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Abstract. It is known that the limit Area/Length for a sequence of convex sets expanding over the
whole hyperbolic plane is less than or equal to 1, and exactly 1 when the sets considered are convex
with respect to horocycles. We consider geodesics and horocycles as particular cases of curves of
constant geodesic curvatukewith 0 < A < 1 and we study the above limit Area/Length as a
function of the parameter.
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1. Introduction

In the study of some problems in geometric probability there is the IFyilt of
the quotient between the aréaof a convex set and the lengthof its boundary.
For instance, it is the random variabliength of a chordof a given convex set,
the expected value af is given byE(c) = nF/L. In the Euclidean plane it is
clear that this quotient, when the convex set becomes ‘very large’, tendsBait,
as it was pointed out by L. A. Santal6é and |. Yafiez in [4], this is no longer true in
the hyperbolic plane.

In fact they proved that for a certain class of convex sets in the hyperbolic plane,
concretely the horocyclic convex sets, the limitL is 1. In [2], we showed that
this limit can attain, in the hyperbolic plane, any value between 0 and 1.

Since horocycles are curves of geodesic curvatitend geodesics are curves
of geodesic curvature 0, both can be considered as particular cases of curves of
constant geodesic curvatue0 < [A| < 1.

Thus, if convexity is defined with respect to horocycles this limit is 1 and when
convexity is defined with respect to geodesics the lifjt is less or equal than
1. Hence it is natural to ask the question, first posed to us by A. Borisenko, about
the influence of. upon this limit. In fact, when convexity is defined with respect
to A-geodesics (see 2.5), we shall prove:
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Figure 1. Hyperbolic plane modelgrojective, disk and half-plane.

THEOREM 1 For eacha € [A, 1], there exists a sequencejetonvex polygons
{K,} expanding over the whole hyperbolic plane such tma},_, . F,/L, = «.
If the sequence is formed lyconvex sets with piecewi€&’ boundary, then the
lim supandliminf of these ratios lie betweenand 1.

This kind of questions also makes sense in higher dimensions but we restrict our
attention here to the two-dimensional case where the Gauss—Bonnet theorem in the
hyperbolic plane allows an easier treatment.

2. Convexity in H?
2.1. THE HYPERBOLIC PLANE

The hyperbolic planéd? is the unique complete simply connected Riemannian
manifold with constant curvaturel. Its geometry corresponds to the one obtained
from the absolute geometry given by the first four Euclid postulates and the Lob-
atchevsky postulate: through every poftexterior to a linel passes more than
one line not intersecting It is useful to have different models for this geometry
(see Figure 1), we shall describe their points, lines (geodesics) and rigid motions:

Projectivemodel. The set of points is the interior of a conic in the real projective
plane and the lines are the restriction of the projective lines to this set. The rigid
motions are the projectivities fixing the conic and transforming the interior to itself.

Poincaré diskmodel. The set of points is the interior of the unit disk and the
lines are the arcs of circles orthogonal to the boundary. The rigid motions are the
homographies of the complex plane fixing the disk.

Poincaré half-planenodel. The set of points is one of the connected components of
the complement of a straight line k¢ and the lines are the arc of circles that meet
orthogonally the border. The motions are compositions of inversions with respect
to those circles.

It must be pointed out that the two Poincaré models are both conformal to the
Euclidean plane, in particular this means that the Euclidean and hyperbolic angles
between intersecting curves are identical.
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DEFINITION 1. We shall say that two lines aparallel if they meet at a point in
the border (they meet at infinity), if they don’t meet we call theltnaparallel.

For practical purposes we shall use polar coordinates. In these coordinates the
length element ifI? is given by

ds? = dr? + sint? r do2. 1)

DEFINITION 2. Let y be a regular curve with unit tangent and normal vectors
t, n such that(t, n} is compatible with a given orientation. Th&ht = «,n andx,
is the (signedjjeodesic curvaturef y .

2.2. HYPERBOLIC TRIGONOMETRY

We shall need the hyperbolic trigonometric formulas for triangles, ¥, ¢ are the
sides of a triangle and, 8, y are the opposite angles, then

sinha B sinhb B sinhc
sine sing  siny’

(2)

cosha = coshb - coshe — sinhb - sinhc - cosa, 3)
COSa = — COSPB - CoSy + sing - siny - cosha. (4)

They are, respectively, the law of sines and the first and the second law of cosines.
As an application we give an expression for the area of an isosceles triangle that
we shall use later. This expression is, obviously, independent of the model.
Let AOAB be an hyperbolic isosceles triangle withO, A) = d(O, B) = R,
d(A,B) =dand/AOB = «. Let P be the midpoint ofA B. By the law of sines
applied toAO P A, we have

sinhR  sinh3d
iml T Qinl
Sin ET[ S|n§a

Therefore

d = 2 arcsinh(sinhR - sinfa) (5)
By the second law of cosines (4) applied to the sanieP A, we have

coshR = cota - coty
wherey = /OAP. Since the are& of AOAB is given by

F=m—(au+2y)
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we have

F=m-— (a + 2arcta (6)

n—
tanio - coshR)

2.3. CONVEX SETS

A setK C H?is said to be convex when the segment joining a pair of poinf§ in

is contained inK. In the projective model, convex sets are seen as convex sets in
Euclidean plane. A closed convex curve is a curve such that the region it encloses
is convex.

DEFINITION 3. A closed convex set with nonempty interior will be called a
convex domain

As in the Euclidean case we have

LEMMA 1. A compact domairk with C? boundary is convex if and only if its
geodesic curvature does not change the sign.

2.4. HOROCYCLIC CONVEXSETS

Horocycles are curves orthogonal to a bundle of parallel lines. They can be con-
sidered as circles centered at infinity. In the half-plane model horocycles are the
circles tangent tg = 0 and the curves = ct. Given two points inH? there are

two and only two horocycle arcs joining them and the geodesic line passing through
them lies between the horocyclic arcs. Horocycles have geodesic curdsture

DEFINITION 4. A subsetk c H? is said to be:-convexor convex with respect
to horocyclesf for each pair of points belonging t&, the entire segments of the
two horocycles joining them also belong ka

It is clear that every:-convex set is convex but, as can be seen taking a convex
polygon, not every convex sethsconvex.

2.5. A-CONVEX SETS

Given a geodesic linkin the Euclidean plane, the set of equidistant pointsaie
two parallel lines symmetric with respect toln the hyperbolic plane this is no
longer true. The set of equidistant pointd tare two curves calledquidistantslf
we consider the half-plane modéf = {(x, y) € R?: y > 0}, the equidistants to
the hyperbolic linex = 0 are Euclidean lines passing throu@h 0). Indeed any
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Figure 2. A-geodesic segments with end poidtsaind B'.

geodesic arc with center (i@, 0) going fromx = 0toy = mx has the same length
because they are (Euclidean) homothetic and every homothety with center in the
axisy = 0 is the composition of two inversions with respect to circumferences
centered iny = 0 which are hyperbolic isometries. In factzif = tané the length

of these geodesic arcs is equal to aretdf In this model equidistant lines are, in
general, arcs of Euclidean circles meeting the infinity at two points.

DEFINITION 5. A A-geodesids an equidistant line that meets the infinity line
with anglea such thaf cosa| = A.

Remark When\ = 0 they are geodesics and whega= 1 they are horocycles.

LEMMA 2 . Given two points ifH2 and0 < A < 1 there are two and only two
A-geodesic lines through them. They are included in the region bounded by the
two horocycles determined by the given points and are symmetric with respect the
geodesic passing through these points

Proof. Let A, B be points onH? andr, the A-geodesic of typey = mx + b
passing through. If B’ is a point inr, such that the geodesic segme®’ has
the length ofA B (see Figure 2), th&-geodesics through and B’ correspond, via
a rigid motion, to the.-geodesics throughA andB.

Now consider the inversion af, with respect to the geodesic determineddy
and B’. In this way we obtain the unique Euclidean circumferetgdn the real
plane intersecting = 0 with the same angle as and passing through and B
(it passes through the center of the geodesic betwieand B’). O

Remark Since the two Poincaré models are conformal Jtfgeodesic lines in
the Poincaré disk are also the arcs of Euclidean circles intersecting the border with
an anglex such that cosx| = A.
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Consider now the equidistapt(r) = (¢, tana - ¢), ¢t > 0 in the half-plane. The
tangent and normal unit vectors ate = sina - (1, tane) and n =
sina - t(—tana, 1), henceVit = cosa - n. Therefore, if cosr = A, we have

LEMMA 3. The geodesic curvature oflageodesic istA.

Remark A-geodesics through a poiit with directionv in P are solutions of
the second order differential equations = +X. Then, with these initial condi-
tions, there are twa-geodesic lines, one with positive geodesic curvature and the
other one with negative geodesic curvature.

DEFINITION 6. A subsetk C H? is said to be.-convexif for each pair of points
belonging toK, the entire segments of theconvex lines joining them also belong
to K.

Remark It follows from Lemma 2 that every-convex set is convex.
If K andK’ arei-convex sets the® N K’ is also ar-convex set. Thus

LEMMA 4. i-convexity is stable under intersection.

A 1-geodesic liné divides the plane in two regions havihgs common bound-
ary. Only one of these regions isconvex, it is the one containing the geodesic
lines passing through every pair of pointd it will be called thex-convex region
determined by and denoted bx;.

Remark Definition 6 is equivalent to the following one: a closed Kets A-
convex if for every point of the boundary there exists-geodesic lind through
it such that the.-convex region determined Bycontainsk . This A-convex line is
called supportingi-geodesic ofK. Thus, in higher dimensions a closed &eis
A-convex if it is supported by umbilical hypersurfaces with principal curvature

DEFINITION 7. A A-polygon is the region obtained by intersection of a finite
number ofi-convex regionsk;, determined by.-geodesic lines.

EXAMPLE 1. LetK be a regular convex polygon with verticesand edgesg; =
a;a;11 on a circleC. For every pair(a;, a; ;1) consider ther-geodesic segment
joining a; anda; 11 not in K, letl; be theix-geodesic line containing this segment.
The intersectiom K, defines a regulak-convex polygon denoted by, . Let us
prove thatk C K;. Consider the Poincaré disk model, thaeodesic curves
are seen as Euclidean circles and they interéett ¢; anda; 1, since different
circles intersect in at most two points we conclude tiatcontains the rest of the
vertices. Therefor&k C K.

Remark The same construction can be done with an arbitrary convex polygon
K but the associated polygaki; not necessarily includek. This is so because
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the A-geodesic line joining two consecutive vertices can intersect the other sides of
the original polygonk .

In the smooth case we can characterize convexity in terms of the curvature of
the boundary.

PROPOSITION 1 LetK be a compact domain bounded by a curve of cl@és
ThenK is A-convex if and only if the geodesic curvature of the boundary satisfies
ke = A (0r k, < —A if we consider the opposite orientation).

Proof. Let p € 9K such thatk,(p) < A. Let us consider geodesic normal
coordinates(x, y) in p such thatd/dx is tangent todK in p and d/dy is the
interior normal inp. With respect to these coordinates, in a neighbourhoaogd, of
the boundary is the graph of

y = 3k(p)x? + 0(x?)

and the geodesic and thegeodesic curves with directialydx in p are the graph
of

y=0, y= :E%sz + 0(x?).

Letg = (xo, yo) With xog > 0 be a point in the interiok-geodesic and neas.
The A-geodesics joining; with p are contained irk. One of them arrives te
tangential tod K. Takee > 0 small enough such that the poipt = (xo, yo — ¢€)
lies in K. By continuity there is a-geodesic joiningg, and p that crosses the
boundary. This contradicts theconvexity ofK. Hencex, > A.

Conversely, ifK is not A-convex there are two points y € dK such that the
A-geodesic between them is not containe&inBy hypothesisc, > 1 > 0, and
this implies thatk is convex, therefore the geodesic segmebetweenx and y
is contained inK. Let 0 < u < A be the supremum of all nonnegative humbers
such that theu-geodesic betweemn and y is contained inK. If this u-geodesic
touchesdK in a point we should have, < u < A in this point, a contradiction.
This implies, becausg is the supremum, that the-geodesic is tangent K at
x or aty. Butthenk, < u < A atx or aty, a contradiction. O

Remark In fact, if K is aix-convex domain such thatk is piecewiseC?, i.e.
a finite union ofC? arcs, on every regular poinpt € 3K the geodesic curvature
satisfies alsa, > A.

EXAMPLE 2. The region bounded by a circle of radiuss z-convex. A simple
computation in polar coordinates shows that= cothr, and this value is greater
than one. Note that in the limit case we obtain the horocycles whose geodesic
curvature is one.
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Remark Observe that there are neconvex setk bounded by a“?-smooth
curve with 0 < x, < Ag < 1: at the intersection points with the circumdisc of
radiusR we obtaing, > cothR > 1

2.6. SOME ISOPERIMETRIC INEQUALITIES

In the next sections we shall use inequalities involving the area and the perimeter
of a compact convex domain. L& be a compact convex domain ?. Then it

is known (see, for example [3]) that If denotes the perimeter 6K and F' the
enclosed area we have

L2 — 47 F —F?>>0 7)

and equality holds if and only iK is a geodesic circle. This is theoperimetric
inequalityin the hyperbolic plane.

In the next sections we shall make an extensive use of some relations derived
from the Gauss—Bonnet formula. If we assume that is piecewiseC?, the
geodesic curvature is well defined except in a finite number of points. Therefore

Z/a Kp=2n—Za,~+F, (8)
i Yok i

whereq; are the exterior angles in the singular points aid are the arcs of K.
From this we have the following lemma.

LEMMAS5 . LetK be a compact convex domain [i¥ with K piecewiseC?.
Then we have

€
F>2) a—2m 9)

(b) If K is h-convex

L<2r—) a;+F. (10)

1

(c) If K is A-convex

AM<2m =) o+ F. (11)
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Remark WhenK is ai-polygon we have the equality

M=F+) p—mn-2r, xrel01] (12)
i=1

wheren is the number of vertices argi] are the interior angles.

3. A Problem in Hyperbolic Geometric Probability

Given a rectifiable curv€ in the Euclidean plane and a lihedenote by:(C N 1)

the number of intersection points, counted with their multiplicities./IHldnotes

a measure of lines invariant under rigid motions the classical Cauchy—Crofton
formula states that

/ n(INnC)dl =65L,
INC#£9

where L is the length ofC. We choose the unique measudesdch thats = 2.
Therefore, since(I N C) = 2 for the boundanC of a convex domain, andnot
tangent toC, the measure of lines that intersect a convex domain is equal to its
perimeter. Note that the set of lines, tangen€tdorms a set of measure zero.

Given a convex domaik let o (1) be the length of the chordh K. It is easy to
see that the expected value of the random varialite

E(o) = nF

o) = I .

These results, that are easily proved in the Euclidean case, remain true in the
hyperbolic plane (cf. [3]).

DEFINITION 8. We say that a sequence of compact convex donm&psexpands
over the whole plané K, C K,, whenn < m and for every pointP there exists
a Ky such thatP € Ky.

In the Euclidean plane it can be proved thatL > r; /2 wherer; is the radius of
the greatest circumference containedir{this easily follows from the expression
F = %f p ds wherep is the distance between the origin of the circumference and
the support lines of the convex domain). Then{Af,} is a sequence of compact
convex domains expanding over the whole plane, the mean V&ug tends to
infinity.

In the hyperbolic plane this is no longer true. IndeedlAf,} is formed byh-
convex domains bounded by piecew&&curves it is known that

F,
lim —= = 1. 13
|mL (13)

n
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Nevertheless in [2] it was proved

THEOREM 2. For every nonnegativee < 1 there exists a sequend&,} of
compact convex domains expanding over the whole hyperbolic flaseach that

F,
lim -2 = q. 14
= (14)

n

Roughly speaking we can say that the perimeter becomes much larger than the

area. This is a consequence of the so called ‘edge effect’ in the hyperbolic plane.
Now we shall see, using an approach different from that in [2], how these ex-

amples can be constructed. L&t be a regular polygon formed byZ ! isosceles

triangles inscribed in a circle of radiug,. Then ifd, is the length of the basis of

one of these triangles arg is its area, theiF, /L, = h,/d,. If a, = 27/(3-2""1)

is the central angle, by (5)

d, = 2 arcsinh(sinhR, - sin(3a,))

and using (6)

h, =m — | «, + 2arctan .
" ( " tan%an-coshRn>

But
n 2 1
lim(tan3a, - coshr,) = lim il ==,
2 po, @
hence
limh, =m — 2-arctanu. (15)
In an analogous way
. .1
limd, = 2 arcsinh—. (16)

u

Taking R, = n we have that link,, /d, = 0. And takingR,, = log(4/ua,,) with
u > 0 we have that

. F . h — 2arcta
lim =2 = lim T — carctam

n
L, d, 2 arcsinh%

which attains, depending on the parameteall values between 0 and 1.
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4. Asympotic Behaviour ofA-convex Sets ifH?

We have seen that the quotieRt/L, tends to 1 in the horocyclical case and that
this limit can take any value less or equal than 1 in the general convex case. Since
horocycles and geodesics can be considered as the extremal cageadesics

(A = 1 andx = O respectively) it is natural to ask what is the asymptotic behaviour
of F/L in thei-convex case. As a consequence of Lemma 5 we have

PROPOSITION 2 Let K, be a family of compact-convex domains with piece-
wiseC? boundary that expands over the whole hyperbolic plane. Then

A < liminf L—" < lim supL—" <1 (17)

n n

Proof. Taking (7) into account and dividing b§? we have thatF/L < 1. On
the other hand, changing in (11) the exterior angleby the interior oneg; and
dividing by L we have

N )
E>A+(n )T Zl=1ﬂl>)\_ﬁ.
L L L

Hence the proposition follows. O

We shall study if there are sequendds,} of A-convex sets expanding over the
whole hyperbolic plane such that the linfi}, /L, is some fixed value between
and 1.

4.1. »-LENGTH

As it was said in Lemma 2, given two points and B there are exactly twa.-
geodesic lines fromd to B and the geodesic segmeB lies between them. The
symmetry with respect to these geodesics permutes.-tpeodesic lines so that
they have, betweeA and B, the same length

Now we are going to compute this length= [(A, B) as function of the
hyperbolic distancd = d(A, B).

By transitivity, we can assumé = i, B = bi with b > 1. Recall that/ = logb.
The parametric equations of the Euclidean circles throughd B that meety = 0
with anglea are given by

1 1+5
= +—/(1+b)2—(b—1)212+ —— cosb,
x 2#( +b)2— (b — D2+ —

_14b 14b
Y= 2 ’

wherel = | cosa|.
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Hence the arclength is given by

g Yarrd?  d

y2 " A+ sing|

and so

arcsin?=1a a0
I = / _®
arcsinz4 A +sing

because. + sind > 0 in this interval.
The evaluation of this integral gives us

I = log [® (b, M1,

1
Vi—2

where® (b, A) verifies

OB, M) -1 (b—DJI— A2
b, AN+1 JA+bZ— (b D22

Since tanks logx) = (x — 1)/(x + 1) we have

— /1 — 22
[ = ! 2 arctanh b-bHvi-a , (18)
1—22 Vb + 12— (b —1)22

which we express in terms df= d(A, B) in the following:

PROPOSITION 3 Thei-lengthl between two points at hyperbolic distantés
given by

] = L (2 arctanh—=Lv122 >

1-22 A (ed+1)2—(ed—1)22

_ 2 i inh1
= i arcsinh («/1 — A2 smh2d> .

Remark Observe that ifi = 0 we obtainl = d and whem. = 1 (h-convex
case) = 2sinh3d.

The angle3 between the geodesic and thgeodesic iM is equal to the angle
0 corresponding to the polar coordinateaafHence

Ab — 1)
Vo +1)2— (b - 102

tang = tanf = (19)
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Figure 3. A triangle forming thex-polygon K ,.

4.2. A FAMILY OF A-CONVEX SETS

Let {K,} be a family ofA-convex sets defined as in Example 1 from regular poly-
gons with central angle,, = 27/(3 - 2"1) and radiusR, = log(4/ua,). Let
(a,.r) be the vertices oK,, and let f, be the area of the figure formed by the
points O, a, x, a, +1, the geodesic segmenta,, x, Oa, x+1 and ther-geodesic
segment between, , anda, ;11 in dK, (see Figure 3). We shall denote hythe
length of thisk-segment. Let, be the area of the hyperbolic trianglks, ya, r+1,
andp, be the angle between the geodesic andtigeodesic in each vertex.

We are interested in the quotieft/L, but

E_

L, L,
By the Gauss—Bonnet theorem, we have

Jo = by + My — 28, (20)
and, hence,

So g g Iz 2b (21)

L, I,

Remark Since arcsinhy = log(y + /1 + y?) the formula (16) can be written
as

1 1 2
I|m ed" = <; + ;\/ 1 + M2>

or, equivalently,

v+1

- where v? = 1+ 2.
v—1

lim % =
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This notation will be useful in the next lemmas.

LEMMA 6 . The relation, in the limit, between the parametet= /1 + 12 and
the length/, of the above family of-polygons is given by

. 1 1-—22
Proof. It is a direct substitution of

. v+1 2v

Ilm dn l = l == )
™+ v—1 + v—1

. v+1 2

lim(e® —1) = 1=
(e ) v—1 v—1

in the formula of Theorem 3. O

Substituting the expression bfjiven by Formula 18 in Formula 19 we obtain

LEMMA 7 . Let P and Q be two points on a-geodesio- and let/ be the length
of r betweenP and Q. Lets be the geodesic betwedhand Q and lets be the
angle between ands in P. Then

A [
B = arctan(ﬁ tanh(ix/ 1— A2>) : (23)

This expression can also be written as

A
Jcoth? 3d — )2

whered is the hyperbolic distance betwe@nand Q.
Substituting now the expression of limobtained in Lemma 6 in formula (23)
we have

LEMMA 8. With the same notation:

B = arctan

lim 8, = arctan
1%

Substituting the values obtained in the above lemmas in formula (21) one ob-
tains

2_ 2

LEMMA 9 . The relation, in the limit, between area and length of the family of
A-convex polygons considered in this section is giveliny, /L, = A +¢(A, 1),
where

=2 (arctan/u + arctan*)

P 1) = s
’ 1 (2 arctanh, / =22 )
1-32 P12
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Since for each the functiong (1, 1) is continuous with respect o and
u—0

and
lim (A, u) =1— A,
H—>00

the proof of Theorem 1 is complete.
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