista n ≥ 4 tal que pn = 5, ou seja, o maior divisor primo

de
p1 · p2 · p3 · · · pn−1 + 1
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é 5. Como 2 e 3 não dividem

p1 · p2 · p3 · · · pn−1 + 1,

segue que existe k ∈ N, tal que

p1 · p2 · p3 · · · pn−1 + 1 = 5k.

Portanto,

p1 · p2 · p3 · · · pn−1 = 5k − 1 = (5− 1)
(
5k−1 + 5k−2 + · · ·+ 5 + 1

)
.

Portanto, 4 divide
p1 · p2 · p3 · · · pn−1,

o que é uma contradição, pelo que vimos acima.
Pode-se mostrar que

11, 13, 17, 19, 23, 29, 31, 37, 41, 47 /∈ PM .

Pelo que vimos, PM ⊊ P.
A resposta à Pergunta 11.4, se PM omite uma quantidade finita ou infi-

nita de números primos, é dada pelo seguinte teorema, veja [3].

Teorema 11.1. O conjunto PM omite uma quantidade infinita de números
primos. De modo mais preciso, o conjunto P \ PM é infinito.

Podemos alterar a definição da sequência (pn)n∈N, de modo a obter uma
outra sequência. Considere, agora, a sequência (qn)n∈N, definida recursiva-
mente da seguinte maneira: q1 = 2 e, para todo n ∈ N, n ≥ 2, qn é o menor
divisor primo de

q1 · q2 · · · qn−1 + 1.

Denote por Pm ⊂ P o conjunto dos termos dessa sequência. Por construção,
Pm é um conjunto infinito.

Podemos colocar a seguinte questão com relação ao conjunto Pm.

Pergunta 11.6. Considere Pm ⊂ P. O conjunto Pm coincide com o con-
junto P, ou seja, Pm = P? Se Pm ⊊ P, Pm omite uma quantidade finita
ou infinita de números primos?

Por definição, q1 = 2 e q2 é o menor divisor primo de

q1 + 1 = 2 + 1 = 3 =⇒ q2 = 3.

q3 é o menor divisor primo de

q1 · q2 + 1 = 2 · 3 + 1 = 7 =⇒ q3 = 7.
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seus costats i els seus angles poden saltar-se les subseccions 1.1 i 1.2 i passar
directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.
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q4 é o menor divisor primo de

q1 · q2 · q3 + 1 = 2 · 3 · 7 + 1 = 43 =⇒ q4 = 43.

q5 é o menor divisor primo de

q1 · q2 · q3 · q4 + 1 = 2 · 3 · 7 · 43 + 1 = 1807 = 13 · 139 =⇒ q5 = 13.

Da análise acima, segue que a sequência (qn)n∈N não é monótona crescente.
O que poder ser dito a respeito da Pergunta 11.6? Muito pouco! Na

referência [15] são apresentados argumentos probabilísticos de que Pm = P.
No entanto, ainda não se tem uma prova dessa afirmação. Se essa afirmação
for provada, concluiremos que Euclides não esqueceu primo algum!

Exercício 11.1. Um quadrado mágico é uma matriz quadrada cujas entradas
são números inteiros positivos e tal que as somas dos números em cada linha,
em cada coluna e nas duas diagonais são as mesmas. Essa soma comum é
chamada soma mágica. Complete a matriz abaixo com números primos de
modo que ela seja um quadrado mágico com soma mágica 111.

1

12 A Conjectura de Goldbach

Em 1742, em carta enviada a Euler, Goldbach escreveu

Afirmação 1. Todo número inteiro n > 5 é a soma de três números primos.

Euler respondeu que a afirmação feita por Goldbach era equivalente à
seguinte afirmação.

Afirmação 2. Todo número inteiro par 2n ≥ 4 é a soma de dois números
primos.

A Afirmação 2 ficou conhecida como a Conjectura de Goldbach.

Conjectura 12.1 (Conjectura de Goldbach). Todo número inteiro par maior
ou igual a quatro é a soma de dois números primos.

A seguir, será apresentada uma prova da equivalência das Afirmações 1
e 2.



Luis Fernando Mello 43

Demonstração.
Parte 1: Suponha a Afirmação 2 verdadeira, ou seja, todo número inteiro
par 2n ≥ 4 é a soma de dois números primos.
Queremos mostrar que a Afirmação 1 é verdadeira, ou seja, que todo número
inteiro n > 5 é a soma de três números primos. Considere k ≥ 3. Assim,
2k−2 é par e é maior ou igual a quatro. Pela Afirmação 1, existem números
primos p1 e p2 tais que

2k − 2 = p1 + p2 =⇒ 2k = 2 + p1 + p2 e 2k + 1 = 3 + p1 + p2,

provando, assim, a Afirmação 1 para n ≥ 7. Para n = 6 é imediato.

Parte 2: Suponha que a Afirmação 1 é verdadeira, ou seja, todo número
inteiro n > 5 é a soma de três números primos. Queremos mostrar que a
Afirmação 2 verdadeira, ou seja, que todo número inteiro par 2n ≥ 4 é a
soma de dois números primos. Considere 2n ≥ 4. Pela Afirmação 1, existem
números primos q1, q2 e q3, tais que

2n+ 2 = q1 + q2 + q3.

Como 2n+2 é par, segue da igualdade anterior que um dos números primos
q1, q2 ou q3 é par. Suponha q3 = 2. Assim,

2n+ 2 = q1 + q2 + q3 = q1 + q2 + 2 =⇒ 2n = q1 + q2,

provando a Afirmação 2.

Na correspondência entre Goldbach e Euler, este último escreveu: “Que
todo inteiro par é uma soma de dois primos, considero um teorema comple-
tamente certo, embora não possa prová-lo.”

A Conjectura de Goldbach foi verificada verdadeira para números inteiros
pares até 108, mas ela permanece sem uma prova para todo número inteiro
par.

Suponha, por um momento, que a Conjectura de Goldbach é verdadeira.
Considere n ≥ 2. Assim, existem números primos p ≤ q tais que

2n = p+ q =⇒ n =
p+ q

2
,

ou seja,
p = n− k e q = n+ k,

para algum número inteiro 0 ≤ k ≤ n− 2. Deste modo,

p q = (n− k)(n+ k) = n2 − k2.

Suponha, agora, que para cada número inteiro n ≥ 2, exista um número
inteiro k satisfazendo 0 ≤ k ≤ n− 2 e números primos p ≤ q tais que

n2 − k2 = p q.
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1 Trigonometria esfèrica
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1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.
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Figura 12: Números pares como a soma de dois primos.

Deste modo,
p q = n2 − k2 = (n− k)(n+ k),

de onde, pelo TFA,
p = n− k e q = n+ k,

implicando que
2n = p+ q.

O que acabamos de mostrar é que a Conjectura de Goldbach é equivalente
à seguinte afirmação.

Afirmação 3. Para todo número inteiro n ≥ 2, existem números inteiros k,
p e q, com 0 ≤ k ≤ n− 2, p e q números primos e tais que

n2 − k2 = p q.

Considerando k = 1 na Afirmação 3, colocamos a seguinte conjectura.

Conjectura 12.2. Existem infinitos números inteiros n ≥ 2 para os quais
existem números primos p e q tais que

n2 − 1 = p q. (31)

Recordemos a Conjectura dos Primos Gêmeos, discutida na Seção 6.
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Conjectura 12.3 (Conjectura dos Primos Gêmeos). Existem infinitos nú-
meros primos p para os quais p+ 2 é um número primo.

Suponha, por um momento, que a Conjectura 12.3 é verdadeira. Consi-
dere p e q = p+ 2 números primos. Assim,

p q + 1 = p(p+ 2) + 1 = p2 + 2p+ 1 = (p+ 1)2,

o que implica que

p q = (p+ 1)2 − 1 = n2 − 1, sendo n = p+ 1.

Concluimos, assim, que existem infinitos números inteiros n ≥ 2 para os
quais existem números primos p e q = p+ 2, tais que

n2 − 1 = p q,

ou seja, a Conjectura 12.2 é verdadeira.
Por outro lado, suponha que a Conjectura 12.2 é verdadeira e fixe um tal

número inteiro n satisfazendo-a. Assim,

n2 − 1 = p q e n2 − 1 = (n− 1)(n+ 1).

Logo,
p = n− 1 e q = n+ 1,

implicando que

q − p = (n+ 1)− (n− 1) = 2 =⇒ q = p+ 2.

Em resumo, a Conjectura 12.3 é verdadeira.
O que acabamos de provar é que a Conjectura 12.2 é equivalente à Con-

jectura 12.3.
Como a Conjectura 12.2 está relacionada com a Conjectura 12.1 (Gold-

bach), mostramos que existe uma estreita ligação entre ela e a Conjec-
tura 12.3 (Primos Gêmeos).

Recordemos o conteúdo da Afirmação 1: Todo número inteiro n > 5 é a
soma de três números primos. Considere a seguinte conjectura.

Conjectura 12.4 (Conjectura Fraca de Goldbach). Todo número inteiro
ímpar n > 5 é a soma de três números primos.

É imediato que a sua veracidade decorre da eventual veracidade da Con-
jectura 12.1 (Goldbach). Suponha, por um momento, que a Conjectura 12.4
(Fraca de Goldbach) é verdadeira.

Tome, arbitrariamente, n ≥ 5 e assim, 2n ≥ 10. Considere o número
inteiro ímpar 2n − 3. Da veracidade da Conjectura 12.4, existem números
primos p1, p2 e p3, tais que

2n− 3 = p1 + p2 + p3 =⇒ 2n = p1 + p2 + p3 + 3,
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de la Universitat Autònoma de Barcelona
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estudiants de primer curs de qualsevol carrera tècnica. La segona requereix
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directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.
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ou seja, o número inteiro par 2n é a soma de quatro números primos. Pode-
mos, então, concluir que todo número inteiro par maior ou igual a oito é a
soma de quatro números primos.

Há fortes indícios de que essa afirmação seja, de fato, um teorema, em
virtude da seguinte afirmação.

Afirmação 4. [Helfgott] A Conjectura Fraca de Goldbach é verdadeira.

Figura 13: http://arxiv.org/pdf/1312.7748.pdf.

O que sabemos até o momento com relação aos estudos de Helfgott [9]:
Em 2013 e 2014, Helfgott divulgou a sua prova da Conjectura Fraca de
Goldbach, mas ela ainda não foi publicada em um periódico revisado por
pares. A prova vem passando por mais revisões desde então.

Exercício 12.1. Escreva cada um dos números inteiros pares abaixo como
uma soma de números primos:

10, 20, 50, 992, 1382, 1856, 1928.

Exercício 12.2. Defina a função f : R2 −→ R, por f(x, y) = x2 − y2.
Dados p e q números primos ímpares com p ≤ q, mostre que os dois pares
abaixo são duas soluções com coordenadas inteiras não negativas da equação
f(x, y) = p q:

(x1, y1) =

(
p+ q

2
,
q − p

2

)
, (x2, y2) =

(
p q + 1

2
,
p q − 1

2

)
.

http://arxiv.org/pdf/1312.7748.pdf
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13 Números perfeitos e primos de Mersenne

Considere os primeiros números primos

2, 3, 5 e 7.

Com eles, contruimos os seguintes números primos

M2 = 22 − 1 = 4− 1 = 3,

M3 = 23 − 1 = 8− 1 = 7,

M5 = 25 − 1 = 32− 1 = 31,

M7 = 27 − 1 = 128− 1 = 127.

O que podemos afirmar sobre os números inteiros positivos da forma abaixo?

Mp = 2p − 1, p é primo. (32)

A primeira afirmação é que p ser um número primo é uma condição
necessária para Mp ser um número primo.

Proposição 13.1. Se Mp é um número primo, então p é um número primo.

Demonstração. Faremos a prova pela contrapositiva, ou seja, mostraremos
que se p é um número composto, então Mp é um número composto. Sendo
p um número composto, existem a, b ∈ N, a, b > 1, tais que p = a b. Em
particular, 2a − 1 > 1. Agora,

Mp = 2p − 1 = 2a b − 1 = (2a)b − 1

= (2a − 1)
(
(2a)b−1 + (2a)b−2 + · · ·+ 2a + 1

)
.

Desta última expressão, inferimos que 2a − 1 > 1 divide Mp o que implica
que Mp é um número composto, como queríamos demonstrar.

Observamos, agora, que p ser um número primo, embora seja uma con-
dição necessária, não é suficiente para Mp ser um número primo. De fato,
considere o número primo p = 11 e o número M11. Por definição

M11 = 211 − 1 = 2048− 1 = 2047 = 23 · 89,

o qual é um número composto. Se o número Mp é um número primo ele é
chamado de primo de Mersenne.

Tabela 2 lista os números primos de Mersenne conhecidos até o momento.
Esses números só puderam ser conhecidos devido ao grande esforço coletivo
do “Grupo de Busca dos Números Primos de Mersenne”, Great Internet Mer-
senne Prime Search - GIMPS.
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La redacció consta, doncs, de dues seccions independents, una dedicada a la
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1 Trigonometria esfèrica

Aquells lectors que ja sàpiguen què és un triangle esfèric i com es mesuren els
seus costats i els seus angles poden saltar-se les subseccions 1.1 i 1.2 i passar
directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.
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# n Mn Digitos Data de descobrimento Descobridor
1 2 3 1 Antiguidade Antiguidade
2 3 7 1 Antiguidade Antiguidade
3 5 31 2 Antiguidade Antiguidade
4 7 127 3 Antiguidade Antiguidade
5 13 8.191 4 1456 Anônimo
6 17 131.071 6 1588 Cataldi
7 19 524.287 6 1588 Cataldi
8 31 2.147.483.647 10 1772 Euler
9 61 2.305.843.009.213.693.951 19 1883 Pervushin

10 89 618970019. . . 449.562.111 27 1911 Powers
11 107 162259276. . . 010.288.127 33 1914 Powers
12 127 170141183. . . 884.105.727 39 1876 Lucas
13 521 686479766. . . 115.057.151 157 30 de janeiro de 1952 Robinson
14 607 531137992. . . 031.728.127 183 30 de janeiro de 1952 Robinson
15 1.279 104079321. . . 168.729.087 386 25 de junho de 1952 Robinson
16 2.203 147597991. . . 697.771.007 664 7 de outubro de 1952 Robinson
17 2.281 446087557. . . 132.836.351 687 9 de outubro de 1952 Robinson
18 3.217 259117086. . . 909.315.071 969 8 de setembro de 1957 Riesel
19 4.253 190797007. . . 350.484.991 1.281 3 de novembro de 1961 Hurwitz
20 4.423 285542542. . . 608.580.607 1.332 3 de novembro de 1961 Hurwitz
21 9.689 478220278. . . 225.754.111 2.917 11 de maio de 1963 Gillies
22 9.941 346088282. . . 789.463.551 2.993 16 de maio de 1963 Gillies
23 11.213 281411201. . . 696.392.191 3.376 2 de junho de 1963 Gillies
24 19.937 431542479. . . 968.041.471 6.002 4 de março de 1971 Tuckerman
25 21.701 448679166. . . 511.882.751 6.533 30 de outubro de 1978 Noll e Nickel
26 23.209 402874115. . . 779.264.511 6.987 9 de fevereiro de 1979 Noll
27 44.497 854509824. . . 011.228.671 13.395 8 de abril de 1979 Nelson e Slowinski
28 86.243 536927995. . . 433.438.207 25.962 25 de setembro de 1982 Slowinski
29 110.503 521928313. . . 465.515.007 33.265 25 de setembro de 1988 Colquitt e Welsh
30 132.049 512740276. . . 730.061.311 39.751 20 de setembro de 1983 Slowinski
31 216.091 746093103. . . 815.528.447 65.050 6 de setembro de 1985 Slowinski
32 756.839 174135906. . . 544.677.887 227.832 19 de setembro de 1992 Slowinski e Gage
33 859.433 129498125. . . 500.142.591 258.716 10 de janeiro de 1994 Slowinski e Gage
34 1.257.787 412245773. . . 089.366.527 378.632 3 de setembro de 1996 Slowinski e Gage
35 1.398.269 814717564. . . 451.315.711 420.921 13 de novembro de 1996 GIMPS/Joel Armengaud
36 2.976.221 623340076. . . 729.201.151 895.932 24 de agosto de 1997 GIMPS/Gordon Spence
37 3.021.377 127411683. . . 024.694.271 909.526 27 de janeiro de 1998 GIMPS/Roland Clarkson
38 6.972.593 437075744. . . 924.193.791 2.098.960 1 de junho de 1999 GIMPS/Nayan Hajratwala
39 13.466.917 924947738. . . 256.259.071 4.053.946 14 de novembro de 2001 GIMPS/Michael Cameron
40 20.996.011 125976895. . . 855.682.047 6.320.430 17 de novembro de 2003 GIMPS/Michael Shafer
41 24.036.583 299410429. . . 733.969.407 7.235.733 15 de maio de 2004 GIMPS/Josh Findley
42 25.964.951 122164630. . . 577.077.247 7.816.230 18 de fevereiro de 2005 GIMPS/Martin Nowak
43 30.402.457 315416475. . . 652.943.871 9.152.052 15 de dezembro de 2005 GIMPS/Curtis Cooper&Steven Boone
44 32.582.657 124575026. . . 053.967.871 9.808.358 4 de setembro de 2006 GIMPS/Curtis Cooper&Steven Boone
45 37.156.667 202254406. . . 308.220.927 11.185.272 6 de setembro de 2008 GIMPS/Hans-Michael Elvenich
46 42.643.801 169873516. . . 562.314.751 12.837.064 12 de abril de 2009 GIMPS/Odd M. Strindmo
47 43.112.609 316470269. . . 697.152.511 12.978.189 23 de agosto de 2008 GIMPS/Edson Smith
48 57.885.161 581887266. . . 724.285.951 17.425.171 25 de janeiro de 2013 GIMPS/Curtis Cooper
49 74.207.281 300376418084. . . 391086436351 22.338.618 7 de janeiro de 2016 GIMPS/Curtis Cooper
50 77.232.917 467333183359. . . 069762179071 23.249.426 26 de dezembro de 2017 GIMPS/Jonathan Pace
51 82.589.933 148894445742. . . 325217902591 24.862.048 7 de dezembro de 2018 GIMPS/Patrick Laroche
52 136.279.841 881694327503. . . 219486871551 41.024.320 21 de outubro de 2024 GIMPS/Luke Durant

Tabela 2: http://pt.wikipedia.org/wiki/Primo_de_Mersenne.

Analisemos os números inteiros positivos 6 e 28. As somas dos divisores
próprios de 6 e de 28 são:

6 : 1 + 2 + 3 = 6,

28 : 1 + 2 + 4 + 7 + 14 = 28,

ou seja, em ambos os casos, as somas dos divisores próprios desses números
resultam nos próprios números. Dizemos que um número inteiro positivo n
é um número perfeito se as somas dos seus divisores próprios é n. Equiva-
lentemente, um número inteiro positivo n é um número perfeito se as somas
dos seus divisores é 2n.

Dado um número inteiro positivo n, denotamos por σ(n) a soma dos
divisores de n, e por σ0(n) a soma dos divisores próprios de n. Resulta que

http://pt.wikipedia.org/wiki/Primo_de_Mersenne
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σ0(n) = σ(n) − n. Também resulta, imediatamente, que σ(1) = 1 e que
σ(p) = p+ 1, se, e somente se, p é um número primo.

O lema a seguir dá importante informação a respeito da σ(n) no caso em
que n é um número composto, produto de fatores relativamente primos.

Lema 13.1. Considere um número inteiro positivo n = a b, sendo (a, b) = 1.
Então,

σ(n) = σ(a b) = σ(a)σ(b).

Demonstração. Como n = a b e (a, b) = 1, segue que qualquer divisor d de
n tem a forma d = aibi, sendo ai um divisor de a e bi um divisor de b.
Denotando os divisores de a e de b, respectivamente, por

1, a1, . . . , a, 1, b1, . . . , b,

então
σ(a) = 1 + a1 + · · ·+ a e σ(b) = 1 + b1 + · · ·+ b.

Fixe um divisor de a da forma ak. Considere todos os divisores de n da
forma dk = akbi. Assim,∑

i

dk =
∑
i

akbi = ak 1 + ak b1 + · · ·+ akb = ak σ(b).

Variando os possíveis valores de ak, obtemos

σ(n) =
∑
k

∑
i

dk =
∑
k

ak σ(b) = 1σ(b) + a1 σ(b) + · · ·+ a σ(b)

= σ(a)σ(b),

como queríamos demonstrar.

A prova do próximo teorema, utilizando-se o Princípio da Indução, é
imediata e ficará como exercício.

Teorema 13.1. Considere um inteiro positivo n ≥ 2 e sua fatoração única
(TFA)

n = pα1
1 · · · pαm

m ,

como um produto de números primos. Então,

σ(n) = σ (pα1
1 ) · · · σ (pαm

m ) . (33)

Calculemos σ
(
p
αj

j

)
para j ∈ {1, 2, . . . ,m} em (33). Como os divisores

de p
αj

j são
1, pj , p2j , . . . , p

αj

j ,
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del lector coneixements rudimentaris de varietats de Riemann.
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seus costats i els seus angles poden saltar-se les subseccions 1.1 i 1.2 i passar
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1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
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segue que, para cada j ∈ {1, 2, . . . ,m},

σ
(
p
αj

j

)
= 1 + pj + p2j + · · · + p

αj

j =
p
αj+1
j − 1

pj − 1
.

Substituindo em (33), obtemos

σ(n) =
pα1+1
1 − 1

p1 − 1
· · · p

αm+1
m − 1

pm − 1
. (34)

Exemplo 13.1. Utilizando (34), obtemos

σ(6) = σ(2 · 3) = 21+1 − 1

2− 1
· 3

1+1 − 1

3− 1
=

4− 1

1
· 9− 1

2
= 12 = 2 · 6,

ou seja, n = 6 é um número perfeito.

Exemplo 13.2. Utilizando (34), obtemos

σ(45) = σ(32 · 5) = 32+1 − 1

3− 1
· 5

1+1 − 1

5− 1
= 13 · 6 = 78 ̸= 90 = 2 · 45.

Concluimos que n = 45 não é um número perfeito.

O próximo teorema estabelece uma relação entre números perfeitos e
primos de Mersenne.

Teorema 13.2. Se Mp é um número primo de Mersenne, então

n = 2p−1Mp (35)

é um número perfeito par. Além disso, todo número perfeito par é da forma

2p−1Mp,

para algum número primo p e Mp um número primo de Mersenne.

Antes de demonstrarmos o teorema acima, observamos: não se conhece
um número perfeito ímpar.

Prova do Teorema 13.2. Supondo que (35) é válida, segue que p é primo e,
portanto, p − 1 ≥ 1, de onde 2p−1 é múltiplo de 2 e, assim, n é par. Por
hipótese, Mp é um primo de Mersenne, de onde 2p−1 e Mp = 2p − 1 são
relativamente primos. Do Lema 13.1,

σ(n) = σ
(
2p−1

)
σ (2p − 1) =

2p−1+1 − 1

2− 1
(2p − 1 + 1) = (2p − 1) 2p

= 2 · 2p−1 (2p − 1) = 2n,
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ou seja, n é um número perfeito, como queríamos demonstrar.
Seja n um número perfeito par, ou seja, σ(n) = 2n. Como n é par, tome

2k a maior potência de 2 que divide n. Assim,

n = 2k b, (36)

sendo b ímpar. Como 2k e b são relativamente primos, segue que

2k+1b = 2n = σ(n) = σ(2k)σ(b) =
2k+1 − 1

2− 1
σ(b)

=
(
2k+1 − 1

)
σ(b),

ou seja,
2k+1b =

(
2k+1 − 1

)
σ(b).

Como
2k+1 e 2k+1 − 1

são relativamente primos, segue que b divide 2k+1 − 1, ou seja,

b =
(
2k+1 − 1

)
c, (37)

para algum inteiro positivo c. Assim,

σ(b) = 2k+1c. (38)

Pelo que vimos acima,
1, 2k+1 − 1, c, b

dividem b. Suponha que c > 1. Neste caso, de (37) e de (38), temos

b+ c
(37)
= 2k+1c

(38)
= σ(b) ≥ 1 +

(
2k+1 − 1

)
+ b+ c = 2k+1 + b+ c,

o que resulta numa contradição. Logo,

c = 1, b = 2k+1 − 1 e σ(b) = 2k+1.

Isso implica que b = Mk+1 é primo e, pela Proposição 13.1, segue que p =
k + 1 é primo. Em resumo, de (36), resulta

n
(36)
= 2k b = 2p−1Mp,

como queríamos demonstrar.

Exercício 13.1. Dê uma prova para o Teorema 13.1.

Exercício 13.2. Dizemos que um número inteiro positivo n é um número
deficiente se as somas dos seus divisores próprios é menor que n. De modo
análogo, dizemos que um número inteiro positivo n é um número abundante
se as somas dos seus divisores próprios é maior que n. Mostre que existem
infinitos números deficientes. Mostre também que existem infinitos números
abundantes. Decida se n = 945 é deficiente, perfeito ou abundante, justifi-
cando a sua resposta.
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1 Trigonometria esfèrica

Aquells lectors que ja sàpiguen què és un triangle esfèric i com es mesuren els
seus costats i els seus angles poden saltar-se les subseccions 1.1 i 1.2 i passar
directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
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14 Congruências e aplicações I: Teoremas de Wil-
son e de Fermat

Iniciamos esta seção estudando em exemplo.

Exemplo 14.1. Este exemplo é uma questão do nível 1 da primeira etapa
da Olimpíada Brasileira de Matemática das Escolas Públicas (OBMEP) de
2012 e pode ser encontrado em http://www.obmep.org.br. Um quadrado de
lado 1 cm roda em torno de um quadrado de lado 2 cm, como na Figura 14,
partindo da posição inicial e completando um giro cada vez que um de seus
lados fica apoiado em um lado do quadrado maior.

após 2º giro

2º giro

inicial
posição

1º giro

posição
após 1º giro

posição

Figura 14: Posições do quadrado de lado 1 cm.

Qual das figuras esboçadas na Figura 15 representa a posição dos dois
quadrados após 2012 giros?

E)A) B) C) D)

Figura 15: Possíveis posições dos dois quadrados após 2012 giros.

Verifica-se que após oito giros sucessivos o quadrado menor retorna à sua
posição inicial. Deste modo, basta encontrar o resto da divisão de 2012 por
8,

2012 = 8 · 251 + 4.

Assim, após 251 voltas no quadrado maior, o quadrado menor retorna à
posição inicial. Sobram, na análise, apenas 4 giros. Portanto, a resposta
correta é a alternativa A.

Daremos uma ideia da aritmética dos “restos” proposta por Gauss. Con-
sidere a, b ∈ Z e m ∈ N. Dizemos que a é congruente a b módulo m se

m | (a− b).

Denotaremos isso por
a ≡ b (mod m).

http://www.obmep.org.br
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Se
m ∤ (a− b),

dizemos que a é incongruente a b módulo m ou a é não congruente a b módulo
m e denotamos por

a ̸≡ b (mod m).

Exemplo 14.2. 11 ≡ 3 (mod 2), pois 2 | (11− 3) = 8.

Exemplo 14.3. 17 ̸≡ 11 (mod 5), pois 5 ∤ (17− 11) = 6.

Veremos, a seguir, alguns resultados a respeito da ideia de congruência.
Alguns serão demonstrados aqui, outros terão suas demonstrações deixadas
como exercício.

Proposição 14.1. Considere a, b ∈ Z e m ∈ N. Assim, a ≡ b (mod m) se,
e somente se, existe k ∈ Z tal que a = b+ km.

Demonstração. Se a ≡ b (mod m), por definição, m | (a− b), ou seja, existe
k ∈ Z tal que a−b = km, o que implica a = b+km. Por outro lado, se existe
k ∈ Z tal que a− b = km, então m | (a− b), ou seja, a ≡ b (mod m).

Proposição 14.2. Considere a, b ∈ Z e m ∈ N. As seguintes afirmações
são verdadeiras:

• a ≡ a (mod m);

• Se a ≡ b (mod m), então b ≡ a (mod m);

• Se a ≡ b (mod m) e b ≡ c (mod m), então a ≡ c (mod m).

A prova da Proposição 14.2 ficará como exercício. Por esta proposição
verificamos que a relação de congruência é uma relação de equivalência no
conjunto dos números inteiros.

Proposição 14.3. Considere a, b, c ∈ Z e m ∈ N. Suponha que a ≡ b
(mod m). As seguintes afirmações são verdadeiras:

1. a+ c ≡ b+ c (mod m);

2. a− c ≡ b− c (mod m);

3. a c ≡ b c (mod m).
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1 Trigonometria esfèrica

Aquells lectors que ja sàpiguen què és un triangle esfèric i com es mesuren els
seus costats i els seus angles poden saltar-se les subseccions 1.1 i 1.2 i passar
directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.
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Demonstração. Por hipótese, a ≡ b (mod m), ou seja, existe k ∈ Z, tal que
a− b = km. Agora,

(a+ c)− (b+ c) = a− b = km,

o que implica que a+ c ≡ b+ c (mod m), provando o item 1.
De modo análogo,

(a− c)− (b− c) = a− b = km,

implicando que a− c ≡ b− c (mod m), provando o item 2.
Por último,

a c− b c = c(a− b) = c km,

o que implica que m | (a c− b c) e, portanto, a c ≡ b c (mod m).

A prova da próxima proposição ficará como exercício.

Proposição 14.4. Considere a, b, c, d ∈ Z e m ∈ N. Suponha que

a ≡ b (mod m) e c ≡ d (mod m).

As seguintes afirmações são verdadeiras:

1. a+ c ≡ b+ d (mod m));

2. a− c ≡ b− d (mod m);

3. a c ≡ b d (mod m).

Proposição 14.5. Considere a, b, c ∈ Z e m ∈ N. Suponha que d = (c,m) e
que a c ≡ b c (mod m). Então, a ≡ b (modm/d). Em particular, se (c,m) =
d = 1, então, a ≡ b (mod m).

Demonstração. Por hipótese, a c − b c = c(a − b) = km. Dividindo ambos
os membros por d, temos

(c/d)(a− b) = k(m/d), com c/d, m/d ∈ Z,

ou seja, (m/d) | (c/d)(a− b). Como (m/d, c/d) = 1, segue que

(m/d) | (a− b) =⇒ a ≡ b (mod m)/d,

como queríamos provar.

Considere h, k ∈ Z e m ∈ N, com h ≡ k (mod m). Neste caso, dizemos
que k é um resíduo de h módulo m.

O conjunto de números inteiros

{r1, r2, . . . , rs}

é um sistema completo de resíduos módulo m se:
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• ri ̸≡ rj (mod m), com i ̸= j;

• para todo n ∈ Z existe um ri tal que n ≡ ri (mod m).

Exemplo 14.4. Dado m ∈ N, o conjunto {0, 1, . . . , m − 1} é um sistema
completo de resíduos módulo m.

As provas das seguintes duas proposições serão omitidas.

Proposição 14.6. Se um conjunto com k números inteiros {r1, r2, . . . , rk}
é um sistema completo de resíduos módulo m, então k = m.

Proposição 14.7. Se o conjunto {r1, r2, . . . , rm} é um sistema completo
de resíduos módulo m e a, b ∈ Z, com (a,m) = 1, então o conjunto

{a r1 + b, a r2 + b, . . . , a rm + b}

também é um sistema completo de resíduos módulo m.

Considere a, b ∈ Z e m ∈ N. Chamamos de congruência linear em uma
variável a uma congruência da forma

a x ≡ b (mod m), x ∈ Z. (39)

Suponha que x0 ∈ Z é uma solução da congruência linear (39), isto é,

a x0 ≡ b (mod m).

Suponha que x1 ∈ Z satisfaz x1 ≡ x0 (mod m). Então, x1 também é solução
da congruência linear (39). De fato,

x1 ≡ x0 (mod m) =⇒ a x1 ≡ a x0 (mod m) ≡ b (mod m).

Dada uma congruência linear, a x ≡ b (mod m), quantas são as suas
soluções incongruentes (não congruentes), caso exista alguma?

A próxima proposição responde a esta pergunta. A sua prova será omi-
tida.

Proposição 14.8. Considere a, b ∈ Z e m ∈ N, com (a,m) = d. Valem as
seguintes afirmações.

• Se d ∤ b, a congruência a x ≡ b (mod m) não possui solução.

• Se d | b, a congruência a x ≡ b (mod m) possui exatamente d soluções
incongruentes módulo m.

Dizemos que uma solução x0 ∈ Z da congruência linear a x ≡ b (mod m)
é única módulo m quando qualquer outra solução x1 ∈ Z for congruente a
x0 módulo m.

Uma solução a ∈ Z de a x ≡ 1 (mod m) é chamada de inverso de a ∈ Z
módulo m. Se (a,m) = 1, então, da Proposição 14.8, segue que a ∈ Z possui
um único inverso módulo m.

A próxima proposição dá informações quando a ∈ Z é o seu próprio
inverso módulo um número primo p.
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1 Trigonometria esfèrica

Aquells lectors que ja sàpiguen què és un triangle esfèric i com es mesuren els
seus costats i els seus angles poden saltar-se les subseccions 1.1 i 1.2 i passar
directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.
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figura 1
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Proposição 14.9. Considere p um primo. O número a ∈ N é o seu próprio
inverso módulo p se, e somente se, a ≡ 1 (mod p) ou a ≡ −1 (mod p).

Demonstração. Se a é o seu próprio inverso módulo p, então a2 ≡ 1 (mod p),
o que significa que

p | (a2 − 1) = (a+ 1)(a− 1).

Assim, p | (a−1) ou p | (a+1), de onde a ≡ 1 (mod p) ou a ≡ −1 (mod p).
Por outro lado, se a ≡ 1 (mod p) ou a ≡ −1 (mod p), então p | (a − 1) ou
p | (a+ 1). Portanto,

p | (a+ 1)(a− 1) = a2 − 1.

Assim, a2 ≡ 1 (mod p), ou seja, a é o seu próprio inverso módulo p, como
queríamos demonstrar.

Como aplicações da ideia de congruência, faremos, na próxima seção, as
provas completas dos seguintes dois teoremas.

Teorema 14.1 (Teorema de Wilson). O número p ∈ N é primo se, e somente
se, p | (p− 1)! + 1, ou equivalentemente,

(p− 1)! ≡ −1 (mod p).

Teorema 14.2 (Pequeno Teorema de Fermat). Considere p ∈ N um número
primo. Se p ∤ a, então

ap−1 ≡ 1 (mod p).

Faremos, agora, a prova de uma parte do Teorema 14.1 (Wilson).

Demonstração. Parte 1. Se p | (p− 1)! + 1, então p é primo.
Faremos a prova por contradição. Suponha que p não é um número

primo, ou seja, existem números inteiros a > 1 e b > 1, tais que

p = a b.

Em particular, b < p, o que implica que b | (p − 1)!. Agora, por hipótese,
p | (p − 1)! + 1 e como b | p, segue, por transitividade, que b | (p − 1)! + 1.
Assim, do que vimos, b | (p−1)! e b | (p−1)!+1, de onde b divide a diferença

(p− 1)! + 1− (p− 1)! = 1,

um absurdo.
Parte 2. Se p é primo, então p | (p− 1)! + 1, ou equivalentemente,

(p− 1)! ≡ −1 (mod p).

A prova da Parte 2 ficará para a próxima seção.
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Observação 14.1. A afirmação da Parte 2 do Teorema 14.1 (Wilson) é: se
p é primo, então p | (p− 1)! + 1, ou equivalentemente,

(p− 1)! ≡ −1 (mod p).

Afirmamos que p é o menor número primo com essa propriedade. De fato,
suponha que exista um número primo q < p, tal que q | (p − 1)! + 1. Como
q < p, então q é um fator de (p− 1)!. Portanto, q | (p− 1)! e, assim, divide
a diferença

(p− 1)! + 1− (p− 1)! = 1,

um absurdo.

Exercício 14.1. Utilizando o Teorema 14.1 (Wilson), encontre o menor
resíduo positivo de

6 · 7 · 8 · 9 módulo 5.

Exercício 14.2. Utilizando o Teorema 14.2 (Pequeno Teorema de Fermat),
encontre o resto da divisão de

2100.000 por 17.

15 Congruências e aplicações II: Teoremas de Wil-
son e de Fermat

Nesta seção estudaremos as provas do Teorema de Wilson e do Pequeno
Teorema de Fermat. Antes de exibirmos a prova do Teorema 14.1 (Wilson),
discutiremos a ideia dessa prova no exemplo a seguir.

Exemplo 15.1. Considere o número primo p = 13. Dentre os números

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

somente os números 1 e 12 são os seus próprios inversos módulo 13. De
fato, pela Proposição 14.9,

1 ≡ 1 (mod 13) e 12 ≡ −1 (mod 13),

e nenhum dos números restantes é congruente a 1 ou a −1 módulo 13. Como
os números

2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

são relativamente primos com 13, pela Proposição 14.8, cada um deles possui
um único inverso módulo 13. Eles podem ser agrupados em

5 =
13− 3

2
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1 Trigonometria esfèrica

Aquells lectors que ja sàpiguen què és un triangle esfèric i com es mesuren els
seus costats i els seus angles poden saltar-se les subseccions 1.1 i 1.2 i passar
directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.
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pares da forma

2 · 7 ≡ 1 (mod 13), 3 · 9 ≡ 1 (mod 13), 4 · 10 ≡ 1 (mod 13),

5 · 8 ≡ 1 (mod 13), 6 · 11 ≡ 1 (mod 13).

Pelo item 3 da Proposição 14.4, podemos multiplicar essas congruências
membro a membro, obtendo

2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 ≡ 1 (mod 13).

Multiplicando ambos os membros por 12, teremos

2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 · 12 ≡ 12 (mod 13).

O membro esquerdo é 12! = (13−1)!. Por outro lado, o membro direito pode
ser escrito da forma 12 ≡ −1 (mod 13). Assim,

(13− 1)! ≡ −1 (mod 13),

como queríamos mostrar.

Prova do Teorema 14.1 (Wilson). Parte 1. Se p | (p − 1)! + 1, então p é
primo. Faremos a prova por contradição. Suponha que p não é primo, ou
seja, existem números inteiros a > 1 e b > 1, tais que

p = a b.

Em particular, b < p, o que implica que b | (p − 1)!. Agora, por hipótese,
p | (p − 1)! + 1 e como b | p, segue que b | (p − 1)! + 1, por transitividade.
Assim, b | (p− 1)! e b | (p− 1)! + 1, de onde b divide a diferença

(p− 1)! + 1− (p− 1)! = 1,

um absurdo.
Parte 2. Se p é primo, então

p | (p− 1)! + 1 ⇐⇒ (p− 1)! ≡ −1 (mod p).

Considere o número primo p = 2. Assim,

(p− 1)! + 1 = (2− 1)! + 1 = 1 + 1 = 2,

é divisível por p = 2. Considere, agora, um número primo p ≥ 3, arbitrário,
fixado e a congruência linear

a x ≡ 1 (mod p). (40)
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Considere o conjunto
C = {1, 2, . . . , p− 1}.

Se a ∈ C, então (a, p) = 1. Segue, assim, da Proposição 14.8, que a congru-
ência linear (40) tem uma única solução para todo a ∈ C. Segue ainda que,
no conjunto C, apenas a = 1 e a = p−1 são seus próprios inversos módulo p.
De fato, da Proposição 14.9, a = 1 é congruente a 1 módulo p e a = p− 1 é
congruente a −1 módulo p.

Afirmação. Pode-se agrupar os elementos restantes do conjunto C, quais
sejam, 2, 3, . . . , p− 2, em (p − 3)/2 pares cujos produtos são congruentes
a 1 módulo p.

Multiplicando essas congruências membro a membro (item 3 da Propo-
sição 14.4), obtemos

2 · 3 · 4 · · · (p− 2) ≡ 1 (mod p).

Multiplicando ambos os membros da congruência acima por p−1 (item 3 da
Proposição 14.3), teremos

2 · 3 · 4 · · · (p− 2) (p− 1) ≡ (p− 1) (mod p).

Como p− 1 ≡ −1 (mod p), segue da congruência acima que

(p− 1)! ≡ (p− 1) (mod p) ≡ −1 (mod p),

terminando a prova da Parte 2.

No exemplo a seguir, ilustraremos a ideia da prova do Teorema 14.2
(Pequeno Teorema de Fermat).

Exemplo 15.2. Considere p = 11 e a = 5. Como p = 11 ∤ 5 = a, queremos
mostrar que ap−1 = 510 ≡ 1 (mod p = 11). Considere a seguinte lista:

1 · 5 ≡ 5 (mod 11), 2 · 5 ≡ 10 (mod 11),

3 · 5 ≡ 4 (mod 11), 4 · 5 ≡ 9 (mod 11),

5 · 5 ≡ 3 (mod 11), 6 · 5 ≡ 8 (mod 11),

7 · 5 ≡ 2 (mod 11), 8 · 5 ≡ 7 (mod 11),

9 · 5 ≡ 1 (mod 11), 10 · 5 ≡ 6 (mod 11).

Note que 11 não divide nenhum dos produtos

j · 5, j ∈ {1, 2, . . . , 9, 10},

que estão nos membros esquerdos das congruências da lista acima. Note
também que esses produtos são dois a dois incongruentes módulo 11. De
fato,

5 · j ≡ 5 · k (mod 11) =⇒ j ≡ k (mod 11),
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directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.
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com j, k ∈ {1, 2, . . . , 9, 10}, de onde j = k. Das duas observações acima,
resulta que cada produto da forma j · 5 deve ser congruente a um número
diferente do conjunto

D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Observe que os números do conjunto D aparecem, sem repetições, nos mem-
bros direitos das congruências da lista inicial. Podemos multiplicar, membro
a membro, as congruências dessa lista, obtendo

(1 · 5) · (2 · 5) · · · (10 · 5) ≡ 5 · 10 · 4 · 9 · 3 · 8 · 2 · 7 · 1 · 6 (mod 11).

A expressão acima pode ser escrita da forma

510 · 10! ≡ 10! (mod 11).

Como (10!, 11) = 1, pela Proposição 14.5, 510 ≡ 1 (mod 11), como quería-
mos mostrar.

Prova do Teorema 14.2 (Pequeno Teorema de Fermat). O conjunto formado
pelos p números

E = {0, 1, 2, . . . , p− 1}

é um sistema completo de resíduos módulo p. Isto implica, em particular, que
qualquer conjunto contendo, no máximo, p elementos incongruentes módulo
p pode ser colocado em correspondência bijetora com um subconjunto do
conjunto E. Considere, agora, o conjunto

F = {a, 2a, 3a, . . . , (p− 1)a}.

Como, por hipótese, (a, p) = 1, nenhum elemento do conjunto F é divisível
por p, ou seja, nenhum deles é congruente a zero módulo p. Por outro lado,
quaisquer dois elementos (distintos) de F são incongruentes módulo p. De
fato,

a j ≡ a k (mod p) =⇒ j ≡ k (mod p)

o que só é possível se j = k, uma vez que ambos j e k são positivos e menores
que p. Em resumo, o conjunto F contém p−1 números incongruentes módulo
p e não divisíveis por p. Logo, cada um deles é congruente a exatamente um
dentre os números

1, 2, 3, . . . , p− 1.

Se multiplicarmos essas congruências membro a membro, teremos

a · (2a) · (3a) · · · ((p− 1)a) ≡ 1 · 2 · 3 · · · (p− 1) (mod p),

ou seja,
ap−1 · (p− 1)! ≡ (p− 1)! (mod p).
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Como ((p − 1)!, p) = 1, podemos cancelar o fator (p − 1)! em ambos os
membros, obtendo

ap−1 ≡ 1 (mod p),

como queríamos demonstrar.
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