

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Barcelona Analysis Seminar

Date: Thursday November 14, 2024Time: 15:00 CETRoom: UB iA (Universitat de Barcelona)

Sharp Invertibility in Quotient Algebras of H^{∞}

Pascal J. Thomas Institut de Mathématiques de Toulouse

Given an inner function $\Theta \in H^{\infty}(\mathbb{D})$ and [g] in the quotient algebra $H^{\infty}/\Theta H^{\infty}$, its quotient norm is $\|[g]\| := \inf \{\|g + \Theta h\|_{\infty}, h \in H^{\infty}\}$. Let g be normalized so that $\|[g]\| = 1$. Given $\varepsilon > 0$, we would like to be able to find $\delta > 0$ so that if $|g(\lambda)| \ge 1 - \delta$ for any λ such that $\Theta(\lambda) = 0$, then $\|[g]^{-1}\| < 1 + \varepsilon$.

This happens if and only if:

$$\lim_{t \to 1} \inf \left\{ |\Theta(z)| : z \in \mathbb{D}, \rho(z, \Theta^{-1}\{0\}) \ge t \right\} = 1,$$

where ρ is the usual pseudohyperbolic distance in the disc, $\rho(z, w) := \left| \frac{z - w}{1 - z \bar{w}} \right|$.

Call this Sharp Invertibility Property (SIP). We prove that an inner function Θ is SIP if and only if for any $\varepsilon > 0$, the set $\{z : 0 < |\Theta(z)| < 1 - \varepsilon\}$ cannot contain hyperbolic disks of arbitrarily large radius.

A divisor of a SIP inner function isn't always SIP; we study the functions which can be divisors of SIP inner functions, prove that any divisor of Θ is SIP if and only if any Frostman shift of Θ (itself included) is a Carleson-Newman Blaschke product, and give a Carleson-like characterization of that last property.

Joint work with Alexander Borichev, Artur Nicolau, Myriam Ounaïès.