

Unique continuation at the boundary for solutions of elliptic PDEs

Josep M. Gallegos

Universitat Autònoma de Barcelona

In 1991 Fang-Hua Lin posed the following question. Let $\Omega \subset \mathbb{R}^d$ be a Lipschitz domain and Σ be an open subset of its boundary $\partial \Omega$. Let u be a harmonic function in Ω , continuous in $\overline{\Omega}$, that vanishes on Σ , and that its normal derivative $\partial_{\nu} u$ vanishes in a subset of Σ with positive surface measure. Is it true that u must be identically zero?

Recently Xavier Tolsa showed a positive answer to the previous question in the case Ω is a Lipschitz domain with small Lipschitz constant. In this talk, I will explain a recent work where I show that (in the same setting as Tolsa) we can find a family of balls $(B_i)_i$ centered on Σ such that $u|_{B_i\cap\Omega}$ does not change sign and that $K \setminus \bigcup B_i$ has positive Minkowski codimension for any compact $K \subset \Sigma$. In this work also extends the previous result to solutions of divergence form elliptic PDEs with Lipschitz coefficients, although we will only focus on the harmonic case during the talk. I will also try to motivate why the set of points of Σ where u changes sign nearby is interesting by comparing it with the usual singular set at the boundary.