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• (X , ρ) . . . compact metric space

• f ∈ C (X ) . . . continuous map f : X → X

• I = [0, 1]

• triangular map . . . a continuous map F : I 2 → I 2 of the form
F (x , y) = (f (x), gx(y))

• T . . . the class of triangular maps
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• A map f ∈ C(X ) is of type 2∞ if it has a periodic orbit of period 2n

for every n ∈ N, and has no other periodic orbits.

For f ∈ C (I ):

h(f ) = 0⇔ f is of type ≤ 2∞

• UR(f) . . . the set of uniformly recurrent points of f

x ∈ UR(f ) if, for every neighborhood V of x there is a positive
integer K = K (V ) such that every interval N ⊂ [0,∞) of length K
contains an integer j such that f j(x) ∈ V .

UR(f ) coincides with the union of all minimal sets of f , i.e.,
nonempty compact sets M ⊆ X such that f (M) = M and no proper
compact subset of M has this property.
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Li-Yorke chaos

• Li and Yorke, Amer. Math. Monthly 1975

f ∈ C (X ) is Li-Yorke chaotic (LYC), if there is an uncountable set
∅ 6= S ⊂ X such that ∀x , y ∈ S , x 6= y

lim infn→∞ ρ(f n(x), f n(y)) = 0,
lim supn→∞ ρ(f n(x), f n(y)) > 0.
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Distributional chaos
• Schweizer and Sḿıtal, TAMS 1994

• Sḿıtal and Štefánková, ChSF 2004

• Balibrea, Sḿıtal and Štefánková, ChSF 2005

Let f ∈ C (X ), n ∈ N, t ∈ R. Put

Φ(n)
xy (t) =

1

n
#{m; 0 ≤ m < n and ρ (f m(x), f m(y)) < t}.

Φxy (t) := lim infn→∞Φ
(n)
xy (t) . . . lower distribution of x and y

Φ∗xy (t) := lim supn→∞ Φ
(n)
xy (t) . . . upper distribution of x and y

Φxy and Φ∗xy are nondecreasing

Φxy (t) ≤ Φ∗xy (t), ∀t ∈ R

Φxy (t) = Φ∗xy (t) = 0, ∀t ≤ 0

Φxy (t) = Φ∗xy (t) = 1, ∀t > diam(X )
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f ∈ C (X ) is distributionally chaotic (DC), if there is an uncountable
set ∅ 6= S ⊂ X such that ∀x , y ∈ S , x 6= y
DC1: Φ∗xy ≡ 1 and Φxy (t) = 0 for some t > 0

DC2: Φ∗xy ≡ 1 and Φxy < Φ∗xy on some interval
DC3: Φ∗xy > Φxy on some interval

DC1 ⇒ DC2 ⇒ DC3
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Theorem 1. There is a nonempty family of maps F1 ⊆ T nondecreasing
on the fibres and without DC2 pairs such that every F ∈ F1, restricted to
the set of uniformly recurrent points, is Li-Yorke chaotic.
(Every F ∈ F1 is of type 2∞ and has zero topological entropy.)

Proof.
We use the parametric family of maps introduced by BSŠ in 2005 and
formalized by M. Mĺıchová in 2006.

Q × I → Q × I , (x , y) 7→ (τ(x), gx(y))

Q = {0, 1}N . . . the middle-third Cantor set
τ . . . the (binary) adding machine on Q;
τ(x1x2x3 · · · ) = x1x2x3 · · ·+ 1000 · · · , where the adding is mod 2 with
carry; e. g., τ(11010 · · · ) = 00110 · · ·
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{nk}∞k=1 . . . an increasing sequence of positive integers of the form
nk = 2ck , k, ck ∈ N, with ck ≥ 2.
Write any x = x1x2x3 · · · ∈ Q in blocks as

x = x1x2x3 · · · , where x j is the block of cj digits of x . (1)

For any finite block α = xsxs+1 · · · xs+k the evaluation of α is
e(α) = xs + 2xs+1 + 22xs+2 + · · ·+ 2kxs+k .
For any family of continuous maps I → I

{ϕ(j)
k ; 0 ≤ j ≤ nk − 2}∞k=1 (2)

define F (x , y) = (τ(x), y) if x = 1∞ (i.e., if x contains no zero digit).
Otherwise, let xk be the first block in (1) containing a zero digit, and let

F (x , y) = (τ(x), ϕ
(p)
k (y)), where p = e(xk). (3)
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If the maps ϕ
(j)
k in (2) are taken such that

lim
k→∞

max
j
||ϕ(j)

k − Id || = 0, (4)

where Id denotes the identity map on I then F is continuous, and if

ϕ
(nk−2)
k ◦ ϕ(nk−3)

k ◦ · · · ◦ ϕ(1)
k ◦ ϕ

(0)
k = ϕ

(0)
k = Id , k ∈ N, (5)

then some recurrence formulas are valid.
For x ∈ Q, y ∈ I , and a nonnegative integer i , let yx(i) be the second
coordinate of F i (x , y). Then we have

Lemma (Čiklová 2006). For any j , k ∈ N such that 1 ≤ j < nk+1, (5)
implies

y0(j ·mk) = ϕ
(j−1)
k+1 ◦ ϕ

(j−2)
k+1 ◦ · · · ◦ ϕ

(1)
k+1 ◦ ϕ

(0)
k+1(y),

where mk := n1n2n3 · · · nk . In particular, y0(mk) = y0(0) (= y).
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Theorem 1. There is a nonempty family of maps F1 ⊆ T nondecreasing
on the fibres and without DC2 pairs such that every F ∈ F1, restricted to
the set of uniformly recurrent points, is Li-Yorke chaotic.

Proof.
STAGE 1. Define F on Q × I and show that it has unique (infinite)
minimal set M, and that F |M is Li-Yorke chaotic.
Let {rk}k≥1 be a sequence in (0, 1) such that

rk < rk+1, k ∈ N, and lim
k→∞

rk = 1. (6)

Then there is an increasing sequence {nk}k≥1 of positive integers being
powers 2ck of 2 such that

r
nk/2
k > r

nk+1/2
k+1 , k ∈ N, and lim

k→∞
r
nk/2
k = 0. (7)
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For every k ∈ N and every t ∈ I let
θk(t) = rkt and θk(t) = min{1, t/rk},
ψk(t) = 1− rk(1− t), and ψk(t) = max{0, (t + rk − 1)/rk}.

It is easy to see that θk ◦ θk = ψk ◦ ψk = Id .

Define the family (2) by

ϕ
(j)
k =


Id if j = 0,

ψk if 0 < j ≤ nk/2− 1,

ψk if nk/2− 1 < j ≤ nk/2,

if k is odd, (8)

and

ϕ
(j)
k =


Id if j = 0,

θk if 0 < j ≤ nk/2− 1,

θk if nk/2− 1 < j ≤ nk/2.

if k is even, (9)

Then (4) and (5) are satisfied.
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Using Lemma it is easy to verify that

F jmk−1 (0, 1) = (τ jmk−1 (0), r j
k), j , k ∈ N, k even, (10)

F jmk−1 (0, 0) = (τ jmk−1 (0), 1− r j
k), j , k ∈ N, k odd. (11)

This gives that M = ωF (0, 0) is the unique minimal set and F |M is LYC.

STAGE 2. We show that parameters nk can be chosen such that F |Q×I ,
or equivalently (since (Q, τ) is distal), no Ix with x ∈ Q contains a
DC2-pair. So it suffices to show that

Φuv (t) = Φ∗uv (t) = 1, for every u, v ∈ Ix , x ∈ Q, and t > 0.

STAGE 3. Extend the map F from Q × I in the affine manner onto a
map (x , y)→ (f (x), gx(y)) in T .
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Remarks on open(?) problems

• If F ∈ T possesses no DC3-pair, is it true that F |UR(F ) has no
Li-Yorke pair?

NO (Downarowicz and M.Š.)

• For F ∈ T , does h(F |RR(F )) = 0 imply h(F |UR(F )) = 0?
NO (Downarowicz)
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