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Motivation and aims Motivation and aims
Motivation Aims

The notion of reducibility plays a fundamental role in the study of
the combinatorial and topological dynamics of discrete dynamical
systems.

Reducible systems are those such that the space can be
decomposed in connected pieces with pairwise disjoint interiors
which are permuted by the map.

In this situation the behavior of the original map can be related
with the dynamics of an iterate of the map on the reduced pieces.

This approach plays a crucial role, for instance in the study of both
the surface homeomorphisms and the interval dynamics related to

periodic orbits (where reducibility is formalized through the notion

of block structure).

LI. Alseda (UAB)

Topological and algebraic reducibility for patterns on trees

The aim of this talk is to clarify the notions of reducibility and
irreducibility for periodic orbits of tree maps and study the
dynamical implications of these notions at a topological and
algebraic level.

Thanks to this study, we obtain some interesting properties of the
topological entropy of reducible systems and we clarify its relation
with the decomposition of the space and the Markov matrix of the
map.

This study is done at a combinatorial level. So we need the notion
of combinatorial type or pattern for finite invariant sets of trees.
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Patterns and monotone models Patterns and monotone models
The definition of a pattern The definition of a pattern

Let T be a tree and let P C T be a finite subset of T. The pair
(T, P) will be called a pointed tree. A set Q C P is said to be a
discrete component of (T, P) if either |Q| > 1 and there is a
connected component C of T\ P such that Q = CI(C)N P, or
1Q=1and Q= P.

We say that two pointed trees (T, P) and (T, P’) are equivalent if
there exists a bijection ¢: P — P’ which preserves discrete

components. In this case, two discrete components C of (T, P)
and C’ of (T, P") will be called equivalent if C" = ¢(C).

The equivalence class of a pointed tree (T, P) will be denoted by
[T, P], and the equivalence class of a discrete component of
(T, P) will be called a discrete component of [T, P].
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Patterns and monotone models Patterns and monotone models
Entropy of a pattern Monotone models

The topological entropy of a map f: T — T will be denoted by
h(f).

Given a pattern P, the topological entropy of P is defined to be

h(P) :=inf{h(f): (T, P, f) is a model exhibiting P}.
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Let (T, P) and (T’, P") be equivalent pointed trees, and let

0: P— P and 0': PP — P’ be maps. We will say that # and ¢’
are equivalent if § = p oo ! for a bijection p: P — P’ which
preserves discrete components. The equivalence class of 6 by this
relation will be denoted by [6].

Definition

If [T, P] is an equivalence class of pointed trees and [f] is an
equivalence class of maps then the pair ([T, P],[0]) will be called a
pattern.

Any discrete component of [T, P] will be also called a discrete
component of the pattern ([T, P],[0]).

We say that a model (T, P, f) exhibits a pattern (T,0) if
T =[(P)7,P] and © = [f’P]. Alternatively, we will say that the
model (T, P, f) is a representative of the pattern (7,0).
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The simplest models exhibiting a given pattern are the monotone
ones, according to the following definition. Let S and T be trees
and let f: T — S be a map. Given a,b € T we say that f‘[a b is
monotone if f([a, b]) is either an interval or a point and f‘[a b S
monotone as an interval map.

Let (T, P,f) be a model. A pair {a, b} C P will be called a basic
path of (T, P) if it is contained in a single discrete component of
(T,P).

Definition

We will say that f is P-monotone if En(T) C P and f|[a b is

monotone for any basic path {a, b}. The model (T, P, f) will be
called monotone.

In such case, one can see that the set PU V/(T) is f-invariant and
the map f (which is P-monotone, is also (P U V(T ))-monotone).
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Patterns and monotone models Patterns and monotone models

Monotone models may not exist. Hence, the space cannot Monotone models
be fixed!!

Theorem (Theorem A of

Let P be a pattern. Then the following statements hold.
© There exists a monotone model of P.
@ Every monotone model (T, P, f) of P satisfies h(f) = h(P).

X2 o .

@ [aglmm] LI. Alseda, J. Los, F. Mafiosas, and P. Mumbrd,
Canonical representatives for patterns of tree maps, Topology
\ 36 (1997), no. 5, 1123-1153. MR 1445556 (99f:58062)

X3 X6
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Patterns and monotone models On the reducibility of patterns
Canonical models On the reducibility of patterns

The monotone models from the above are essentially unique in the
following sense. Let (T, P, f) be a monotone model and let S be a
non-empty union of edges disjoint from P. We will say that S is an
invariant forest of (T, P, f) if either f/(S) N P = () for every i >0
or there exists n > 0 such that f/(S) N P = () for every

We need to introduce the notions of trivial pattern, collapsing
i=0,1,...,n—1and f"(S) degenerates to a point of P.

interval, Markov matrix, block structure and rotational structure,

(T,P, ) is a canonical model of the pattern [T, P, f] if it has no which depend only on the combinatorial data of the pattern.
invariant forests. From [aglmm, Theorem B] it follows that every
pattern has a canonical model. Moreover, given two canonical
models (T, P,f) and (T’, P’, f') of the same pattern there exists a
homeomorphism ¢: T — T’ such that p(P) = P’, and

f'o gp‘P =po f‘P. Hence, the canonical model of a pattern is
essentially unique.
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On the reducibility of patterns On the reducibility of patterns
Trivial Pattern Collapsing interval

An n-periodic pattern P will be called trivial if it has only one
discrete component.

In this case, for n > 2, let (T, P) be a pointed tree such that T is
an n-star with En(T) = P = {x1,x2,..., X, } and let y be its
central point. Consider a rigid rotation on T, that is, a model

(T, P, f) such that f(y) =y and f maps bijectively [y, x;] onto
[y, xi+1] for 1 <i < nand [y, x,] onto [y, xi]. Clearly, (T,P,f) is
a monotone model with no invariant forests. In consequence,

(T, P,f) is the canonical model of P. Therefore, it easily follows
that every trivial pattern has entropy O.
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On the reducibility of patterns On the reducibility of patterns
Example 1 Markov Matrix

] |,

n o 3 9 1 10 6 2 c l
12

Figure: The canonical model (T, P, f) of a 12-periodic pattern P, which
satisfies f(a) = d, f(b) =6, f(c) =9, f(d) = b. The pattern P has a
separated 4-block structure given by the partition

{1,5,9}U{2,6,10} U{3,7,11} U {4,8,12} and a separated 2-block
structure given by the partition {1,3,5,7,9,11} U {2,4,6,8,10,12}.

Recall that [c, 8] is a collapsing interval for P and observe that the
discrete component C = {2,4,8,12} verifies
(f(C)) = ({3,5,9,1}), a tree with 3 endpoints.
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Let P be a periodic pattern and let (T, P, f) be the canonical
model of P. Any (P U V(T))-basic interval [a, b] such that
f([a, b]) reduces to a point will be called a collapsing interval of P.

Note that, in this case, since P is periodic, {a, b} ¢ P. On the
other hand, since (T, P, f) has no invariant forests,

{a,b} ¢ V(T)\ P. Therefore, each collapsing interval has the
form [a, b] with a € P and b € V(T)\ P (the interval [c, 8] in the
canonical model of the pattern P shown in Example 1 is an
example of a collapsing interval, since f(c) = f(8) = 9).

There is a purely combinatorial criterion to decide whether a
pattern P has collapsing intervals (without constructing its
canonical model). Indeed, a pattern ([T, P],[f]) has collapsing
intervals if and only if there is a discrete component C of (T, P)
such that |En((f(C)))| < |C|. This definition is independent from
the particular model (T, P, f) realizing the pattern.
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Let (T, Q,f) be a monotone model such that @ D V(T). In this
case, any connected component of T \ Q is an open interval.

An interval of T will be called Q-basic if it is the closure of a
connected component of T \ Q. Observe that two different
Q-basic intervals have pairwise disjoint interiors.

Given K,L C T, we will say that K f-covers L if f(K) D L.

Consider a labeling I, b, ... Iy of all Q-basic intervals. The Markov
graph of (T, Q, f) associated to this labeling is a combinatorial
directed graph whose vertices are the Q-basic intervals and there is
an arrow from /; to /; if and only if /; f-covers I;.
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On the reducibility of patterns On the reducibility of patterns
Markov Matrix Algebraic reducibility

The Markov matrix of (T, @, f) associated to this labeling is a

k x k matrix (m;J)fszl such that m; j = 1 if and only if /; f-covers
li, and m;j = 0 otherwise.

We recall that a square matrix with non-negative entries is called

Given two different labellings of the set of Q-basic intervals and reducible if there exists a permutation matrix A such that
their associated Markov matrices M and N, there exists a Y, 0
permutation matrix A such that M = AT NA (where AT denotes (1) ATMA= (1
, Mo Moo
the transpose of A), and the corresponding Markov graphs are
isomorphic. where My1 and M», are square matrices of sizes | X [ and m x m

(I, m > 1) respectively and 0 stands for the / x m matrix whose
entries are all 0. If there does not exist such A then the matrix M
is called irreducible.

Recall that if (T, P, f) is the canonical model of a pattern P then
the model (T,P U V(T), f) is monotone. Thus, we can consider
their Markov graph and matrix. Since both objects depend only on
the canonical model of P, which is uniquely determined by the
combinatorial data of the pattern P, they will be respectively
called Markov graph of P and Markov matrix of P.
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On the reducibility of patterns On the reducibility of patterns
Primitivity Ciclicity

A square matrix with non-negative entries M will be called cyclic if

. . . . TP there exist p > 2 and a permutation matrix A such that
An irreducible matrix M is called primitive if all powers M" are re exist p = < an permutation matrix A su

irreducible for n > 2. Otherwise M is called imprimitive. It is well o M 0 ... 0

known [gant, Theorem 8] that an irreducible matrix M is primitive 0 0 M 0

if and only if there exists n > 1 such that all the entries of M" are 2) AT MA — :

positive. 0 0 0 M'
p—1

My, 0 0 0

¥ [gant] F.R. Gantmacher, The theory of matrices, AMS Chelsea

Publishing Company, New York 1989-90 (2nd edition). where the diagonal 0 blocks are square (possibly with pairwise

different sizes). Of course, the matrix of a cyclic permutation is
cyclic.
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On the reducibility of patterns

Remarks

Recall that if (T, P, f) is the canonical model of a trivial
n-periodic pattern P with n > 3 then T is an n-star with

En(T) = P and f(y) =y, where y is the central point of T. It is
straightforward to check that the Markov matrix M of P is the
permutation matrix corresponding to the cyclic permutation
(2,3,...,n,1). In consequence, M is cyclic.

Let M be an irreducible matrix. It is well known [gant| that M is
imprimitive if and only if M is cyclic.
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On the reducibility of patterns
Block Structure

Let P = ([T, P],[f]) be an n-periodic pattern with n > 3. For

n > p > 2, we will say that P has a p-block structure (or simply a
block structure) if there exists a partition P = P UP U ... U P,
such that f(P;) = Pij1 for 1 < i < p, f(P,) = P1, and

(Pi)T N P; = () whenever i # j.

In this case, p is a strict divisor of n and |P;j| = n/p for 1 <i<p.

The trees (P;)1 (which do depend on the particular model

(T, P, f) realizing the pattern) will be called blocks. See the
pattern P in Example 2: the partition

P=P UP,={1,3,57,9,11,13,15} U{2,4,6,8, 10,12, 14,16}
defines a 2-block structure for P, since

(P1)T N Py = (Pp)1T N Py = () no matter what particular model
(T, P,f) represents P.

LI. Alseda (UAB)
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On the reducibility of patterns
Example 2
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Figure: A 16-periodic pattern P = ([T, P], [f]). The dashed circles stand for the
discrete components of PP. The points of P are labeled with natural numbers,
f(i)=i+1for1 <i< 16 and f(16) = 1. The pointed tree corresponding to the
discrete component {1, 6, 8,11, 14} in the canonical model is shown. The partition
P=PUP,={1,3,57,9,11,13,15} U{2,4,6,8,10,12,14,16} defines a 2-block
structure for P. There is also a 4-block structure given by the partition
P=QUQUQQUQQ ={1,5,9,13} U{2,6,10,14} U{3,7,11,15} U {4, 8,12,16}.
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On the reducibility of patterns

The notion of block structure is pattern intrinsic

Observe that from the equivalence relation which defines the class
of models belonging to the pattern P it easily follows that this
notion does not depend on the particular model (T, P, f)
representing P.

We note that if a pattern has a p-block structure, this p-block
structure is essentially unique up to relabeling of blocks. Observe
also that a pattern can have several different block structures: see
again Example 2.
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On the reducibility of patterns

More block structures

The existence of a block structure for a periodic pattern P is
essentially equivalent to the fact that, for some k > 1, the k-th
power M¥ of the Markov matrix M of P is reducible. To look
closer at the algebraic properties of M (more precisely, to
discriminate whether M is reducible itself and to decide whether M
is cyclic) we need to define a couple of particular block structures,
which we will respectively call separated structure and rotational
structure.

LI. Alseda (UAB)
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On the reducibility of patterns
Rotational Block Structure

The cyclicity of the Markov matrix of a periodic pattern is related
to the existence of another particular case of block structure.

Let P be a non-trivial n-periodic pattern with n > 3 and let

(T, P, f) be the canonical model of P. Assume that there exists a
branching point y € T such that f(y) =y. For n > p > 2, we will
say that P has a p-rotational structure (or simply a rotational
structure) if there exist subtrees Y1, Y,..., Y, such that each Y;
is the closure of a union of connected components of T \ {y},
f(Yi) = Yiy1 for 1 <i < pand f(Y,) = Yi1. Note that the sets
Y: \ {y} form a partition of T \ {y}.
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On the reducibility of patterns
Separated Block Structure

Let P be an n-periodic pattern with n > 3 and let (T, P, f) be the
canonical model of P. Assume that P has a p-block structure
defined by a partition P = PL U P, U... U P,. We say that this
p-block structure is separated if (P;)7 N (Pj)T = 0 whenever i # j.

For instance, the 4-block structure Q1 U Q> U Q3 U Q4 for the
pattern P in Example 2 is separated, since the blocks have
pairwise disjoint intersections in any model representing P (in
particular, in the canonical model). On the other hand, a part of
the tree T corresponding to the canonical model is shown in
Example 2. Observe that (P1)7 N (P2)T = {y}, where y is a
branching point of valence 4. Therefore, the 2-block structure
P1 U P is not separated.
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A rotational block structure is a block structure

In this situation, the partition P = P U P, U... U P,, where
P;:=PnNY;for1l<i<p,defines a p-block structure for P (that
is, a rotational structure is a particular case of block structure).
Moreover,

© Either all blocks (P;) are pairwise disjoint,
@ Or (P)y N (P;) = {y} whenever i # j.

Hence, a rotational structure is either separated or every pair of
blocks in the canonical model intersect at a fixed branching point.
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On the reducibility of patterns On the reducibility of patterns
Examples Example 3

A pattern can have several different rotational structures. For an
example, consider the 8-periodic pattern P whose canonical model
(T,P,f) is depicted in Example 3. In this case, y is the only
branching point in T and f(y) = y. The connected components of
T\ {y} are the intervals (y,5], (v,6], (v, 7] and (y, 8], whose
closures are mapped cyclically by f. Hence,

{1,5} U{2,6} U{3,7} U {4,8} defines a 4-rotational structure for
P. Since the blocks (1,5), (2,6), (3,7), (4,8) are pairwise disjoint,
(a) holds and this rotational structure is separated. On the other
hand, since f also maps cyclically the sets [y,5] U [y, 7] and

[y,6] U [y, 8], the partition {1,3,5,7} U {2,4,6,8} defines a
2-rotational structure for P, which is not separated because the
blocks ({1,3,5,7}) and ({2,4,6,8}) intersect at y. Observe that
the points of P rotate around the discrete component {1,2, 3,4}
under the action of f. This fact justifies the name rotational
structure.
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On the reducibility of patterns On the reducibility of patterns
Remarks on block structures Remarks on block structures

There exist block structures that are not rotational neither
separated (see below).The 8-periodic pattern P has no rotational
structures, since the only fixed point in the canonical model lies on
the open interval (1,2) and, in consequence, is not a branching
point. On the other hand, the 4-block structure given by the
partition P1 U P, U P3U P, ={1,5} U{2,6} U{3,7} U{4,8} is
not separated. However, the pattern has also a separated 2-block
structure given by the partition {1,3,5,7} U {2,4,6,8}, obtained
by grouping together some sets P;.

3

. .
5 J 1 2 J 6
7 8
Figure: The canonical model (T, P, f) of a 8-periodic pattern P, which

satisfies f(a) = b, f(b) = a.

LI. Alseda (UAB)
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Figure: The canonical model (T, P, f) of a 8-periodic pattern P, which
satisfies f(y) = y. The pattern P has a separated and rotational 4-block
structure given by the partition {1,5} U{2,6}U{3,7} U{4,8} and also a
rotational 2-block structure given by the partition

{1,3,5,7} U{2,4,6,8}, which is not separated.
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The notion of block structure is purely combinatorial, since it depends
only on the discrete components of P. In contrast, a block structure will
be separated or rotational depending on some topological properties of
the blocks in the canonical model of P. However, since the canonical
model is unique and it is constructed by means of a well defined
algorithm uniquely determined by the combinatorial data of P, in fact
both notions are also intrinsic (in the sense that depend only on the
combinatorial data of P).

In the literature one can find several kinds of block structures and related
notions for periodic orbits. In the interval case, the Sharkovskii's square
root construction is an early example of a block structure. Also the
notion of extension gives rise to some particular cases of block structures
for interval periodic orbits. Finally, the notion of division, introduced for
interval periodic orbits and generalized by A.—Ye in order to study the
topological entropy and the set of periods for tree maps, has a strong
connection with the notion of rotational structure.
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On the reducibility of patterns

Characterization of the topological, algebraic and

combinatorial reducibility

Let P be an n-periodic pattern with n > 3 and let M be the
Markov matrix of P. The following statements hold:

@ M is reducible if and only if P has separated block structures
or collapsing intervals.

© M is cyclic if and only if either P is trivial or has rotational
structures.
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On the reducibility of patterns

Characterization of the topological, algebraic and
combinatorial reducibility

The above theorem generalizes some well known results for interval
patterns. It is folk knowledge that a periodic interval pattern has a
block structure if and only if its Markov matrix is reducible. In
fact, this is true not just for interval patterns but for a broader
class of patterns, which we call simplicial.

A pattern ([T, P],[0]) is called simplicial if each discrete
component of (T, P) has two points. Observe that, in this case,
for each pointed tree (S, Q) € [T, P] we have that V(S) C Q and,
for each discrete component C of (S, Q), (C)s is an interval.

Let P be a simplicial n-periodic pattern with n > 3 and let M be
the Markov matrix of P. Then, M is reducible if and only if P has
a block structure. Moreover, if M is irreducible then M is primitive.
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On the reducibility of patterns

Characterization of the topological, algebraic and
combinatorial reducibility

Corollary

Let P be a non-trivial n-periodic pattern with n > 3 and let M be
the Markov matrix of P. Then, M¥ is reducible for some k > 1 if
and only if P has collapsing intervals or block structures.
Equivalently, M is primitive if and only if P has no collapsing
intervals and no block structures.
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Reducibility and entropy

Now we study the topological entropy of patterns with a block
structure.

It is a generalization of the following classical result for interval
patterns which gives a formula for the entropy of extensions.

In order to state it we need to introduce the notion of skeleton.

Let P be an n-periodic pattern and let (T, P, f) be the canonical
model of P. Let P = Py UP,U...U P, be a partition of P which
defines a separated p-block structure or a p-rotational structure for
P. It follows that, in both cases, f((P;)) = (Pjy1) for 1 <i<p
and £((P,)) = (P1).
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Reducibility and entropy Reducibility and entropy
The skeleton of a pattern Reducibility and entropy

The skeleton of P (associated to this partition of P) is a
p-periodic pattern Q defined as follows:

Q If PLUP,U...U P, defines a p-rotational structure for P,
then Q is defined to be a trivial p-periodic pattern.

Q If PLUP,U...U P, defines a separated p-block structure for
‘P which is not a p-rotational structure, consider the tree S
obtained from T by collapsing each block (P;) to a point x;.
Let k: T — S be the standard projection, which is bijective
on T\ U;j(P;) and satisfies k((P;)) = x;. Set
Q = k(P) = {x1,x2,..., x5} and define §: Q — Q by
0(x;) = xj+1 for 1 <i < p and 6(x,) = x1. Then the skeleton
Q of P is defined to be the p-periodic pattern ([S, Q], [0]).
Observe that § o k|, = K o | ,.

LI. Alseda (UAB)
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Entropy 0

Entropy 0

Now we describe the zero entropy periodic patterns (i.e. periodic
patterns P such that h(P) = 0) in terms of the existence of a very
particular class of block structures.

Let P = ([T, P],[f]) be a periodic pattern with a p-block structure
defined by a partition P = Py U P, U...UP,. We will say that this
p-block structure has trivial blocks if the patterns

([{P:), Pi], [fp|P;]) are trivial for 1 </ < p. Equivalently, P; is
contained in a discrete component of (T,P) for 1 < i< p.
Observe that this notion is independent from the particular model
(T, P, f) representing the pattern P.
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Theorem

Let P be an n-periodic pattern and let (T, P,f) be the canonical
model of P. Assume that there is a partition

P = P1UP,U...UP, which defines either a p-rotational structure
or a separated p-block structure for P. Let Q be the associated
skeleton of P. Then, all the entropies h(f”’<Pi>) are equal and

h(P) = max{h(Q), (l/p)h(fp‘<P’_))} for any 1 <i < p.
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Entropy 0

Starry patterns

An n-periodic pattern P will be called I-starry if P is trivial. For
k > 2, P will be called k-starry if P has a separated p-block
structure with trivial blocks whose associated skeleton is
(k-1)-starry.

For an example, consider the 12-periodic pattern P3; of Example 4.
By constructing the canonical model of P3 one checks that the
block structure {1,7} U{2,8} U{3,9} U{4,10} U {5,11} U {6, 12},
with trivial blocks, is separated. The associated skeleton P> has
also a separated 3-block structure {1,4} U {2,5} U {3,6}, again
with trivial blocks. Finally, its associated skeleton P; is a trivial
pattern. Hence, the patterns Py are k-starry for k = 1,2, 3.
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Figure: On the left, a 12-periodic pattern P; with a separated 6-block
structure {1,7} U {2,8} U {3,9} U {4,10} U {5,11} U {6, 12} with trivial
blocks. The dashed circles stand for the discrete components of P. In
the center, the corresponding skeleton P,, with a 3-block structure
{1,4} U{2,5} U {3,6} with trivial blocks. On the right, the
corresponding skeleton Py, a trivial pattern.
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Entropy 0

Entropy 0; second characterization

Let P = ([T, P),[f]) be an n-periodic pattern. Then:

@ P has zero entropy if and only if all patterns ([T, P], [fX]), for
each k € N such that k and n are relatively prime, have zero
entropy.

@ P has positive entropy if and only if all patterns ([T, P],[f]),
for each k € N such that k and n are relatively prime, have
positive entropy.

As far as we know, this result was not explicitly stated in the
literature, even for interval patterns. We also remark that in
general the entropies of the patterns ([T, P], [f]) in the statement
(b) of the Theorem need not be equal.
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Entropy 0

Entropy O; first characterization

A periodic pattern P has entropy zero if and only if P is k-starry
for some k > 1.

Observe the recursive nature of Theorem 10: the fact that an
n-periodic pattern has entropy 0 is translated to the fact that a
collection of periodic patterns (the skeleton and those associated
to the blocks), with periods strictly smaller than n, have entropy 0.
It is well known that the same happens for interval periodic
patterns. However, we emphasize that in order for P to have
entropy 0 it is not enough that the patterns exhibited by fP on
each block have entropy 0. In addition, they must be trivial.

LI. Alseda (UAB) Topological and algebraic reducibility for patterns on trees




