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ABSTRACT. In this paper we study the problem of when the corona algebra of a non-unital
C∗-algebra is purely infinite. A complete answer is obtained for stabilisations of simple
and unital algebras that have enough comparison of positive elements. Our result relates
the pure infiniteness condition (from its strongest to weakest forms) to the geometry of the
tracial simplex of the algebra, and to the behaviour of corona projections, despite the fact
that there is no real rank zero condition.

INTRODUCTION

The corona is a noncommutative generalization of the famous Stone-Čech corona of
topological spaces. It is well-known that properties of the corona have deep consequences
for the space in question ([9]), even for such simple objects as the natural numbers, N. An
analysis of the Kirchberg-Phillips classification of purely infinite simple algebras reveals
that an important property making possible a classification is that the corona is purely
infinite and has no ideals. In this paper, we find a completely unexpected connection
between finite ideal structure and (non-simple) pure infiniteness, for coronas of certain C∗-
algebras that have good behaviour with respect to classifiability. Thus, we hope to have
shed some light on what precisely makes a C∗-algebra belong to the class of classifiable
C∗-algebras.

The notion of pure infiniteness, in the simple case, can be traced back to Cuntz (see [5]).
He defined a simple C∗-algebra to be purely infinite if it is infinite dimensional and, when-
ever a is a non-zero element, one can find x and y with xay = 1. This was extended by
Kirchberg and Rørdam to the non-simple setting (see [11]): a C∗-algebra A is purely infi-
nite provided that A has no characters and, whenever a and b are positive elements with
a ∈ AbA, then there is a sequence (vn) in A with a = lim

n→∞
vnbv

∗
n.

Quite possibly the first (and most natural) example of a purely infinite (simple) corona
algebra is constituted by the Calkin algebra. This naturally raises the question of studying
which corona algebras of simple C∗-algebras are purely infinite. In the real rank zero
situation (i.e. when we can produce projections on demand), this was pursued by Lin and
Zhang. For example, Zhang showed that if A has real rank zero andM(A)/A is simple,
then it is indeed purely infinite simple (see [28]). In [29], Zhang also showed that if A is
σ-unital and has real rank zero, then the corona algebra M(A ⊗ K)/(A ⊗ K) is simple if
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and only if A is either simple purely infinite or elementary. Not much later, in [17] (see
also [23]), the same result was proved without assuming real rank zero.

A more general result was made available by Lin, who in [18] proved that, for a sim-
ple, non-unital, non-elementary σ-unital algebra A without any real rank zero condition,
M(A)/A being simple is equivalent to M(A)/A being purely infinite simple. This was
also shown to be equivalent to a condition satisfied by the base algebra, termed continu-
ous scale, and expressed in terms of Cuntz comparison of positive elements (see below for
the precise definitions).

The first and third-named authors analysed, in [15], conditions under which corona al-
gebras of simple C∗-algebras with real rank zero, stable rank one and weakly unperforated
K0 group are purely infinite. Those conditions were expressible almost solely in terms of
the state space of the K0 group. In the stable case, they amount to the existence of finitely
many extremal (quasi)-traces, and in turn, to the existence of finitely many corona ideals.
In a somewhat different direction, the first and second-named authors studied the pure in-
finiteness of a stable, separable algebra of real rank zero in terms of appropriate properties
of a so-called AF-skeleton (see [20]).

In the current paper we deal with a much more general class of algebras, which need
not have real rank zero (in general, they will not), yet we can still compare elements by
means of the values of appropriate states. The comparison theory we are referring to is
the already mentioned Cuntz comparison, and we shall assume our algebras have strict
comparison of positive elements. This is a regularity property that has a strong K-theoretic
flavour and supports the (philosophical) point of view that Cuntz comparison may be
regarded as rank comparison. A particularly important class of algebras that enjoy strict
comparison consists of those separable, nuclear, Z-stable simple C∗-algebras (see [25]) as
well as simple AH-algebras with slow dimension growth ([26]). Here, Z is the Jiang-Su
algebra, a simple, nuclear, separable and unital C∗-algebra that has the same K-Theory as
the complex numbers, yet it is infinite dimensional ([10]). It has become in recent years
one of the most prominent examples of simple, separable, and nuclear C∗-algebras, which
has deep connections with the classification program (see [7] and the references therein).

A C∗-algebra is termed Z-stable if it absorbs Z tensorially. (We remind the reader here
that Z itself is Z-stable.) There is evidence that strict comparison and Z-stability might
prove to be equivalent (for simple, nuclear, unital and separable algebras); this has in fact
has been verified in a number of instances (see, e.g. [27]).

Our results in this paper can be succinctly summarized in the following

Theorem A. Let A be a simple unital finite C∗-algebra which is either exact and Z-stable or an
AH-algebra with slow dimension growth. Then, the following conditions are equivalent:

(i) M(A⊗K)/(A⊗K) is strongly purely infinite,
(ii) M(A⊗K)/(A⊗K) is purely infinite,

(iii) M(A⊗K)/(A⊗K) is weakly purely infinite,
(iv) All projections inM(A⊗K)/(A⊗K) are properly infinite,
(v) A has finitely many extremal traces,

(vi) M(A⊗K)/(A⊗K) has finitely many ideals.
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In order to prove Theorem A above, we need to establish a number of intermediate
results, some of which may well be of independent interest, so this is the reason why we
shall postpone its proof to the end of the paper.

It is eerie to have that projections determine pure infiniteness for algebras whose multi-
pliers (hence also themselves) will not have real rank zero. This raises the natural question
of whether the corona algebras of such algebras do have real rank zero. Despite the posi-
tive evidence, a result in this direction has not yet come by, even for the corona algebra of
Z ⊗K.

In outline the paper is as follows. Section 1 is mainly devoted to reminding the reader of
Cuntz comparison and the various representation theorems of the Cuntz semigroup (that
have been established in [3] and [2]). These were written basically under some different
hypotheses; our reformulation holds with the same proofs and has been noticed by a num-
ber of researchers. We also prove assorted useful lemmas that shall be used in the sequel.
The notions of pure infiniteness (in their various guises) are recalled in Section 2, where
we prove that they are equivalent (beyond the simple case), when the algebra has finitely
many ideals. This, as a consequence, yields an easy computation of the Cuntz semigroup
of a purely infinite algebra with finite ideal lattice (which contains the purely infinite sim-
ple case, where the semigroup is degenerate, only consisting of {0,∞}). Sections 3 and 4
constitute the core of the paper. In there we prove necessary conditions for purely infinite
corona (described in Proposition 3.2), and sufficient conditions (Theorem 4.3).

1. CUNTZ COMPARISON

The Cuntz semigroup. For a C∗-algebra A, denote as usual M∞(A) the algebraic limit of
the direct system (Mn(A), φn), where φn : Mn(A)→ Mn+1(A) is given by

a 7→
(
a 0
0 0

)
.

If a and b are positive elements in M∞(A), we write a⊕ b to denote the element
(
a 0
0 b

)
,

again a positive element in M∞(A).
Given a, b ∈ M∞(A)+, we say that a is Cuntz subequivalent to b, in symbols a - b, if there

is a sequence (vn)∞n=1 of elements of M∞(A) such that

‖vnbv∗n − a‖
n→∞−→ 0.

We say that a and b are Cuntz equivalent, in symbols a ∼ b, if a - b and b - a. This defines
an equivalence relation on M∞(A) and the equivalence class of a is denoted by 〈a〉. The
Cuntz semigroup of A is the object

W(A) := M∞(A)+/ ∼ ,

which is a positively partially ordered Abelian monoid with addition

〈a〉+ 〈b〉 = 〈a⊕ b〉

and order
〈a〉 ≤ 〈b〉 ⇔ a - b .
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Given a in M∞(A)+ and ε > 0, we denote

(a− ε)+ = f(a) ∈ C∗(a) , where f(t) = max{0, t− ε} .
We shall use the following three technical facts, which are proved in, for example [24]

and [11]:
Let A be a C∗-algebra, and let a, b ∈ A.

(a) If a - b then for any ε > 0, there is a δ > 0 and an element r in A such that (a− ε)+ =
r (b− δ)+ r

∗. In particular (a− ε)+ - (b− δ)+.
(b) If (a− ε)+ - b for any ε > 0, then a - b.
(c) If ‖a− b‖ < ε, then (a− ε)+ - b.

Lemma 1.1. Let A be a C∗-algebra, and let a, b be positive elements in A. If b - (a− ε)+, then we
have (b− ε)+ = rf(a)r∗, where f is any function that is equal to 1 on [ε, ‖a‖], and the norm of r
is less than ‖b‖1/2.

Proof. From the hypothesis, there is an element c with (b− ε)+ = c (a− ε)+ c
∗. Notice that,

by construction, f(a) acts as the unit from the right upon r := c (a− ε)1/2
+ . Thus we may

write (b− ε)+ = rf(a)r∗. A straightforward use of the C∗-equation ensures that the norm
of r is as claimed. �

Lemma 1.2. Let A be a separable C∗-algebra. Let a ∈ A+ and b ∈ M(A). Let (bn) be an
approximate unit for bAb. If a - b, then for every ε > 0 there is n ≥ 1 with (a− ε)+ - bn.

Proof. Given ε > 0, we know that there is x inM(A) with (a− ε/2)
1/2
+ = xb2x∗. Hence

(a− ε/2)+ = (a− ε/2)
1/4
+ xb2x∗(a− ε/2)

1/4
+ ,

so by changing notation we have (a− ε/2)+ = xb2x∗ with x in A.
Put y = bx∗xb, which is Cuntz equivalent to (a− ε/2)+.
Therefore (a− ε)+ = ((a− ε/2)+ − ε/2)+ - (y − δ)+ for some δ > 0. With this constant,

find n ≥ 1 such that

‖y − bnybn‖ < δ .

Hence (y − δ)+ - bnybn ∼ y1/2b2ny
1/2 - bn. �

The function representation of the Cuntz semigroup. If A is a unital C∗-algebra and
τ ∈ T(A) is a normalized trace, one defines

dτ : M∞(A)+ → R+

by dτ (a) = lim
n→∞

τ(a1/n), which is lower semicontinuous and depends only the Cuntz class
of a.

One moreover has that dτ defines a (normalized) state on W(A), which is referred to as
a lower semicontinuous function (as opposed to the set of all normalized states on W(A), the
so-called dimension functions). As costumary, we denote the convex set of all dimension
functions by DF(A) and the subset of those lower semicontinuous dimension functions by
LDF(A). It was proved in [1] that LDF(A) is a face of DF(A), usually dense (as shown in [3,
Theorem 6.4]). The correspondence τ 7→ dτ defines an affine bijection T(A) → LDF(A),
generally not continuous (see [1, Theorem II.2.2]).
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The interesting property is when comparison of lower semicontinuous states determines
the order of the semigroup. This has attracted a good deal of attention in recent years, and
has been termed strict comparison: a - b whenever d(a) < d(b) for all d ∈ LDF(A).

Denote by V(A) the projection semigroup of A and LAffb(T(A))++ the semigroup of
bounded, real-valued lower semicontinuous functions on T(A) which are strictly positive.
Then

V(A) t LAffb(T(A))++

is a semigroup with addition extending the usual operations and moreover x+ f = x̂+ f ,
where x ∈ V(A), f ∈ LAffb(T(A))++ and x̂(τ) = τ(x).

This semigroup can also be ordered by taking the usual (algebraic) order on V(A),
the pointwise ordering on LAffb(T(A))++, and by further setting for x ∈ V(A) and
f ∈ LAffb(T(A))++:

(i) x ≤ f if x̂(τ) < f(τ) for all τ ∈ T(A), and
(ii) f ≤ x if f(τ) ≤ x̂(τ) for all τ ∈ T(A) .
We will say that a partially ordered semigroup (M,≤) is weakly divisible if for any x in M

and n ∈ N, there is y in M with ny ≤ x ≤ (n+ 1)y. It is known that C∗-algebras that absorb
Z tensorially are weakly divisible, in the sense that W(A) is weakly divisible, but this has
not appeared explicitly in the literature. We offer a short argument below:

Lemma 1.3. Let A be a (unital) Z-stable C∗-algebra. Then W(A) is weakly divisible.

Proof. First note that since matrices over a Z-stable algebra are also Z-stable, we may as-
sume that our given element x ∈ W(A) has a representative coming from A. Next, it was
shown in [21, Lemma 3.4] that any element of A is Cuntz equivalent to an element of the
form a⊗ 1Z .

Now, there is by [25, Lemma 4.2] a sequence of elements (en) in Z with

n〈en〉 ≤ 〈1Z〉 ≤ (n+ 1)〈en〉 ,
and then [25, Lemma 4.1] implies that

n〈a⊗ en〉 ≤ 〈a⊗ 1Z〉 ≤ (n+ 1)〈a⊗ en〉 ,
from which the proof is complete. �

We shall make use of the following results

Theorem 1.4. ([21, Theorem 4.4], [3, Corollary 5.7]) Let A be a simple, unital, finite C∗-algebra
with strict comparison. Then, the map

φ : W(A)→ V(A) t LAffb(T(A))++ ,

defined as φ(〈p〉) = [p] if p is a projection and φ(〈x〉)(τ) = dτ (x) if x is not equivalent to a
projection, is an order embedding. If W(A) is weakly divisible or A is an AH-algebra with slow
dimension growth, then ι := φ|W(A)+ is surjective, hence φ is an isomorphism.

This was subsequently applied to compute the Cuntz semigroup of a stabilisation of a
unital C∗-algebra. Denote SAff(T(A)) the semigroup of affine functions defined on T(A)
that are pointwise suprema of increasing sequences of continuous, affine and strictly pos-
itive functions on T(A). If A is separable, then, because of metrizability, SAff(T(A)) is just
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the set of all strictly positive, affine lower semicontinuous functions (possibly unbounded)
defined on T(A).

Theorem 1.5. ([2, Theorem 2.5])Let A be a simple, unital exact and tracial C∗-algebra with strict
comparison. Then, there is an order-isomorphism

φ : W(A⊗K)→ V(A) t SAff(T(A)) ,

whenever ι as in 1.4 is surjective.

It is instructive to recall how the isomorphism above can be constructed, since for one
thing we shall use this below. Let (en) be an approximate unit for K consisting of an
increasing sequence of projections with rank(en) = n, and put Pn = 1 ⊗ en. Then, if
a ∈ (A⊗K)++, put

φ(〈a〉)(τ) = sup
n
dτ (PnaPn) ,

and if p is a projection then φ(〈p〉) = [p] via the corresponding identification of V(A ⊗ K)
with V(A). One can also regard the isomorphism of Theorem 1.5 as a completion via
suprema of the isomorphism in Theorem 1.4.

For a any C∗-algebra A, let us denote K(A) the Pedersen ideal of A, that is, the minimal
dense ideal of A.

Lemma 1.6. Let A be a simple, unital exact and tracial C∗-algebra with strict comparison. Let
a ∈ K(A⊗K)+. Then φ(〈a〉) is a bounded function.

Proof. Take a projection e in A ⊗ K, e.g. e = 1 ⊗ e1, where e1 is a rank one projection in K.
Then, for any trace τ in T(A), we have

φ(〈e〉) = sup
n
dτ (PnePn) = sup dτ (1⊗ e1) = τ(1⊗ e1) = 1 .

Then, since A is simple, A ⊗ K is also simple and K(A ⊗ K) is algebraically simple, from
which it follows that K(A ⊗ K) = K(A ⊗ K)eK(A ⊗ K). Then a =

∑n
i=1 aiebi for some

elements ai, bi in K(A⊗K), whence a - ne. From this, φ(〈a〉) ≤ nφ(〈e〉) = n. �

2. PURE INFINITENESS

In this section we recall the definitions of three notions of pure infiniteness (see [11]
and [12])

Definition 2.1. Let A be a C∗-algebra. We say that
(i) A is strongly purely infinite if for every positive element(

a x∗

x b

)
∈M2(A)+ ,

and every ε > 0, there are d1, d2 in A such that∥∥∥∥( d∗1 0
0 d∗2

)(
a x∗

x b

)(
d1 0
0 d2

)
−
(
a 0
0 b

)∥∥∥∥ ≤ ε

(ii) A is purely infinite if every non-zero positive element a is properly infinite, i.e. a⊕ a - a.
(iii) A is weakly purely infinite if there is an n such that every non-zero positive element a in A

satisfies that a⊕ · · · ⊕ a = a⊗ 1n is properly infinite.
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Recall that a C*-algebra has Property IP if projections separate ideals (equivalently, if
ideals are generated by projections). It is shown in [19, Proposition 2.11] that, in the sepa-
rable case, zero-dimensional primitive ideal space and the purely infinite property imply
property IP. We now show, using similar methods, that finite dimensional primitive ideal
space and the purely infinite property imply property IP even without separability, and it
then follows that such an algebra is strongly purely infinite.

We first record the following observation, that will be used tacitly whenever convenient.

Proposition 2.2. If a C*-algebra has finitely many ideals, then for any positive element a, there
exists an ε > 0 such that b ≤ a generates the same ideal as a whenever ‖a− b‖ < ε.

Proof. Clearly b is at least contained in the ideal generated by a. Consider the union of
the set of ideals that do not contain a. This is a closed set, and in particular has open
complement. Thus, there is a neighbourhood of a contained in the complement, and this
gives us the ε that we need. �

Proposition 2.3. Let A be a purely infinite C∗-algebra with finitely many ideals. Then A has
property IP.

Proof. We notice that each ideal is necessarily singly generated (as an ideal). This can
be seen by induction on the number of ideals. It is clear in the simple case, and for the
induction step, we may suppose that the result is proven for all C∗-algebras with less than
n ideals. Thus in

0→ I0 → I → I/I0 → 0

the algebras on the end are singly generated as ideals, and lifting the generator for the
quotient to I and adding to it the generator for I0 we have a single generator for I .

Suppose that I is generated by a. By Proposition 2.2, it is also generated by (a− ε)+

for some ε > 0. Then the argument in the implication (i) =⇒ (ii) of [19, Proposition 2.7]
applies (without needing to assume separability) to show that I is actually generated by a
projection.

�

The following result then holds without needing to assume separability.

Proposition 2.4. For a C∗-algebra with finitely many ideals, the properties of being purely infinite,
strongly purely infinite and weakly purely infinite are all equivalent. Moreover, the algebra has the
IP property.

Proof. The above proposition shows that we have property IP. Then Proposition 2.14 in [19]
shows that the three properties of interest are equivalent. �

Corollary 2.5. Let A be a C∗-algebra with finitely many ideals. If A is purely infinite, then
(W(A),+) is order-isomorphic to {2n,∪}where 2n is the Boolean algebra of subsets of an n-element
set.

Proof. Let M = {I | I is a closed ideal of A}, which is an abelian semigroup under usual
addition of ideals, and partially ordered by inclusion. Given 〈a〉 in W(A), we have a ∈
Mn(A) for some n, and the ideal generated by a has the form Mn(I), for a (unique) ideal I



8 DAN KUCEROVSKY, P. W. NG, AND FRANCESC PERERA

in M . If a - b, clearly a belongs to the ideal generated by b, whence this defines an order-
preserving map ϕ : W(A) → M . Notice this is a semigroup homomorphism as if a ⊥ b,
then the ideal generated by a+ b equals the sum of the ideals generated by a and b.

Since A is purely infinite, ϕ is in fact an order-embedding. And if the ideal lattice is
finite, then ϕ is surjective, since as we have shown every ideal will be singly generated. If
n is the number of ideals, then it is clear that M is order-isomorphic to {2n,∪}. �

3. NECESSARY CONDITIONS

Lemma 3.1. Let A be a separable C∗-algebra, and let (an) be an increasing sequence with limit a
(in the norm topology). Then 〈a〉 = sup〈an〉 in W(A) and there is a sequence εn > 0 decreasing to
zero with 〈a〉 = sup〈(an − εn)+〉.
Proof. Since an ≤ an+1, we have an - an+1. Given ε > 0, there is n0 with ‖a − an‖ < ε if
n ≥ n0. Then 〈(a− ε)+〉 ≤ 〈an〉 ≤ sup〈an〉 . From this it follows that

〈a〉 = sup
ε>0
〈(a− ε)+〉 ≤ sup〈an〉 ≤ 〈a〉 .

For the second part, choose εn < 1/n inductively. Pick ε1 < 1. Since a1 - a2, there is δ > 0
with (a1 − ε1)+ - (a2 − δ)+. Let ε2 < min{ε1, δ, 1/2}, so that (a2 − δ)+ ≤ (a2 − ε2)+. We
obtain in this way a sequence (εn) decreasing to zero and (an−εn)+ - (an+1−εn+1)+. Note
that

‖a− (an − εn)+‖ ≤ ‖a− an‖+ ‖an − (an − εn)+‖ ≤ ‖a− an‖+ εn → 0

as n → ∞, so limn(an − εn)+ = a. As in the first part of the proof, given ε > 0 there is n
with (a− ε)+ - (an − εn)+, and it follows that

〈(a− ε)+〉 ≤ sup〈(an − εn)+〉 ≤ sup〈an〉 = 〈a〉 .
�

Proposition 3.2. Let A be a unital, separable C∗-algebra with stable rank one and assume that A
is moreover simple, exact with strict comparison and weakly divisible W(A).

Suppose that for each k ≥ 1 and every non-zero projection p in Mk(M(A⊗K)) \Mk(A⊗K),
there is m such that the image of p⊗1m in the corona is properly infinite. Then A has finitely many
extremal traces.

Proof. We argue by contradiction, so assume there is a sequence of distinct extremal traces
{τn} in T(A).

Define a sequence of continuous, affine, strictly positive functions (fi) on T(A) as fol-
lows. Define f1 ∈ Aff(T(A))++ such that f1(τ1) = 1 (by using, e.g. [8, Theorem 11.14]).
Likewise, define f ′2 as f ′2(τ1) = 1 and f ′2(τ2) = 2 and use [8, Corollary 11.16] to find
f2 ∈ Aff(T(A))++ such that f1, f

′
2 ≤ f2 and f2(τi) = max{f1(τi), f

′
2(τi)}, for i = 1, 2. We thus

see that f1 ≤ f2, f2(τ1) ≥ 1 and f2(τ2) ≥ 2. Continuing in this way we get an increasing
sequence (fn) such that fi(τj) ≥ j for 1 ≤ j ≤ i. Let f = supi fi. Then f ∈ SAff(T(A)) and
f(τi) ≥ i, hence (f(τi)) is an unbounded sequence. By Theorem 1.5 (see also Theorem 1.4),
there is x in W(A⊗K) such that f represents x.

Since A has stable rank one, it follows from the results in [4] that there is a semigroup
isomorphism

ϕ : V(M(A⊗K))→W(A⊗K) .
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(Notice though that this is not an ordered semigroup isomorphism, since the order in the
Cuntz semigroup is not the algebraic order.)

Thus, we can find a projection p in Mk(M(A⊗K)) (for some k) such that ϕ([p]) = x. Let

π : M(A⊗K)→M(A⊗K)/A⊗K

denote the quotient map, and observe that π(p) 6= 0.
Put q := p ⊗ 1m, where m ∈ N. We claim now that π(q) cannot be properly infinite, and

this will contradict our assumption. Suppose then that π(q) ⊕ π(q) - π(q). There is then
an element a in Mm(Mk(A⊗K)) = Mkm(A⊗K) such that, upstairs, we have

q ⊕ q - q ⊕ a .

Since, for ε < 1, q ∼ (q − ε)+, there is δ > 0 such that q ⊕ q - q ⊕ (a − δ)+, and (a − δ)+ ∈
K(Mkm(A ⊗ K))+, hence without loss of generality we have a ∈ K(Mkm(A ⊗ K))+ =
Mkm(K(A⊗K))+.

Next, let (un) be an approximate unit for pMk(A⊗K)p, and define

vn =
1

2n−1
(un − un−1) +

1

2n−2
(un−1 − un−2) + · · ·+ 1

2
(u2 − u1) + u1 .

Then vn - p and lim
n→∞

vn =
∞∑
n=1

1
2nun, which we shall denote by u. By Lemma 3.1, there is

a sequence of strictly positive real numbers (εn) decreasing to zero such that 〈(vn − εn)+〉
has 〈u〉 as supremum.

Notice that, for each n, we have un - u, and in fact ϕ([p]) = 〈u〉 = x (and ϕ([q]) =
ϕ([p⊗ 1m]) = mx).

Now, if (wn) is an approximate unit for aMkm(A ⊗ K)a, clearly (un ⊗ 1m) ⊕ wn is an
approximate unit for ((u⊗ 1m)⊕ a)M2km(A⊗K)((u⊗ 1m)⊕ a).

For each n, apply Lemma 1.2 to εn so there is l with

((vn − εn)+ ⊗ 1m)⊕ ((vn − εn)+ ⊗ 1m) - (ul ⊗ 1m)⊕ wl - (u⊗ 1m)⊕ a .

Next, applying ι from Theorems 1.4 and 1.5 and using Lemma 1.6 so that ι(〈a〉) ≤ M for
some positive constant M , we get

2mι(〈(vn − εn)+〉) ≤ mι(〈u〉) + ι(〈a〉) ≤ mf +M .

Since ι preserves suprema, it follows that

2mf = 2mι(〈u〉) = 2mι(sup〈vn − εn)+〉) = sup 2mι(〈(vn − εn)+〉) ≤ mf +M .

This implies that mf(τi) ≤M for any i, a contradiction. �

Theorem 3.3. Let A be a unital, separable, simple, exact C∗-algebra with strict comparison and
such that W(A) is weakly divisible. IfM(A ⊗ K)/(A ⊗ K) is weakly purely infinite, then A has
finitely many extremal traces.

Proof. This follows from Proposition 3.2 together with the fact that weak pure infiniteness
is stable under matrix formation (see [12, Proposition 4.5]). �



10 DAN KUCEROVSKY, P. W. NG, AND FRANCESC PERERA

4. SUFFICIENT CONDITIONS

We begin with a lemma which is surely known to experts, but include a short proof for
completeness.

Lemma 4.1. Let
∑
an and

∑
bn be sums of projections converging strictly in the multipliers of

some σ-unital C∗-algebra A. Suppose also that the {an} are pairwise orthogonal, and that the {bn}
are pairwise orthogonal. Suppose now that there is a sequence mn in the unit ball of the multipliers
M(A). Then

∑
anmnbn converges strictly.

Proof. Let s be a strictly positive element of the algebra. It is enough to show that
‖
∑m

l s(anmnbn)‖ and ‖
∑m

l (anmnbn)s‖ both have the Cauchy property: namely, given
ε > 0, there is an N making both of these sums less than ε in norm for all m > n > N . But∥∥∥∥∥

m∑
l

s(anmnbn)

∥∥∥∥∥ =

∥∥∥∥∥
m∑
l

s(anmnbnb
∗
nm
∗
nan)s

∥∥∥∥∥
1/2

and of course
∑m

l s(anmnbnb
∗
nm
∗
nan)s ≤ s (

∑m
l an) s. It is clear that this sum will have the

Cauchy property, since the an converge strictly. The other sum of interest can be estimated
similarly. �

Let (pn) be a sequence of pairwise orthogonal projections in A ⊗ K such that
∑

n pn
converges strictly. We say that an element is diagonal with respect to (pn) if it is of the
form

∑
pnmnpn for some sequence of elements (mn) of the multipliers. Recall that if τ

is a normalized trace on a unital C∗-algebra A, then it extends to a trace τ ′ ofM(A ⊗ K)
by τ ′(a) = sup

n
τ((
∑n

l=1 pl)a(
∑n

l=1 pl)), where (pn) is an approximate unit of projections of

A ⊗ K and a is a positive element in A ⊗ K. Observe that there are elements with infinite
trace, so τ ′ is not everywhere defined.

For the reader’s convenience, we briefly summarize some facts (used in the proof of the
next results) about the ideal structure of the multipliers of A ⊗ K where A is a simple,
unital C∗-algebra with strict comparison and finitely many extremal traces, following [23]
(see also [16] for the AF-algebras case). There are finitely many such ideals, and each
proper one is an intersection of maximal ideals. The maximal ideals of M(A ⊗ K) are
exactly the ones given by extension of an extremal trace τ to the multiplier algebra, in the
following form

Iτ = {a ∈M(A⊗K) | τ(a∗a) <∞}− .

Lemma 4.2. Let A be a unital C∗-algebra, let τ ∈ T(A) and dτ be the corresponding lower semi-
continuous dimension function. Then, for any a ∈ M(A ⊗ K), the following conditions are
equivalent:

(i) a ∈ (Iτ )+

(ii) τ((a− ε)+) <∞ for any ε,
(iii) dτ ((a− ε)+) <∞ for any ε.

Proof. (i) =⇒ (ii). If a ∈ (Iτ )+, then for any ε there is a contraction d and a positive x (in
M(A ⊗ K)) with (a− ε)+ = dxd∗ and τ(x) < ∞, by [12, Lemma 2.2] from which we infer
that τ((a− ε)+) <∞.
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(ii) =⇒ (iii). Notice that, by the functional calculus and for any given ε > 0, there exists
C > 0 such that for all n ≥ 1,

(a− ε)1/n
+ ≤ C

(
a− 1

2
ε

)
+

.

Thus, dτ ((a− ε)+) ≤ Cτ(
(
a− 1

2
ε
)
+

), and (iii) follows.
Finally, assuming (iii) we see that τ((a− ε)+) is finite, so (a− ε)+ ∈ Iτ and so is a, being

the limit of (a− ε)+ as ε goes to zero. �

Theorem 4.3. Let A be a unital, simple, separable, exact C∗-algebra with strict comparison and
finitely many extremal traces. Let Λ =

∑
an be a diagonal element inM(A⊗K) with respect to a

sequence of pairwise orthogonal projections (qn) in A⊗K such that
∑

n qn = 1M(A⊗K), where the
sum converges in the strict topology. Then Λ has an image which is either zero or properly infinite
inM(A⊗K)/A⊗K.

Proof. If the an form a norm-convergent series, then Λ is in A and there is nothing to prove.
If this is not the case, then by passing to blocks (and replacing the qn by a subsequence)
we may assume that the norms of the an are bounded above and below by some positive
constants.

By Proposition 2.2 and the finiteness of the ideal lattice, there is an ε > 0 such that
(Λ− 2ε)+ generates the same ideal as Λ, and so that (ai − 2ε)+ is not zero for any i (and
also (Λ− δ)+ generates the same ideal as Λ whenever δ < 2ε).

If the the set of traces is empty, then the corona is simple, whence also purely infi-
nite simple and in this case there is nothing to prove. Otherwise, let {τ1, . . . , τm} and
{τ ′1, . . . , τ ′k} the extremal traces such that the dτi are infinite upon (Λ − ε)+ and the dτ ′j are
finite upon (Λ− ε)+. The case in which one of these two sets is empty is not excluded. To
ease the notation, put di = dτi and φj = dτ ′j .

By stability, the BDF sum Λ + Λ is equivalent to a diagonal element over the algebra A.
Let (en) denote the approximate unit of projections associated to Λ+Λ and let bn denote the
corresponding elements (which are of course equivalent to the BDF sum an + an). We now
construct two sequences of integers mi and ni inductively, also constructing one positive
element p during the first step. Let m0 = 1. The first step chooses n0, p, and m1, in that
order. By the norm convergence of

∑∞
k=1 φi((ak − ε)+), choose n0 so

(4.1)
∞∑

k=n0+1

φi((bk − ε)+) < φi((am0 − ε)+) for all i .

We choose p such that φi(p) >
∑n0

k=1 φi(bk), and we may also for convenience suppose that p
is orthogonal to all the ai (by one more BDF sum). By the divergence of

∑∞
k=1 di((ak − ε)+),

choose m1 so that

(4.2)
n0∑
k=1

di((bk − ε)+) <

m1−1∑
k=n0+1

di((ak − ε)+) .
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In the next step of the induction, we choose n1 ≥ m1, and then m2 ≥ n1,

(4.3)
∞∑

k=n1+1

φi((bk − ε)+) < φi((am1 − ε)+)

(4.4)
n1∑

k=n0+1

φi((bk − ε)+) < φi((am0 − ε)+)

(4.5)
n1∑

k=n0+1

di((bk − ε)+) <

m2−1∑
k=n1+1

di((ak − ε)+)

The first equation above is obtained by choosing n1 appropriately, using the fact∑∞
k=1 φi((ak − ε)+) converges in norm, the second equation follows immediately from

equation 4.1, and then the third one is obtained by choosing m2 using the fact that∑∞
k=1 di((ak − ε)+) diverges.
From the first step of the induction, we deduce that

∑n0

k=1 (bk − ε)+ is majorized, on all
dimension functions, by p+

∑m1−1
k=n0+1 (ak − ε)+. The comparison properties then give that

(4.6)
n0∑
k=1

(bk − ε)+ - p+

m1−1∑
k=n0+1

(ak − ε)+ .

From the second step of the induction, we deduce that
∑n1

n0+1 (bk − ε)+ is majorized, on all
dimension functions, by (am0 − ε)+ +

∑m2−1
k=n1+1 (ak − ε)+. The induction step is the same

as step 2, but with generalized indices. Therefore, we conclude that for ` = 0, 1, 2, · · · we
have

(4.7)
n`+1∑

k=n`+1

(bk − ε)+ - (am`
− ε)+ +

m`+2−1∑
k=n`+1+1

(ak − ε)+ .

All terms on the right in 4.7 are mutually orthogonal, since m` < n`. Comparing the right
hand sides of 4.7 for different choices of `, we note that am`

is orthogonal to any block

of the form
m`′+2−1∑
k=n`′+1+1

(ak − ε)+, the indices having been chosen so that the am`
fall into the

gaps between these blocks.
Applying Lemma 1.1 to 4.6 and 4.7 we have

(4.8)
n0∑
k=1

(bk − 2ε)+ = rpf

(
p+

m1−1∑
k=n0+1

ak

)
r∗p

(4.9)
n`+1∑

k=n`+1

(bk − 2ε)+ = r`f

am`
+

m`+2−1∑
k=n`+1+1

ak

 r∗`

where f(λ) is a function that acts as the unit upon (λ− ε)+. Note that the set of elements
{rp} ∪ {r`}` is uniformly bounded (also by Lemma 1.1.
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From the proof of Lemma 1.1, we notice that qm`
+
∑m`+2−1

k=n`+1+1 qk acts as a unit on the
right for r`, and that

∑n`+1

k=n`+1 ek acts as a unit on the left for r` (where (en) is the chosen
approximate unit consisting of projections associated to the diagonal element Λ + Λ). On
the other hand, p+

∑m1−1
k=n0+1 qk and

∑n0

k=1 ek act as units from the right and left, respectively,
for rp.

Define r := rp +
∑∞

`=0 r`, which is a strictly convergent sum in view of the previous
considerations and using Lemma 4.1. Moreover, our remarks show that

r

(
p+

m1−1∑
k=n0+1

ak

)
= rp

(
p+

m1−1∑
k=n0+1

ak

)

and

r

am`
+

m`+2−1∑
k=n`+1+1

ak

 = rl

am`
+

m`+2−1∑
k=n`+1+1

ak

 .

Taking thus into account that f(t) = g(t)t for some bounded, positive function g, we have
(using 4.8 and 4.9), that

((Λ + Λ)− 2ε)+ =

n0∑
k=1

(bk − 2ε)+ +
∑
l≥0

n`+1∑
k=n`+1

(bk − 2ε)+

= rpf

(
p+

m1−1∑
k=n0+1

ak

)
r∗p +

∑
`

r`f

am`
+

m`+2−1∑
k=n`+1+1

ak

 r∗`

= rf (p+ Λ) r∗ .

Let π : M(A⊗K)→M(A⊗K)/(A⊗K) be the natural quotient map. Since p is in A⊗K,
when we pass to the corona we have ((π(Λ) + π(Λ))− 2ε)+ = π(r)f(π(Λ))π(r)∗, for any
sufficiently small ε. Taking again into account that f(Λ) is a multiple of Λ, and since ε > 0
is arbitrarily small, we have that Λ is purely infinite in the corona. �

Proposition 4.4. Let A be a unital, simple, separable, exact C∗-algebra with strict comparison
of positive elements, and suppose that A moreover has finitely many extremal traces. Given any
positive element a ∈M(A⊗K)/(A⊗K), there is a diagonal element Λ ∈M(A) such that Λ ≤ a
in the corona, and Λ generates the same corona ideal as a.

Proof. We may as well suppose a is a positive element of the multipliers (by lifting the
given a). We now use an argument that appears in the proof of [6, Theorem 3.1] and also
in [14, Lemma 2.6], that we outline here for completeness.

Let (en) be an approximate unit of projections for A ⊗ K (with e0 = 0). Passing to a
subsequence if necessary, we may assume that

∞∑
n=1

‖(1− en+1)a
1/2(en − en−1)‖ <∞ .
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Write fn = en − en−1. Then put

yi =
∞∑
n=0

(f3n+1+i + f3n+i + f3n+i−1)a
1/2f3n+i ,

for i = 0, 1, 2, which yields a1/2 = y0 + y1 + y2 + b, and b ∈ A ⊗ K. The construction
gives, moreover, that yiy∗j = 0 whenever i 6= j. Taking this into account, and squaring this
decomposition, we obtain that

a = y0y
∗
0 + y1y

∗
1 + y2y

∗
2 + b′ ,

for some b′ ∈ A ⊗ K. Put xi = yiy
∗
i , and note that xi is diagonal with respect to

gin := f3n+1+i + f3n+i + f3n+i−1. Our Proposition 2.2 and the fact that there are finitely
many multiplier ideals ([23]) shows that we are free to replace each xi by a slightly smaller
element (xi − ε)+ that is in the Pedersen ideal. We suppose this has been done, and denote
x0 + x1 + x2 by x.

Let {τ1, . . . , τk} be the set of extremal traces where the corresponding lower semicontin-
uous functions (evaluated at x) dτi(x) are infinite. We will construct a diagonal element Λ
in the Pedersen ideal that is infinite on this same set of traces, and is majorized by x. It will
then follow from the fact that all multiplier ideals come from tracial ideals (using again
[23]) that x and Λ generate the same multiplier ideal, and hence that a and Λ generate the
same corona ideal.

The first observation is that whenever dτj (xi) is infinite, there is some block b within

xi such that dτj
(∑`

n=k g
i
nxig

i
n

)
> 1, and the second observation is that if we have al-

ready chosen such blocks b1, b2, b3, ..., bN we can always make sure that b is orthogonal
to b1, b2, b3, ..., bN by making k sufficiently large (this follows from the fact that gin is orthog-
onal to gjm for all i and j if |m− n| > 3).

We may choose mutually orthogonal blocks b1, b2, b3, ..., such that d1(b1) > 1, d2(b2) > 1,
etc. This defines a diagonal element Λ :=

∑
bi (diagonal with respect to some subsequence

of the (en)) where dj(bi) > 1 whenever i = j modulo k. Clearly Λ ≤ x1 + x2 + x3 = x so x
majorizes Λ, and the tracial properties ensure that Λ and x generate the same ideal. �

Theorem 4.5. Let A be a unital, simple, separable, exact C∗-algebra with strict comparison of
positive elements, and assume that A has finitely many extremal traces. ThenM(A⊗K)/(A⊗K)
has finitely many ideals and is purely infinite. Hence it is also strongly and weakly purely infinite
and every hereditary subalgebra has the IP property.

Proof. That the corona has finitely many ideals follows from our assumption on strict com-
parison and the results in [23, Section 4]. Therefore we only need to prove pure infiniteness
of the corona as the strongly and weakly purely infinite properties, as well as the IP prop-
erty for hereditary subalgebras will follow from Proposition 2.4.

Choose a (non-zero) positive element a in the corona. Then, Proposition 4.4 gives a
diagonal element Λ ≤ a that generates the same ideal as a in the corona (and hence it is
also non-zero). By Theorem 4.3, the element Λ is properly infinite. But since Λ is full in
the ideal generated by a, we have a - nΛ, which by the properly infinite property implies
that a - Λ. But of course Λ - a since a majorizes Λ. Hence a, being Cuntz equivalent to a
properly infinite element, is itself properly infinite. �
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Proof of Theorem A: That (i) =⇒ (ii) =⇒ (iii) follows from [12, Proposition 5.4] and [11,
Theorem 4.16], respectively (and holds for any C∗-algebra).

(iii) =⇒ (v) is proved in Theorem 3.3.
(v) =⇒ (i) is proved in Theorem 4.5.
(iv) =⇒ (v) follows from Proposition 3.2
(v) =⇒ (vi) follows from [23, Theorem 4.4].
(vi) =⇒ (v) was noticed in, e.g. one of the conditions in [15, Theorem 3.6] (which in

fact assumes real rank zero, but that is not needed for that part of the proof). �
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