

UNIVERSITAT DE BARCELONA

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Barcelona Analysis Seminar	2021 - 2022
${ m URL}$. https://mat.uab.cat/web/seminarianalisi/	
Date. April 04, 2022	
Time. 15:00 CET	
Room. Room T2, Universitat de Barcelona	
Online streaming (Zoom). https://ub-edu.zoom.us/j/95538016558	

Words of analytic paraproducts on Bergman spaces

Carme Cascante Universitat de Barcelona

An N-letter g-word is the composition $L = L_1 \cdots L_N$ of N operators L_j , where each L_j is either of the analytic paraproducts $T_g f(z) = \int_0^z (fg')(\zeta) d\zeta$, $S_g f(z) = \int_0^z (f'g)(\zeta) d\zeta$ and $M_g f(z) = (fg)(z)$, defined on the unit disc \mathbb{D} .

The boundedness of a single paraproduct on a classical weighted Bergman space A^p_{α} is well understood and the bounded 2-letter g-words on A^p_{α} have been recently described in a recent joint paper with A. Aleman, J. Fabrega, D. Pascuas and J.A. Peláez.

We prove that the boundedness of a N-letter g-word on A^p_{α} only depends on the symbol g, N and the total number n of Tg's that it contains. In fact, if $n \ge 1$ then an N-letter g-word L is bounded on A^p_{α} if and only if g belongs to the Bloch class of power functions

$$\mathscr{B}^{\frac{N}{n}} = \{h \text{ analytic on } \mathbb{D} : \|h\|_{\mathscr{B}^{\frac{N}{n}}} = \sup_{z \in \mathbb{D}} (1 - |z|^2) |h(z)|^{\frac{N}{n} - 1} |h'(z)| < \infty \}$$

and moreover $||L|| \simeq ||g||_{\mathscr{B}^{\frac{N}{n}}}^{N}$. If n = 0, then L is bounded on A^{p}_{α} if and only if $g \in H^{\infty}$, and $||L|| \simeq ||g||_{H^{\infty}}^{N}$.

This is a joint work in process.