

On the stable Bernstein Problem

Alberto Roncoroni

Politecnico di Milano

A celebrated result by S.N. Bernstein asserts that the planes are the only entire minimal (i.e. critical points of the area functional) graphs in \mathbb{R}^3 . This result, known as the Bernstein problem, has been generalized for entire minimal graphs in \mathbb{R}^{n+1} , with $n \leq 7$ and it turns out to be false for $n \geq 8$. Motivated by the fact that minimal graphs are actually stable (i.e. the second variation of the area functional is non-negative), the following natural generalization of the Bernstein problem is still an open and fascinating question: if M is a complete, orientable, immersed, stable, minimal hypersurface in \mathbb{R}^{n+1} , does it have to be necessarily a hyperplane? In a recent paper Chodosh and Li proved that this is true in \mathbb{R}^4 .

In this talk I will discuss an alternative proof of the stable Bernstein problem in \mathbb{R}^4 obtained in collaboration with G. Catino and P. Mastrolia.