
Simulated annealing, weighted simulated an-nealing and genetic algorithm at workFran�cois Bergeret1 and Philippe Besse21Motorola Semiconducteurs S.A., avenue Eisenhower, 31023Toulouse Cedex, France2Laboratoire de Statistique et Probabilit�es, U.M.R. CNRS 5583,Universit�e Paul Sabatier, 31062 Toulouse cedex FranceSummaryTwo well known stochastic optimization algorithms, simulated annealingand genetic algorithm are compared when using a sample to minimize anobjective function which is the expectation of a random variable. Since theylead to minimumdepending on the sample, a weighted version of simulatedannealing is proposed in order to reduce this kind of over-�t bias. The al-gorithms are implemented on an optimization problem related to qualitycontrol. A design of experiment is used to get the best trade-o� betweenoptimization and execution time. Simulated annealing appears to be moree�cient than the genetic algorithm. With regard to the bias problem, therandomly weighted version of simulated annealing allows to achieve a solu-tion less dependent on the sample and thus less biased.Keywords: stochastic optimization, quality control, design of experiment.1 IntroductionStochastic optimization aims at �nding the global minimum of an objectivefunction. Simulated annealing (Kirkpatrick and al., 1983) and genetic algo-



2rithm (Holland, 1975) are two stochastic algorithms. The execution time ofsuch algorithms is high in order to approach the global minimum. They arewidely used in many applications (Davis, 1987) but few comparisons exist.We are interested in �nding an optimal test sequence in quality control. It isa combinatorial optimization problem whose objective function can be mod-eled as the expectation of a random variable. The expectation depends ona parameter 
 which belongs to a �nite set �; X is a random variable thatmodelizes the production. The expectation is taken over X and is unknownbecause the distribution of X is unknown. The problem ismin
2�E[f(X; 
)]:Since the function H(
) = E[f(X; 
)] is usually not \convex" in 
, globaloptimization algorithms are used in order not to get stuck in a local minimum.To estimate the expectation, a sample is used: (X1; :::; Xn) are independentand identically distributed. This sample remains �xed for all the study. Thenatural idea is to estimate H(
) by the sample average:Hn(
) = 1n nXi=1 f(Xi; 
):In this paper, we aim at:� adjusting the parameters of the algorithms,� comparing the algorithms,� reducing over-�t bias that may occur because the same sample is usedto optimize and to estimate.The adjustment of the parameters is done by design of experiment. Thecomparison of the algorithms shows that simulated annealing is more e�cientthan the genetic algorithm on the test optimization problem. A randomlyweighted version of simulated annealing is then proposed to reduce over-�tbias: the objective function is estimated on a weighted sample. Numericalexperiments show that this version reduces the bias.We introduce notations and main results about simulated annealing insection 2. The weighted version of simulated annealing is presented in section3. The implementation of the algorithms is detailed in section 4 and practicalcomparisons (simulated annealing versus genetic algorithm and simulatedannealing versus weighted simulated annealing) are presented in section 5.Main results are discussed in section 6.2 Simulated AnnealingSimulated Annealing (see Aarst and Korst, 1989) uses a direct analogy withthe physical annealing process of solids which consists in two steps:



3� Increase quickly the temperature to a maximum value at which thesolid melts. The particles are randomly arranged.� Decrease slowly the temperature until the particles arrange themselvesin the ground state of the solid. The energy is then minimal.In optimization, a solution is equivalent to a state of the physical systemand the cost function we want to minimize is equivalent to the energy of astate. At the beginning of the algorithm, all the solutions are accepted. Asthe algorithm evolves, the probability of accepting deteriorations decreaseswith the temperature. At the end of the algorithm, only improvements areallowed and the system is considered to be frozen.2.1 The algorithmThe following notations are necessary to de�ne the algorithm:� 
0 is the initial (random) solution,� 
 is the current solution,� 
0 is a neighbour of 
, that is a solution which is close to 
 in somesense,� k is the iteration number of the changes of temperature,� ck is the control parameter and plays the role of the temperature,� a proposed transition is a neighbour visited,� an accepted transition is the transformation of the current solution intoa new one,� Lk is the number of proposed transitions for k �xed,� Lak is the number of accepted transitions for k �xed.The algorithm has two nested loops:� An outer loop on k to control the temperature ck. The algorithm exitsthis loop when a stopping criterium is satis�ed.� An inner loop is used to visit new solutions for k �xed. The algorithmexits this loop if one of the two following conditions is satis�ed:1. the number of accepted transitions Lak reaches a certain valueLamax,2. the number of proposed transitions Lk reaches a certain valueLmax;



4Lamax and Lmax are two parameters of the algorithm. They are �xed. At eachstep of the inner loop, the algorithm generates a neighbour solution 
0 of thecurrent solution 
 and compares the values of the objective function for thetwo solutions. Improvements of the objective function are always acceptedin order to reach the minimum. Deteriorations in cost are accepted with theacceptance probabilityA

0 (ck) = exp(H(
) �H(
0)ck ):Let us remark that this probability depends on the di�erence H(
)�H(
0):too strong deteriorations are not allowed in order not to loose the previousinformation. It also depends on the control parameter ck which is very impor-tant: at the beginning ck is large and the domain space is visited randomly,then ck is slowly decreased to visit lower energy regions and to escape fromlocal minima. As ck goes to 0, only improvements are allowed and the algo-rithm behaves like local search algorithms. In a pioneering work, S. Gemanand D. Geman (1984) prove that suitable inverse cooling schedules ensurethe convergence of the chain to a global minimum. More precise studies arethe papers of Hajek (1985, 1988) and Tsitsiklis (1989). They give simple suf-�cient and necessary conditions on the cooling schedule ck for the algorithmto converge in probability to the global minima. Sharper estimates can befound in Catoni (1991), Chiang and Chow (1988) and various exensions canbe found in Trouv�e (1993), Hwang and Sheu (1992), B�elisle (1992). From apractical point of view, the essential problem is to choose the cooling scheduleso that the convergence occurs as fast as possible. More over Catoni (1991)studies optimal cooling schedules given a �nite-time execution. A �nite-timeimplementation of the algorithm is now presented in the next section.2.2 The cooling scheduleSome parameters of the algorithm were de�ned in the previous section. Theevolution of these parameters is controlled by a cooling schedule. A coolingschedule speci�es:� an initial value of the control parameter c0,� a decremental function for decreasing the value of ck,� a stop criterion for the objective function,� a �nite number of transitions for each value of ck.Following this de�nition, several cooling schedules have been proposed in theliterature. The most famous is the original schedule from Kirkpatrick and al.(1983):



5� c0 is initialized such that the acceptance ratio r = La0=L0 is close to one.In practice, before the algorithm starts, di�erent values of c are tested,in increasing order; at each attempt, the corresponding value of theacceptance ratio r increases because c increases. When the observed ris close to one (e.g. r > 0:99), the corresponding value of c is taken asthe starting point c0.� The decremental function isck = �� ck�1;� usually lies between 0.8 and 0.95.� The algorithm is terminated if the value of the cost function remainsunchanged for a number of consecutive iterations.� As it has been told in 2.1, the value of ck is decreased if at least a numberLamax of transitions are accepted for k �xed. However this requiresLk ! 1 when ck ! 0 because, when ck is close to 0, almost onlyimprovements are accepted. This is why, as there are few improvementsbecause the current solution is nearly optimal, Lk is also bounded bysome constant Lmax.With this cooling schedule the temperature decreases exponentially with k ,that is (assuming ln� ' �� 1):ck = c0exp[(�� 1)k]:Another cooling schedule speci�es a logarithmic decrement of the tempera-ture: ck = d=log(k):From a practical point of view, the essential problem is to choose the coolingscedule so that the convergence occurs as fast as possible. In a recent paperCatoni (1992) study optimal cooling schedules given a �nite time execution.He shows that the exponential schedule is better as long as the executiontime is �nite.2.3 ConvergenceTo provide conditions for the convergence of simulated annealing towards theset S� of global minima of H, the following speci�cations are needed.S
 is the set of neighbours of 
. It is assumed that:
 =2 S
 ;
0 2 S
 , 
 2 S
0 : (1)



6Let us denotes �S
 (
0) = � 1 if 
0 2 S
 ,0 otherwise.G

0(c) is the generation probability. It is the probability of generating
0 from a neibourghood of 
, S
 . It is given by:G

0 (c) = G

0 = �S
 (
0)� ; (2)where � = jS
 j, 8
 2 �.A

0 (c) is the acceptance probability. It is the probability of accepting 
0generated from S
 . It is given by:A

0 = � 1 if H(
0) < H(
),exp(H(
)�H(
0 )c ) if H(
0) � H(
). (3)P

0(c) denotes the transition probability, that is the probability of re-placing the current solution 
 by 
0. As a result of (2) and (3), it is givenby: P

0 (c) = � G

0A

0 (c) if 
 6= 
0,1�Pl2S l6=
 P
l(c) if 
 = 
0. (4)The algorithm is modeled as a Markov chain (Yl)l; Yl is the lth trial andP (c) is the transition matrix associated with the algorithm. The stationarydistribution is then de�ned by:q
(c) = liml!1P (Y (l) = 
=Y (0) = 
0); 8
0:The convergence proof works as follows (see for example Geman and Ge-man 1984, Gidas 1985, Hajek 1988):1. The temperature c is �rstly assumed to be constant. The Markov chain(Yl)l is then homogeneous. Under speci�cations (2), (3), (4) and if thefollowing condition holds:8
; 
0 2 �; 9p � 1; 9l0; :::; lp 2 �; l0 = 
; lp = 
0 :Glklk+1 > 0; 0 � k � p� 1; (5)the Markov chain is irreducible and aperiodic. It converges towards anunique stationary distribution.If the equation (1) holds, then the stationary distribution satis�es thedetailed balance equation:q
(c)P

0(c) = q
0(c)P
0
 (c); 8
; 
0 2 �:In that case, it can be shown that the distribution:q
(c) = exp(�H(
)=c)N0(c) ; 8
 2 �;



7with N0(c) =Xl2� exp[�H(l)c ];is the unique stationary distribution. Note that a weaker condition thancondition (1) exists in Hwang and Sheu (1992). With this condition, itis still possible to precise the stationary distribution. In any case, thestructure of the generation probability is the important point of theproof.2. The temperature c decreases. The simulated annealing algorithm isdescribed by combining the homogeneous Markov chains of �nite lengthinto one single inhomogeneous Markov chain. If the cooling is donesu�ciently slowly, the inhomogeneous Markov chain converges, whenc! 0, towards the uniform distribution on the set of global optima:q�
 = 1jS�j�S� (
):Strong ergodicity of the Markov chain is used to show the convergence.Isaacson and Madsen (1976) provide conditions for the strong ergodicityof a Markov chain. The Markov chain has to be weakly ergodic andthe stationary distribution for c �xed has to exist and has to satisfysome properties. For a detailed account and discussion of the origins ofthe various approaches commonly used, see for instance Catoni (1991).Another study (Miclo, 1996), based on the use of the relative entropy-distance and log-sobolev inequalities, leads to a simpler convergenceproof, and extends other which have been published.Application to an expectationConsider a simulated annealing algorithm with the objective function:Hn(
) = 1n nXi=1 f(Xi; 
):The temperature c is �xed. The speci�cations (1), (2), (3), (4) are used.The neigbourhood structure is de�ned to satisfy the condition (5). Then, thestationary distribution is:q
(c) = 1N0(c)exp� [ 1nPni=1 f(Xi; 
)c ];with N0(c) =Xl2� exp� [ 1nPni=1 f(Xi; l)c ]:The temperature c decreases. If the cooling is done su�ciently slowly, simu-lated annealing converges towards the set of global optima of Hn.



83 Weighted simulated annealingAs stated in the introduction, a weighted version is proposed in this sectionto reduce over-�t bias since we are interested in �nding a global minimum ofH. The weighted algorithm is detailed and its convergence is studied.3.1 The weighted algorithmThe aim of this adaptation is to avoid a minimum which would depend toomuch on the sample. This is done by introducing, at each step of the sim-ulated annealing, a small perturbation. Each new evaluated solution is ina neighbourhood of the initial sample. More precisely, at each step of thealgorithm, the cost function H(
) is estimated by:Hb(
; !) = 1n nXi=1 !if(Xi; 
);where the !i's are random weights such that Pni=1 !i = n. The weights areusually taken as the average of B multinomial random vectors formed from ndraws on n equally likely cells. The algorithm was presented yet in section 2.The di�erence is that each solution is a couple (
; !). When a new solutionis generated, new weights are generated. The acceptance probability andthe transition probability for a neighbour (
0; !0) of (
; !) are those of thestandard algorithm. The function Hb(
; !) is then a weighted estimation ofH(
). There is a similarity with the implementation of the bootstrap (Efron,1979) by Monte Carlo methods because of the multinomial random vectors.The di�erences are:� Each time the objective function is estimated in the algorithm, newweights are generated.� The optimization is performed once. With a Monte Carlo method ap-proximating the bootstrap, it would have been performed B times lead-ing each time to a di�erent solution of the optimization problem.The random generation of new weights at each step prevents from optimizingonly on the initial sample. This may lead to a less biased estimation of theobjective function at the end of the algorithm. Moreover, the additional com-putational cost of the algorithm is not important. It is mainly the generationof B vectors of random weights for each evaluation of the objective function.3.2 ConvergenceIn this section, we prove that the weighted version of the simulated annealingconverges towards the set of global optima of the objective function, withregards to an enlarged set of solutions. The enlarged set of solutions is:S = �� 
;



9
 is the set of vectors of weights ! = (!i)1�i�n with Pni=1 !i = n. Thenumber of solutions is still �nite because the weights are multinomial. Letus precise the new generation probability:The probability of generating (
0; !0) from (
; !) is:G(
;!);(
0;!0) = �S(
;!)(
0; !0)� Q(!0); (6)where � = jS
 j, 8
 2 � and Q(!0) is the probability of obtaining the vectorof weights !0. By construction, Q(!0) > 0; 8!0 2 
. The acceptance andtransitions probabilities are those of speci�cations (3) and (4) with:Hb(
; !) = 1n nXi=1 !if(Xi; 
):The results for the weighted simulated annealing are:1. The temperature c is constant. If the condition (5) is satis�ed for thestandard version, it is satis�ed for the weighted version: if Glklk+1 > 0then G(lk ;!)(lk+1 ;!0) > 0; 8!; !0 2 
 because all the weights are likelyto be generated at each step. Thus, the Markov chain is irreducible andaperiodic and converges towards an unique stationary distribution.The condition:G(
;!);(
0;!0) = G(
0;!0);(
;!); 8(
; !); (
0; !0) 2 S;does not hold with the generation probability (6) because all vectors! are not equally likely. For this reason, it is not easy to precise thestationary distribution. However, conditions of Hwang and Sheu (1992)can be used to prove the convergence. They introduce the generalizedsimulated annealing and propose the Hajek's condition to prove theconvergence. It can be shown that the Hajek's condition is satis�ed if:8(
; !); (
0; !0) 2 S; P ((
; !); (
0; !0)) > 0, P ((
0; !0); (
; !)) > 0:This condition is satis�ed with the generation probability (6).2. The temperature c decreases. If the cooling is done su�ciently slowly,the inhomogeneous Markov chain converges, when c! 0, towards somedistribution on the set of global optima of �� 
:The homogeneous Markov chain converges towards a stationary distri-bution because the optimization is performed on � � 
. However, the biasreduction comes from the following point: each possible vector of weights isin a neighbourhood of the current vector of weights. So the optimization isnot really performed in ! since previous solutions in ! are forgotten. Theperturbation only allows not to strongly depend on the initial sample in orderto reduce the bias.



104 Application in Quality Control4.1 The problemAfter manufacturing, electronic devices are tested in order to make sure thatthe products meet the speci�cations. The control consists in a number ofelectrical measurements. Assume that the cost of each measurement (alsocalled test) is known. Assume also that the cost of an undetected bad partis known. Savings are possible by reducing the number of tests but theproportion of bad parts undetected will increase. Thus there is a trade-o� between the cost of the test and the cost of undetected bad parts inorder to minimize the total manufacturing cost. The selection of the teststhat optimize this objective function is a combinatorial optimization problemsolved by the simulated annealing and genetic algorithm. Let us introducesome de�nitions to precise the problem:� q is the original number of tests.� A test combination 
 is a vector of length q. 
i = 1 means that the testi is in the combination, 
i = 0 means that i is not in the combination.� The domain space for 
 is: � = f0; 1gq:� 
p is the present test sequence, that is 
pi = 1, 8i.� TC(
) is the test cost per lot generated by 
.� UC(X; 
)) is a random variable. It represents the cost of the undetectedbad parts for the lot X.� f(X; 
) represents net savings per lot:f(X; 
) = TC(
p)� TC(
) � UC(X; 
):� The objective function is then:H(
) = E[f(X; 
)]:The function H(
) is to be maximized. According to the de�nitions of thesections 2 and 3, H(
) is estimated by Hn(
) or Hb(
; !) on a sample oflots taken from the production. The number of test combinations is 2q andq ranges from 7 to 700 depending on the product. An exhaustive search isimpossible for most products because the computational cost grows exponen-tially with q. For q < 100, a step by step technique can be used (Bergeretand Chandon, 1995), but for q � 100 the results depend strongly on theinitial solution. Stochastic algorithms are then used in order to approachthe global minimum of the objective function. In the next section, a geneticalgorithm is presented in order to compare it with the simulated annealingon this real-world problem.



114.2 Genetic algorithmsGenetic algorithms are widely used in many applications (Davis, 1991). Theyare based on the evolution process: the stronger individuals survive as thegenerations go on. A solution of the optimization problem is equivalent toan individual. The individuals are grouped in a population, they are crossed,muted and eventually selected according to their �tness value. This cycle isrepeated for each generation of the algorithmand stops when no improvementis possible.The crossover and mutation operators allow the exploration of new re-gions in the domain space. The crossover works on two individuals of thepopulation to generate two new individuals. It occurs with a certain proba-bility. Mutation makes a small change on a single individual. It occurs with asmall probability. As the generations go on, the individuals in the populationare better and better because the selection mechanism keeps the best individ-uals for the next generation. To our knownledge, Cerf (1994) gives the �rstconvergence results for the genetic algorithm to converge, as time goes on,to the global minima of the �tness function. More precisely, Cerf proposed amodel for genetic algorithms and formulated the conditions underwhich sucha model may be immersed into a generalized simulated annealing framework.Then, he gives several conditions on the rates of decrease of the correspond-ing cooling schedule to ensure all the particles visit the set of global minimain �nite time or as time goes on, when the number of particles is greater thana critical value.4.3 Algorithms optimization by design of experimentSome parameters of the algorithms have to be tuned for a �nite-time im-plementation of the algorithms. Typical values for these parameters can befound in applications (Davis, 1987) but there is no general theory to �x them.In addition, the best values for these parameters may depend on the prob-lem. For these reasons, we decide to run 2 designs of experiment, one foreach type of algorithm (simulated annealing and genetic algorithm). Theyhave two main advantages:� Changes in the parameters values are organized. Thanks to the or-thogonality of the design, the analysis of variance (ANOVA) allows toestimate each e�ect independently of the other e�ects.� Several parameters are changed together. For some designs it is possibleto analyze the interactions between the parameters.An exponential cooling schedule is chosen for the simulated annealing algo-rithm. Such schedules are easy to code and we know (Catoni, 1992) thatthey are much faster than the logarithmic cooling schedule. It has three pa-rameters: the decrement coe�cient �, the minimum number of transitions



12Factor Lower level Higher level� 0.8 0.95La 60 120Lmax 200 300Table 1: Levels of the factors for the simulated annealing algorithm.Factor Lower level Higher levelm 100 500pc 0.5 0.9pm 0.001 0.005ng 25 50Table 2: Levels of the factors for the genetic algorithm.for k �xed, Lamax and the maximum number of proposed transitions Lmax.We also use a standard genetic algorithm with four parameters: the popula-tion size m, the number of generations ng, the probabilities of crossover andmutation, pc and pm. These parameters will be the factors of the ANOVA.The factors are assigned two levels, low and high. Generally, these levels arethe extreme values found for these parameters in other applications. We �ndin table 1 and table 2 the levels selected for simulated annealing and geneticalgorithm. There are two response variables: the value of the objectivefunction at the minimum and the execution time. The experiment was donewith 94 tests on a device which represents a wide range of devices. Furtherexperiments were done on other devices in order to con�rm the results. Inaddition, the objective function for the experiment is Hn(
). A full factorialis used in both cases in order to analyze all the interactions; 23 experimentsare necessary for the simulated annealing and 24 for the genetic algorithm.We give the results of the analysis of variance (NS means that the factor is notsigni�cant at the 5 % level, sign. means that the factor is signi�cant). Theresults are given in tables 3 and 4. For the simulated annealing algorithm, itis interesting to see that there is no signi�cant factor on the minimum. Asthe three factors and an interaction are signi�cant on the execution time, itis possible to �x the values at their lower level. It will reduce the executiontime without e�ecting the quality of the result.For the genetic algorithm, the signi�cant factors are ranked according tothe F-ratio:1. The most important factor is the size of the population. The minimumis 87 on average for m = 100 and 100 on average for m = 500. Thisfactor is also signi�cant on the execution time, m = 500 leads to a



13Factor Minimum Execution time� NS sign.La NS sign.Lmax NS sign.Interaction �:La NS sign.Other interactions NS NSTable 3: Results of the ANOVA for simulated annealing.Factor Minimum Execution timem sign. sign.pc sign. NSpm NS NSng NS sign.Interaction m:ng sign. sign.Other interactions NS NSTable 4: Results of the ANOVA for the genetic algorithm.longer time.2. pc is also signi�cant on the minimum but not on the execution time.pc = 0:9 gives better results.3. The interaction m:ng is signi�cant on both response variables. To im-prove the minimum, one may �x the two parameters at their highervalue. However this will increase strongly the execution time.More experiments have to be carried in order to test other values for theparameters. Nevertheless, the parameters can be �xed in order to improvethe minimum. If a parameter is not signi�cant on the minimum we �x it toreduce the execution time. The parameters being optimized, we can comparethe algorithms.5 Comparison of the algorithmsTwo problems have to be solved: the selection of the best algorithm foroptimization purposes, and the estimation of the objective function in orderto reduce the bias that may occur when the same sample is used to optimizeand to estimate. The comparison of the algorithms is �rst done on Hn(
)which is the natural estimation ofH(
). When the best algorithm is selected,the simple version and the weighted version are compared.



14q Genetic algorithm Simulated annealing19 94 (4.5) 100 (0.2)69 96 (2.6) 100 (1.7)94 99 (2.6) 100 (0.4)452 93 (3.2) 100 (0.9)Table 5: Quality of the solutionq Genetic algorithm Simulated annealing19 6 269 598 4094 683 44452 1730 191Table 6: Execution time (minutes)5.1 Simulated annealing versus genetic algorithmWe �nd a comparison of the genetic algorithm and simulated annealing inPark and Carter (1995). For the max-clique problem, they conclude that sim-ulated annealing is better than the genetic algorithm, both for the quality ofthe solution and for the time complexity. In order to compare the algorithmson a real world problem, we test them on the objective function presentedin 4. Four devices are used. They represent the range of the complexity ofthe optimization problem, that is the number of tests. The results are theaverage on three replications, the standard deviation is given in parentheses.Moreover, the result are normalized to 100 for the minimum. The results forthe execution time are given in minutes. They represent the execution timeon an Apollo 400 workstation.In all the cases of the table 5, simulated annealing outperforms the geneticalgorithm. The di�erence for the quality of the solution is 7 % for the complexdevice. In addition, the results for simulated annealing are less variable,which is very important in a real-world problem because one cannot a�ordseveral runs of the algorithm. Execution times are much longer for the geneticalgorithm, see table 6. We can argue that the parameters are set at valuesthat increase the execution time. However this is not su�cient to reach theminimum of the simulated annealing. To see more precisely the e�ect of thepopulation size on the quality of the solution, m is increased in the geneticalgorithm, see �gure 1. As the result of the ANOVA showed an interactionbetween m and ng, the number of generations is always set at its higher level,ng = 50.
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0Figure 1: The e�ect of the population size on the genetic algorithm.The quality of the solution (OPT) increases when m is increased from 100to 500. When m is greater than 500, there is no signi�cant improvement. Thebest result is for m = 1000 but is does not reach the result of the simulatedannealing (100); 52 hours are necessary to obtain this solution when thesimulated annealing takes less than one hour. We do not test higher valuesfor m and ng because of their computational cost. However, we can concludethat on this problem, simulated annealing is more e�cient than the geneticalgorithm.5.2 Simulated annealing versus weighted simulated an-nealingThe conclusions of the previous section show that simulated annealing is moree�cient than the genetic algorithm. So we concentrate on a weighted versionof simulated annealing. Note that a weighted version of the genetic algorithmis also possible by estimating H(
) by Hb(
; !) for each individual of thepopulation. To estimate the bias, we use a test sample (ts). Suppose that
� is built with n lots, the learning sample; n0 additional lots, independentof the learning sample, are then used to have an unbiased estimation of the



16n Standard algorithm Weighted version50 1.43 0.95100 0.62 0.49150 0.99 1.02Table 7: Bias estimationobjective function: Hts(
�) = 1n0 n0Xi=1 f(Xi; 
�):Hts(
�) is unbiased for H(
�) because the empirical average is an unbiasedestimation of the expectation and because the test sample is independent ofthe learning sample. The bias for Hn(
�) is then estimated bybBn = Hn(
�) �Hts(
�):Empirical results on the devices of the section 5.1 show that the bias in-creases with the number of tests. When there are few tests, yields (proportionof good devices) are higher and less variable: with regards to the bias, theresults for the weighted algorithm are very close of the results of the standardalgorithm. When there are a lot of tests, yields are more variable and thenumber of undetected bad parts is far too optimistic when estimated on thelearning sample. So, next results are for a very complex device which has619 tests. The table 7 compares the results for di�erent learning sample size.They are obtained with the standard simulated annealing and the weightedversion. The weights are the average of 30 multinomial random vectors fromn draws on n equally likely cells. The test sample size is always n0 = 100. Itconsists of the same lots. Surprisingly, the bias is not a decreasing function ofthe learning sample size. Some of the tests were only selected when n = 100and these tests rejected devices in the test sample. For n = 50 or n = 150,the bias was then increased.We can observe that the bias estimation is reduced by 34% with theweighted version when the learning sample size is small (n = 50). Thedi�erence decreases when n = 100 with a 21 % reduction. When n = 150 thebias estimation is slightly higher for the weighted version. It means that thesample size is large enough and the weights does not improve the estimations.The number of tests in the optimal test sequence is higher for the weightedalgorithm. For the device with 619 tests, Hts(
�), which is an unbiasedestimation of expected net savings, is slightly lower for the weighted versionof simulated annealing. However, for the implementation of the optimal testsequence, engineers may be interested in reducing the number of undetectedbad devices and the weighted algorithm may be useful.



176 DiscussionThe adjustment of the parameters of the algorithms by design of experimenthas been very useful. Faster simulated annealing does not have a negativee�ect on the optimization. On the opposite, the genetic algorithm has to runfor a long time in order to improve its e�ciency.Simulated annealing is more e�cient than the genetic algorithm on thetest optimization problem. This result may depend on the form of the objec-tive function. It seems that the objective function for the test problem doesnot have too many local optima:� comparisons with a step by step technique were made on a complexdevice (619 tests). The results are better for simulated annealing butthe di�erence is not very important.� the results of the design of experiment allow to decrease quickly thetemperature for the simulated annealing without a�ecting the qualityof the optimization.The genetic algorithm may be more e�cient when the objective function ismore chaotic because it allows the exploration of new solutions very di�erentof the previous ones. Other comparisons have to be done on other problemsin order to con�rm the superiority of simulated annealing.Experiments show that the weighted simulated annealing reduces the bias.The idea is that the stationary distribution for the weighted version is betterin a certain sense. The behavior of this distribution is now studied. Moreprecisely, the weighted algorithm may be more e�cient for the optimizationof an expectation.
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