Simulated annealing, weighted simulated an-
nealing and genetic algorithm at work

Francois Bergeret! and Philippe Besse?

"Motorola Semiconducteurs S.A., avenue Eisenhower, 31023
Toulouse Cedex, France

?Laboratoire de Statistique et Probabilités, U.M.R. CNRS 5583,

Université Paul Sabatier, 31062 Toulouse cedex France

Summary

Two well known stochastic optimization algorithms, simulated annealing
and genetic algorithm are compared when using a sample to minimize an
objective function which is the expectation of a random variable. Since they
lead to minimum depending on the sample, a weighted version of simulated
annealing is proposed in order to reduce this kind of over-fit bias. The al-
gorithms are implemented on an optimization problem related to quality
control. A design of experiment is used to get the best trade-off between
optimization and execution time. Simulated annealing appears to be more
efficient than the genetic algorithm. With regard to the bias problem, the
randomly weighted version of simulated annealing allows to achieve a solu-
tion less dependent on the sample and thus less biased.

Keywords: stochastic optimization, quality control, design of experiment.

1 Introduction

Stochastic optimization aims at finding the global minimum of an objective
function. Simulated annealing (Kirkpatrick and al., 1983) and genetic algo-

rithm (Holland, 1975) are two stochastic algorithms. The execution time of
such algorithms is high in order to approach the global minimum. They are
widely used in many applications (Davis, 1987) but few comparisons exist.
We are interested in finding an optimal test sequence in quality control. Tt is
a combinatorial optimization problem whose objective function can be mod-
eled as the expectation of a random variable. The expectation depends on
a parameter v which belongs to a finite set ®; X is a random variable that
modelizes the production. The expectation is taken over X and is unknown
because the distribution of X is unknown. The problem is
min B[f(X, 7)].

Since the function H(y) = E[f(X,v)] is usually not “convex” in 7, global
optimization algorithms are used in order not to get stuck in a local minimum.
To estimate the expectation, a sample is used: (X71,..., X,,) are independent
and identically distributed. This sample remains fixed for all the study. The
natural idea is to estimate I () by the sample average:

() = = 3 F5,2).

In this paper, we aim at:
e adjusting the parameters of the algorithms,
e comparing the algorithms,

e reducing over-fit bias that may occur because the same sample is used
to optimize and to estimate.

The adjustment of the parameters is done by design of experiment. The
comparison of the algorithms shows that simulated annealing is more efficient
than the genetic algorithm on the test optimization problem. A randomly
weighted version of simulated annealing is then proposed to reduce over-fit
bias: the objective function is estimated on a weighted sample. Numerical
experiments show that this version reduces the bias.

We introduce notations and main results about simulated annealing in
section 2. The weighted version of simulated annealing is presented in section
3. The implementation of the algorithms is detailed in section 4 and practical
comparisons (simulated annealing versus genetic algorithm and simulated
annealing versus weighted simulated annealing) are presented in section 5.
Main results are discussed in section 6.

2 Simulated Annealing

Simulated Annealing (see Aarst and Korst, 1989) uses a direct analogy with
the physical annealing process of solids which consists in two steps:

e Increase quickly the temperature to a maximum value at which the
solid melts. The particles are randomly arranged.

e Decrease slowly the temperature until the particles arrange themselves
in the ground state of the solid. The energy is then minimal.

In optimization, a solution is equivalent to a state of the physical system
and the cost function we want to minimize is equivalent to the energy of a
state. At the beginning of the algorithm, all the solutions are accepted. As
the algorithm evolves; the probability of accepting deteriorations decreases
with the temperature. At the end of the algorithm, only improvements are
allowed and the system is considered to be frozen.

2.1 The algorithm

The following notations are necessary to define the algorithm:
e g is the initial (random) solution,
e 7 is the current solution,

e ~' is a neighbour of v, that is a solution which is close to v in some
sense,

e k is the iteration number of the changes of temperature,
e ¢ is the control parameter and plays the role of the temperature,
e a proposed transition is a neighbour visited,

e an accepted transition is the transformation of the current solution into
a new one,

e [is the number of proposed transitions for k fixed,
o L is the number of accepted transitions for & fixed.
The algorithm has two nested loops:

e An outer loop on k to control the temperature c;. The algorithm exits
this loop when a stopping criterium is satisfied.

e An inner loop 1s used to visit new solutions for & fixed. The algorithm
exits this loop if one of the two following conditions is satisfied:

1. the number of accepted transitions L{ reaches a certain value
a
Lmaxa

2. the number of proposed transitions Lj reaches a certain value

Lmax;

L& e and Ly, .. are two parameters of the algorithm. They are fixed. At each
step of the inner loop, the algorithm generates a neighbour solution 4’ of the
current solution v and compares the values of the objective function for the
two solutions. Improvements of the objective function are always accepted
in order to reach the minimum. Deteriorations in cost are accepted with the

acceptance probability

H(y) = H(y")

Ay (ex) = exp().

Let us remark that this probability depends on the difference H(y) — H(y'):
too strong deteriorations are not allowed in order not to loose the previous
information. It also depends on the control parameter ¢ which is very impor-
tant: at the beginning ¢ is large and the domain space is visited randomly,
then ¢ 18 slowly decreased to visit lower energy regions and to escape from
local minima. As ¢ goes to 0, only improvements are allowed and the algo-
rithm behaves like local search algorithms. In a pioneering work, S. Geman
and D. Geman (1984) prove that suitable inverse cooling schedules ensure
the convergence of the chain to a global minimum. More precise studies are
the papers of Hajek (1985, 1988) and Tsitsiklis (1989). They give simple suf-
ficient and necessary conditions on the cooling schedule ¢ for the algorithm
to converge in probability to the global minima. Sharper estimates can be
found in Catoni (1991), Chiang and Chow (1988) and various exensions can
be found in Trouvé (1993), Hwang and Sheu (1992), Bélisle (1992). From a
practical point of view, the essential problem is to choose the cooling schedule
so that the convergence occurs as fast as possible. More over Catoni (1991)
studies optimal cooling schedules given a finite-time execution. A finite-time
implementation of the algorithm is now presented in the next section.

2.2 The cooling schedule

Some parameters of the algorithm were defined in the previous section. The
evolution of these parameters is controlled by a cooling schedule. A cooling
schedule specifies:

e an initial value of the control parameter ¢,

a decremental function for decreasing the value of ¢,

a stop criterion for the objective function,
e a finite number of transitions for each value of ¢.

Following this definition, several cooling schedules have been proposed in the
literature. The most famous is the original schedule from Kirkpatrick and al.

(1983):

e g is initialized such that the acceptance ratio r = L%/ Lg is close to one.
In practice, before the algorithm starts, different values of ¢ are tested,
in increasing order; at each attempt, the corresponding value of the
acceptance ratio r increases because ¢ increases. When the observed r
is close to one (e.g. r > 0.99), the corresponding value of ¢ is taken as
the starting point ¢g.

e The decremental function is
Cp = a X Cp—1,
a usually lies between 0.8 and 0.95.

e The algorithm is terminated if the value of the cost function remains
unchanged for a number of consecutive iterations.

e Asit has been told in 2.1, the value of ¢, is decreased if at least a number
L& .. of transitions are accepted for k fixed. However this requires
Ly — oo when ¢; — 0 because, when ¢ is close to 0, almost only
improvements are accepted. This is why, as there are few improvements
because the current solution is nearly optimal, Lj is also bounded by

some constant L,,qz-

With this cooling schedule the temperature decreases exponentially with & |
that is (assuming lno ~ o — 1):

cx = coexpl(o — 1)k].

Another cooling schedule specifies a logarithmic decrement of the tempera-
ture:

ey = dflog(k).

From a practical point of view, the essential problem is to choose the cooling
scedule so that the convergence occurs as fast as possible. In a recent paper
Catoni (1992) study optimal cooling schedules given a finite time execution.
He shows that the exponential schedule is better as long as the execution
time is finite.

2.3 Convergence

To provide conditions for the convergence of simulated annealing towards the
set S* of global minima of H, the following specifications are needed.
S 1s the set of neighbours of 4. It is assumed that:

7% S’Ya
v €Sy & vESy. (1)

Let us denotes ’
n o 1 if S S’Ya
xs,(7) = { 0 otherwise.

Gy (c) 1s the generation probability. It is the probability of generating
v' from a neibourghood of v, S. It is given by:

Gyyi(c) = Gyy =) (2)

where © = |S,[, Vv € .
A (c) is the acceptance probability. It is the probability of accepting v/
generated from S,. It is given by:

e) < 1),
AW"{ erp(TO=HO0) if f(y) > H(y). ®)

c

P,i(¢) denotes the transition probability, that is the probability of re-
placing the current solution y by 7'. As a result of (2) and (3), it is given

by:
G Ay () ity #
Po(e) = ! Ay :) 4
() { 1_2155 I#£7y Pyle) ify=+")
The algorithm is modeled as a Markov chain (¥7);; Y7 is the It trial and

P(c) is the transition matrix associated with the algorithm. The stationary
distribution is then defined by:

5 (e) = Jim PY() = /Y (0) =), ¥4

The convergence proof works as follows (see for example Geman and Ge-

man 1984, Gidas 1985, Hajek 1988):

1. The temperature c 1s firstly assumed to be constant. The Markov chain
(Y7); is then homogeneous. Under specifications (2), (3), (4) and if the
following condition holds:

VPV’PV/ € q)a Elp Z 1a EllOa "'alp € q)a 10 =7, lp = 7/ :
lelk+1 >0, 0<k<p-1, (5)
the Markov chain is irreducible and aperiodic. It converges towards an
unique stationary distribution.

If the equation (1) holds, then the stationary distribution satisfies the
detailed balance equation:

¢+(€) Py (c) = gy () Pyy (c), Vy,7' € @.
In that case, 1t can be shown that the distribution:

_ exp(=H(y)/c)

Q’Y(C) - NO(C) bl VP}/ E q)a

with)

Nyle) = exp|l——=|,

() ; [-—]

1s the unique stationary distribution. Note that a weaker condition than
condition (1) exists in Hwang and Sheu (1992). With this condition, it
is still possible to precise the stationary distribution. In any case, the
structure of the generation probability is the important point of the
proof.

2. The temperature ¢ decreases. The simulated annealing algorithm is
described by combining the homogeneous Markov chains of finite length
into one single inhomogeneous Markov chain. If the cooling is done
sufficiently slowly, the inhomogeneous Markov chain converges, when
¢ = 0, towards the uniform distribution on the set of global optima:

. 1
9y = WXS*(’W

Strong ergodicity of the Markov chain is used to show the convergence.
Isaacson and Madsen (1976) provide conditions for the strong ergodicity
of a Markov chain. The Markov chain has to be weakly ergodic and
the stationary distribution for ¢ fixed has to exist and has to satisfy
some properties. For a detailed account and discussion of the origins of
the various approaches commonly used, see for instance Catoni (1991).
Another study (Miclo, 1996), based on the use of the relative entropy-
distance and log-sobolev inequalities, leads to a simpler convergence
proof, and extends other which have been published.

Application to an expectation

Consider a simulated annealing algorithm with the objective function:

Hy(y) = %Zf(Xm)

The temperature ¢ is fixed. The specifications (1), (2), (3), (4) are used.
The neigbourhood structure is defined to satisfy the condition (5). Then, the
stationary distribution is:

_ 1 %Z?:l f(XiaPY)
qv(c)_No(C)el‘p—[c

1,
with

1 n
n 1= f Xlal
Nofe) = 3 eap — 2= XDy
led
The temperature ¢ decreases. If the cooling is done sufficiently slowly, simu-

lated annealing converges towards the set of global optima of H,,.

3 Weighted simulated annealing

As stated in the introduction, a weighted version is proposed in this section
to reduce over-fit bias since we are interested in finding a global minimum of
H. The weighted algorithm is detailed and its convergence is studied.

3.1 The weighted algorithm

The aim of this adaptation is to avoid a minimum which would depend too
much on the sample. This is done by introducing, at each step of the sim-
ulated annealing, a small perturbation. Each new evaluated solution is in
a neighbourhood of the initial sample. More precisely, at each step of the
algorithm, the cost function H (%) is estimated by:

1 n
b . X :
H (PYaw) = n;_lwzf(za7)a

where the w;’s are random weights such that Y ., w; = n. The weights are
usually taken as the average of B multinomial random vectors formed from n
draws on n equally likely cells. The algorithm was presented yet in section 2.
The difference is that each solution is a couple (y,w). When a new solution
is generated, new weights are generated. The acceptance probability and
the transition probability for a neighbour (v/,w’) of (y,w) are those of the
standard algorithm. The function H®(y,w) is then a weighted estimation of
H(5). There is a similarity with the implementation of the bootstrap (Efron,
1979) by Monte Carlo methods because of the multinomial random vectors.
The differences are:

e Each time the objective function is estimated in the algorithm, new
weights are generated.

e The optimization is performed once. With a Monte Carlo method ap-
proximating the bootstrap, it would have been performed B times lead-
ing each time to a different solution of the optimization problem.

The random generation of new weights at each step prevents from optimizing
only on the initial sample. This may lead to a less biased estimation of the
objective function at the end of the algorithm. Moreover, the additional com-
putational cost of the algorithm is not important. It is mainly the generation
of B vectors of random weights for each evaluation of the objective function.

3.2 Convergence

In this section, we prove that the weighted version of the simulated annealing
converges towards the set of global optima of the objective function, with
regards to an enlarged set of solutions. The enlarged set of solutions is:

S=®xQ,

Q is the set of vectors of weights w = (w;)i1<i<n Wwith 2?21 w; = n. The
number of solutions 1s still finite because the weights are multinomial. Let
us precise the new generation probability:

The probability of generating (y',w’) from (7y,w) is:

Xs ,w)(’)//aw/)
Gl o = — g ——Q), (6)

where © = |9,|, ¥y € ® and Q(w') is the probability of obtaining the vector
of weights w’. By construction, @(w’) > 0, Vw’ € Q. The acceptance and
transitions probabilities are those of specifications (3) and (4) with:

1 n
H(v,w) = gZ%f(Xz’,’ﬂ
i=1

The results for the weighted simulated annealing are:

1. The temperature ¢ is constant. If the condition (5) is satisfied for the
standard version, it is satisfied for the weighted version: if Gy, ., > 0
then G, w)(thgrw) > 0, Vw,w' € Q because all the weights are likely
to be generated at each step. Thus, the Markov chain is irreducible and
aperiodic and converges towards an unique stationary distribution.

The condition:

Gy, (v w) = Giyrwn, (re)s Y(1,0), (7, 0') €S,

does not hold with the generation probability (6) because all vectors
w are not equally likely. For this reason, it 1s not easy to precise the
stationary distribution. However, conditions of Hwang and Sheu (1992)
can be used to prove the convergence. They introduce the generalized
simulated annealing and propose the Hajek’s condition to prove the
convergence. It can be shown that the Hajek’s condition is satisfied if:

Vi, w), (v, W) €5, P((y,w), (v/,w)) > 0 P((+,&'), (v,w)) > 0.
This condition is satisfied with the generation probability (6).

2. The temperature ¢ decreases. If the cooling is done sufficiently slowly,
the inhomogeneous Markov chain converges, when ¢ — 0, towards some
distribution on the set of global optima of ® x Q.

The homogeneous Markov chain converges towards a stationary distri-
bution because the optimization is performed on ® x 2. However, the bias
reduction comes from the following point: each possible vector of weights is
in a neighbourhood of the current vector of weights. So the optimization is
not really performed in w since previous solutions in w are forgotten. The
perturbation only allows not to strongly depend on the initial sample in order
to reduce the bias.

10

4 Application in Quality Control

4.1 The problem

After manufacturing, electronic devices are tested in order to make sure that
the products meet the specifications. The control consists in a number of
electrical measurements. Assume that the cost of each measurement (also
called test) is known. Assume also that the cost of an undetected bad part
is known. Savings are possible by reducing the number of tests but the
proportion of bad parts undetected will increase. Thus there is a trade-
off between the cost of the test and the cost of undetected bad parts in
order to minimize the total manufacturing cost. The selection of the tests
that optimize this objective function is a combinatorial optimization problem
solved by the simulated annealing and genetic algorithm. Let us introduce
some definitions to precise the problem:

e ¢ is the original number of tests.

A test combination + is a vector of length ¢. 7; = 1 means that the test
¢ 1s in the combination, 7; = 0 means that ¢ is not in the combination.

e The domain space for ~ is:

& ={0,1}4.

4¥ is the present test sequence, that is v = 1, Vi.

TC(y) is the test cost per lot generated by 7.

UC(X,~)) is arandom variable. Tt represents the cost of the undetected
bad parts for the lot X.

F(X,7) represents net savings per lot:
f(X,7) =TCH") =TC(y) —UC(X,7).

The objective function is then:
H(y) = E[f(X,7)]-

The function H (%) is to be maximized. According to the definitions of the
sections 2 and 3, H(y) is estimated by H,(vy) or H®(y,w) on a sample of
lots taken from the production. The number of test combinations is 29 and
g ranges from 7 to 700 depending on the product. An exhaustive search is
impossible for most products because the computational cost grows exponen-
tially with ¢. For ¢ < 100, a step by step technique can be used (Bergeret
and Chandon, 1995), but for ¢ > 100 the results depend strongly on the
initial solution. Stochastic algorithms are then used in order to approach
the global minimum of the objective function. In the next section, a genetic
algorithm 1s presented in order to compare it with the simulated annealing
on this real-world problem.

11

4.2 Genetic algorithms

Genetic algorithms are widely used in many applications (Davis, 1991). They
are based on the evolution process: the stronger individuals survive as the
generations go on. A solution of the optimization problem is equivalent to
an individual. The individuals are grouped in a population, they are crossed,
muted and eventually selected according to their fitness value. This cycle is
repeated for each generation of the algorithm and stops when no improvement
is possible.

The crossover and mutation operators allow the exploration of new re-
gions in the domain space. The crossover works on two individuals of the
population to generate two new individuals. It occurs with a certain proba-
bility. Mutation makes a small change on a single individual. It occurs with a
small probability. As the generations go on, the individuals in the population
are better and better because the selection mechanism keeps the best individ-
uals for the next generation. To our knownledge, Cerf (1994) gives the first
convergence results for the genetic algorithm to converge, as time goes on,
to the global minima of the fitness function. More precisely, Cerf proposed a
model for genetic algorithms and formulated the conditions underwhich such
a model may be immersed into a generalized simulated annealing framework.
Then, he gives several conditions on the rates of decrease of the correspond-
ing cooling schedule to ensure all the particles visit the set of global minima
in finite time or as time goes on, when the number of particles is greater than
a critical value.

4.3 Algorithms optimization by design of experiment

Some parameters of the algorithms have to be tuned for a finite-time im-
plementation of the algorithms. Typical values for these parameters can be
found in applications (Davis, 1987) but there is no general theory to fix them.
In addition, the best values for these parameters may depend on the prob-
lem. For these reasons, we decide to run 2 designs of experiment, one for
each type of algorithm (simulated annealing and genetic algorithm). They
have two main advantages:

e Changes in the parameters values are organized. Thanks to the or-
thogonality of the design, the analysis of variance (ANOVA) allows to
estimate each effect independently of the other effects.

e Several parameters are changed together. For some designs it is possible
to analyze the interactions between the parameters.

An exponential cooling schedule is chosen for the simulated annealing algo-
rithm. Such schedules are easy to code and we know (Catoni, 1992) that
they are much faster than the logarithmic cooling schedule. It has three pa-
rameters: the decrement coefficient a, the minimum number of transitions

12

Factor | Lower level | Higher level
o 0.8 0.95
Lg 60 120
Lias 200 300

Table 1: Levels of the factors for the simulated annealing algorithm.

Factor | Lower level | Higher level
m 100 500
De 0.5 0.9
Pm 0.001 0.005
ng 25 50

Table 2: Levels of the factors for the genetic algorithm.

for k fixed, L%

max
We also use a standard genetic algorithm with four parameters: the popula-

tion size m, the number of generations n,, the probabilities of crossover and

and the maximum number of proposed transitions L, g .

mutation, p. and p,,. These parameters will be the factors of the ANOVA.
The factors are assigned two levels, low and high. Generally, these levels are
the extreme values found for these parameters in other applications. We find
in table 1 and table 2 the levels selected for simulated annealing and genetic
algorithm.
function at the minimum and the execution time. The experiment was done

There are two response variables: the value of the objective

with 94 tests on a device which represents a wide range of devices. Further
experiments were done on other devices in order to confirm the results. In
addition, the objective function for the experiment is H, (). A full factorial
is used in both cases in order to analyze all the interactions; 23 experiments
are necessary for the simulated annealing and 2* for the genetic algorithm.
We give the results of the analysis of variance (NS means that the factor is not
significant at the 5 % level, sign. means that the factor is significant). The
results are given in tables 3 and 4. For the simulated annealing algorithm, it
is interesting to see that there is no significant factor on the minimum. As
the three factors and an interaction are significant on the execution time, it
1s possible to fix the values at their lower level. It will reduce the execution
time without effecting the quality of the result.

For the genetic algorithm, the significant factors are ranked according to
the F-ratio:

1. The most important factor 1s the size of the population. The minimum
is 87 on average for m = 100 and 100 on average for m = 500. This
factor is also significant on the execution time, m = 500 leads to a

13

Factor Minimum | Execution time
o NS sign.
La NS sign.
Law NS stgn.
Interaction «.L, NS sign.
Other interactions NS NS

Table 3: Results of the ANOVA for simulated annealing.

Factor Minimum | Execution time
m stgn. stgn.
Pe sign. NS
Pm NS NS
ng NS sign.
Interaction m.n, stgn. stgn.
Other interactions NS NS

Table 4: Results of the ANOVA for the genetic algorithm.

longer time.

2. pe 1s also significant on the minimum but not on the execution time.
pe = 0.9 gives better results.

3. The interaction m.n, is significant on both response variables. To im-
prove the minimum, one may fix the two parameters at their higher
value. However this will increase strongly the execution time.

More experiments have to be carried in order to test other values for the
parameters. Nevertheless, the parameters can be fixed in order to improve
the minimum. If a parameter is not significant on the minimum we fix it to
reduce the execution time. The parameters being optimized, we can compare
the algorithms.

5 Comparison of the algorithms

Two problems have to be solved: the selection of the best algorithm for
optimization purposes, and the estimation of the objective function in order
to reduce the bias that may occur when the same sample is used to optimize
and to estimate. The comparison of the algorithms is first done on H,(7)
which is the natural estimation of H (). When the best algorithm is selected,
the simple version and the weighted version are compared.

14

q Genetic algorithm | Simulated annealing
19 94 (4.5) 100 (0.2)
69 96 (2.6) 100 (1.7)
94 99 (2.6) 100 (0.4)
452 93 (3.2) 100 (0.9)

Table 5: Quality of the solution

q Genetic algorithm | Simulated annealing
19 6 2
69 598 40
94 683 44
452 1730 191

Table 6: Execution time (minutes)

5.1 Simulated annealing versus genetic algorithm

We find a comparison of the genetic algorithm and simulated annealing in
Park and Carter (1995). For the max-clique problem, they conclude that sim-
ulated annealing is better than the genetic algorithm, both for the quality of
the solution and for the time complexity. In order to compare the algorithms
on a real world problem, we test them on the objective function presented
in 4. Four devices are used. They represent the range of the complexity of
the optimization problem, that 1s the number of tests. The results are the
average on three replications, the standard deviation is given in parentheses.
Moreover, the result are normalized to 100 for the minimum. The results for
the execution time are given in minutes. They represent the execution time
on an Apollo 400 workstation.

In all the cases of the table 5, simulated annealing outperforms the genetic
algorithm. The difference for the quality of the solution is 7 % for the complex
device. In addition, the results for simulated annealing are less variable,
which is very important in a real-world problem because one cannot afford
several runs of the algorithm. Execution times are much longer for the genetic
algorithm, see table 6. We can argue that the parameters are set at values
that increase the execution time. However this is not sufficient to reach the
minimum of the simulated annealing. To see more precisely the effect of the
population size on the quality of the solution, m is increased in the genetic
algorithm, see figure 1. As the result of the ANOVA showed an interaction
between m and ng4, the number of generations is always set at its higher level,

ng = 50.

15

OoPT
100

95

90

85

oopr
OON
oow
[e]e2
ooun
[e]e]o)]
oo~
o0om
e]e](s}
[e]e]ol

M

Figure 1: The effect of the population size on the genetic algorithm.

The quality of the solution (OPT) increases when m is increased from 100
to 500. When m is greater than 500, there is no significant improvement. The
best result is for m = 1000 but is does not reach the result of the simulated
annealing (100); 52 hours are necessary to obtain this solution when the
simulated annealing takes less than one hour. We do not test higher values
for m and ng, because of their computational cost. However, we can conclude
that on this problem, simulated annealing is more efficient than the genetic
algorithm.

5.2 Simulated annealing versus weighted simulated an-
nealing

The conclusions of the previous section show that simulated annealing is more

efficient than the genetic algorithm. So we concentrate on a weighted version

of simulated annealing. Note that a weighted version of the genetic algorithm

is also possible by estimating H(y) by H’(y,w) for each individual of the

population. To estimate the bias, we use a test sample (ts). Suppose that
y

~* is built with n lots, the learning sample; n’ additional lots, independent
of the learning sample, are then used to have an unbiased estimation of the

16

n | Standard algorithm | Weighted version
50 1.43 0.95
100 0.62 0.49
150 0.99 1.02

Table 7: Bias estimation

objective function:

i
n

1
HE () = — > F(Xi, 7).
i=1
H' (y*) is unbiased for H(y*) because the empirical average is an unbiased
estimation of the expectation and because the test sample is independent of
the learning sample. The bias for H, (v*) is then estimated by

~

Bn = Ha(y") — H*(y7).

Empirical results on the devices of the section 5.1 show that the bias in-
creases with the number of tests. When there are few tests, yields (proportion
of good devices) are higher and less variable: with regards to the bias, the
results for the weighted algorithm are very close of the results of the standard
algorithm. When there are a lot of tests, yields are more variable and the
number of undetected bad parts is far too optimistic when estimated on the
learning sample. So, next results are for a very complex device which has
619 tests. The table 7 compares the results for different learning sample size.
They are obtained with the standard simulated annealing and the weighted
version. The weights are the average of 30 multinomial random vectors from
n draws on n equally likely cells. The test sample size is always n’ = 100. It
consists of the same lots. Surprisingly, the bias is not a decreasing function of
the learning sample size. Some of the tests were only selected when n = 100
and these tests rejected devices in the test sample. For n = 50 or n = 150,
the bias was then increased.

We can observe that the bias estimation is reduced by 34% with the
weighted version when the learning sample size is small (n = 50). The
difference decreases when n = 100 with a 21 % reduction. When n = 150 the
bias estimation is slightly higher for the weighted version. It means that the
sample size is large enough and the weights does not improve the estimations.

The number of tests in the optimal test sequence is higher for the weighted
algorithm. For the device with 619 tests, H'*(y*), which is an unbiased
estimation of expected net savings, is slightly lower for the weighted version
of simulated annealing. However, for the implementation of the optimal test
sequence, engineers may be interested in reducing the number of undetected
bad devices and the weighted algorithm may be useful.

17

6 Discussion

The adjustment of the parameters of the algorithms by design of experiment
has been very useful. Faster simulated annealing does not have a negative
effect on the optimization. On the opposite, the genetic algorithm has to run
for a long time in order to improve its efficiency.

Simulated annealing is more efficient than the genetic algorithm on the
test optimization problem. This result may depend on the form of the objec-
tive function. It seems that the objective function for the test problem does
not have too many local optima:

e comparisons with a step by step technique were made on a complex
device (619 tests). The results are better for simulated annealing but
the difference is not very important.

e the results of the design of experiment allow to decrease quickly the
temperature for the simulated annealing without affecting the quality
of the optimization.

The genetic algorithm may be more efficient when the objective function is
more chaotic because it allows the exploration of new solutions very different
of the previous ones. Other comparisons have to be done on other problems
in order to confirm the superiority of simulated annealing.

Experiments show that the weighted simulated annealing reduces the bias.
The 1dea is that the stationary distribution for the weighted version is better
in a certain sense. The behavior of this distribution is now studied. More
precisely, the weighted algorithm may be more efficient for the optimization
of an expectation.

18

References

Aarst E. and Korst J. (1989), Simulated Annealing and Boltzmann ma-
chines, Wiley and sons.

Bélisle C. (1992), Convergence theorems for a class of simulated annealing
algorithms on R?, J. Applied Probability, 29, 885-895.

Bergeret F. and Chandon Y. (1995), Recherche d’une séquence de test opti-
male en controle de fabrication, Revue de Statistique Appliquée, XLIII,
3, 21-33.

Catoni O. (1991), Sharp large deviations estimates for simulated annealing
algorithms, Annales de ’Institut Henri Poincaré, 27, 3, 291-383.

Catoni O. (1992), Rates of convergence for sequential annealing: a large
deviation approach, in: R. Azencott Ed., Simulated Annealing: paral-
lelization techniques, Wiley and sons, 25-35.

Cerf R. (1994), Une théorie asymptotique des algorithmes génétiques, These
de Doctorat, Université Montpellier 2.

Chiang T.S. and Chow Y. (1988), On the convergence rate of annealing
processes, Siam J. Control Optimization, 26, No 6.

Davis L. (1987), Genetic Algorithms and Simulated Annealing, Pitman, Lon-
don.

Davis L. (1991), Handbook of Genetic Algorithms, Van Nostrand Reinhold,
New York.

Efron B. (1979), Bootstrap methods : another look at the jackknife, Ann.
Stat., 7, 1-26.

Geman S. and Geman D. (1984), Stochastic relaxation, Gibbs distribution,
and the Bayesian restauration of images. Institute of FElectrical and
Electronics Engineers. Transactions on Pattern Analysis and Machine
Intelligence, 6, 721-741.

Gidas B. (1985), Non stationary Markov chains and convergence of the
annealing algorithm, Journal of Statistical Physics, 39, 73-131.

Hajek B. (1985), A tutorial survey of theory and applications of simulated
annealing, IEEE Conference on Decision and Control.

Hajek B. (1988), Cooling schedule for optimal annealing, Mathematics of
Operations Research, 13, 311-329.

Holland J. (1975), Adaptation in Natural and Artificial Systems, University
of Michigan Press, Ann Arbor.

19

Hwang C.R. and Sheu S.J. (1992), Singular perturbed Markov chains and
exact behaviors of simulated annealing processes, Journal of Theoretical
Probability, 5, 223-249.

Isaacson D. and Madsen R. (1976), Markov Chains, Wiley.

Kirkpatrick S., Gellat C. and Vecchi M. (1983), Optimization by simulated
annealing, Science, 220, 671-679.

Miclo L. (1996), Remarques sur I’hypercontractivité et I’évolution de I’entro-
pie pour les chaines de Markov finies, to appear in J. Azéma P.A.
Meyer, and M. Yor editors, Séminaire de probabilité, Lecture notes in
Mathematics, Springer Verlag.

Park K. and Carter B. (1995), On the effectiveness of genetic search in
combinatorial optvmization, in Proc. 10th ACM Symposium on Applied
Computing, Genetic Algorithms and Optimization Track.

Trouvé A. (1993) Parallélisation massive du recuit simulé, These de doc-
torat, Université Paris XI.

Tsitsiklis J.N. (1989), Markov chains with rare transitions and simulated
annealing, Math. Op. Res, 14, 1.

