


Parameter optimization problem
 One of the most common problems in engineering.
 There is a set of variables, we are looking for optimum 

values of the variables, i.e. values that minimize or 
maximize a target function.
 Trivial example: We need to build a cylindrical 

container that will hold 400 dm3 of fuel. What are the 
dimensions of the container, so that the amount of 
material is minimized? 

S(r, h) = min, with r2h=400. r =?, h=?



Parameter optimization problem
 One of the most common problems in engineering.
 There is a set of variables, we are looking for optimum 

values of the variables, i.e. values that minimize or 
maximize a target function.
 Travelling salesman problem. What is the least-

cost trip that visits every city exactly once and 
returns to the one we start from?

 The target function to be 
minimized is the total distance 
to travel. The variables are 
more difficult to define, because 
this is a combinatorial problem.



Parameter optimization problem
 Another version of the travelling salesman problem: 

a robotic drill drills holes in a PCB. What is the shortest 
path to drill all the holes?

 Of course the direct search through all the permuta-
tions, the number of which grows as O(n!), is infeasible 
for larger n.



Parameter optimization problem
 One of the most common problems in engineering.
 There is a set of variables, we are looking for optimum 

values of the variables, i.e. values that minimize or 
maximize a target function.
 Knapsack problem. Given a set of items of defined 

value and weight, find out the number of each item to 
include, to obtain max total value, while not 
exceeding a total weight of W.

 The target function f() to be maximized 
could be the total value. The (integral) 
variables x1, x2, .., xn  could be the 
counts of items. To imply the bound of 
max weight, we could assume f = 0 if 
we overloaded.

Image by Wikipedia



Other optimization problems
 Given a large sheet of metal and a shape, how should 

we cut out the shapes so that the least metal is 
wasted?

?



Other optimization problems
 Given the past data from financial markets (e.g. foreign 

currency), find out a set of equations that best models 
the observed trends.



Parameter optimization problem
 In the end it all boils down to finding a global maximum 

(or minimum) of a certain, usually multivariable, function.
 Approach #1 – brute force search. Sample the function 

at n  points, distributed randomly or uniformly (or in 
some other way) and return the best point found. This 
only works if the dimensionality is low or the problem is 
discrete and the number of possible solutions is small.



Parameter optimization problem
 In the end it all boils down to finding a global maximum 

(or minimum) of a certain, usually multivariable, function.
 Approach #2 – gradient ("hill-climbing") methods. Use 

the information on function gradient to ascend along the 
gradient and find the “hilltop”.
 Need gradient information, whether analytical or 

numerical.
 If the function is multimodal, may get stuck in a local 

maximum. Need a starting “guess” point.
 Fails if the function is not 

well-behaved (derivative 
does not exist, function 
not continuous, etc.)



Parameter optimization problem
 In the end it all boils down to finding a global maximum 

(or minimum) of a certain, usually multivariable, function.
 Approach #3 – iterated search. Combines the first two 

approaches. Repeatedly climbs hills starting with 
different, randomly chosen points.
 Each trial is carried out in isolation, so it does not 

collect information on the overall shape of the 
function – the parts of domain that are of low interest 
are still sampled.



Parameter optimization problem
 In the end it all boils down to finding a global maximum 

(or minimum) of a certain, usually multivariable, function.
 Approach #4 – simulated annealing. A modified version 

of hill-climbing. We start from random point and try to 
make a random move. If the move takes us to a higher 
point – it is accepted. If not, it is accepted with a 
probability of p. The probability p  varies with time – 
starting from 1 and slowly going towards 0.
 Still works with only one 

candidate solution.



Some difficult functions
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Some difficult functions



Some difficult functions
 Most functions of high dimensionality.

 The search space for f (x
1
, x

2
, ..., x

400
) would be huge.



Basic idea behind genetic algorithms
 The previous approaches suffered from:

 investing all effort into one candidate solution only, or
 searching with many candidates, but blindly.

 How about a method which will try out many candidates 
and continually try to improve them?

 This is what evolution does – trying many genetic variations. 
Those which are successful are more likely to survive until 
reproductive stage. Failed "experiments" of nature do not live 
long (or do not reproduce). Thus successful genes 
reproduce, getting more chances to improve in the next 
generation.

 Set of possible genetic sequences ↔ search space.
 Good solutions ↔ highly fit organisms.



A bit of biology
 All living organisms consist of cells.
 Each cell*)  contains (inside the 

nucleus) one or more chromosomes 
– long strings of DNA that are the 
“blueprints” or “plans” for the 
organism.

 Human cells contain 23 pairs = 
46 chromosomes.

 DNA strings are ca. 1-2 m (!) long.

*) Red blood cells have no nucleus and contain no DNA. Here reside the 
chromosomes!

A “typical” cell 
(picture stolen)



A bit of biology
 Chromosomes can be conceptually 

thought as consisting of genes  – 
functional blocks of DNA, each of 
which encodes a particular protein. 
Roughly, we can imagine that each 
gene encodes a trait, e.g. eye colour.

 Different “settings” for a gene (like 
brown, blue, green for eye colour) are 
called alleles.

 Each gene is located at a particular 
position – locus, on the chromosome.

A chromosome
(picture stolen)



A bit of biology
 DNA encodes information as 

sequences of bases which act like 
letters of the alphabet. There are four 
bases – adenine (A), thymine (T), 
cytosine (C) and guanine (G). 

 The order in which the bases occur in 
the DNA defines the information 
carried.

 A typical gene is made up of 103-105

bases.
 A typical chromosome is made up of 

50-250 million bases.
 Typical number of genes: 50-100 

thousand.
Overview of the situation

(picture stolen)



A bit of biology
 The complete genetic make-up of an individual (his total 

"genetic package") is called the genotype. Different 
people would have differing genotypes.

 The physical and mental characteristics of an organism 
(like eye colour, brain size, height, intelligence, etc.) is 
called the phenotype. The phenotype is the result of 
inherited genotype and the action of environment 
(during fetal and later development).



What happens during sexual reproduction?
 Many interesting things, there are books, movies, poems 

and songs devoted to this... :)
 From the genetic point of view, however, two important 

things happen:
 crossover  (a.k.a. recombination), when the genetic 

material is mixed,
 mutation, where single nucleotides (elementary bits of 

DNA) are changed from parent to the child, usually 
due to copying errors.

 In haploid reproduction – mixing between genetic 
materials of parents at conception.

 In diploid reproduction – crossover inside each parent (!) 
to produce gametes  (single chromosomes), then 
gametes pair up at conception to produce diploid pairs.



So much for biology
 The moral of the story – evolution looks for fittest 

individuals, trying to solve a giant optimization problem 
of finding the best possible genetic make-up.

 Fittest individuals are given chance to reproduce, 
passing useful genes to their offspring.

 Thus the gene pool constantly improves, i.e. evolution 
is converging to better and better solutions.

 There are very many candidate solutions (like you and 
me and the neighbour's cat) evaluated all the time.

 This is the behaviour that we try to roughly mimic with 
genetic algorithms.



The artificial analog: encoding
 The first thing to do is to find a way to encode each 

possible solution to the problem we're solving as a set 
of "genes".

 Remember that a gene is nothing more than a string of 
symbols.

 In the artificial world typically only two symbols are used 
– 0 and 1.

 We need to find a way to encode parameter values as 
strings of 0s and 1s.

 The easiest way is to discretize the (scaled) parameters 
and treat them as binary numbers.



The artificial analog: encoding
 Let's concentrate on a simple example – we will try to 

find the maximum of a function of one variable: 
f(x) = -x2+25x on the interval x ∈<0, 16>.



The artificial analog: encoding
 There is an infinite number of values for x that need to 

be tested, but we have to concentrate on a finite 
subset, i.e. perform a discretization.

 Let's split the interval x ∈<0, 16> into, say, 1024 equal 
parts (subintervals), each being 0.015625=1/64 in 
length.

 Let's take x'=x*64 as our new parameter.

x:  0    0.015625  0.03125 0.046875 0.0625 ...

x':0         1         2         3         4



The artificial analog: encoding
 We now have f(x'), where x'∈<0, 1023>.
 x'=0 corresponds to x=0,
 x'=1023 corresponds to x=15.984375

(we've lost the rightmost point of the doman).
 There are now 1024=210 possible values for x'.
 That means that we can encode x' as a binary number:

x'∈<00000000002, 11111111112>.

x:  0    0.015625  0.03125 0.046875 0.0625 ...

x':0         1         2         3         4



The artificial analog: encoding
 That is, a chromosome of a length of 10 and an 

alphabet of “0” and “1” can store the (discretized) value 
of our parameter x.

 Candidate solutions (organisms) have various bitstrings 
as their chromosomes which represent various x's, e.g.

 A fitness function  tells us how good a solution an 
organism represents. Here we have simply chosen the 
fitness function to be equal to f(x), but in general we must 
ensure that it is nonnegative (usually scaling suffices).



The artificial analog: general procedure
Create an initial population:
1. Generate initial population of N  organisms, giving them random 

genotypes.
2. Compute the fitness of each individual.
3. Produce a new generation:

3.1 Select two organisms from old generation for mating,
selection is biased towards choosing the fitter ones.

3.2 Recombine the genetic material of two organisms with a probability 
pc, mutate the genetic material with a very small probability, creating 
a pair of children.

3.3 Compute the fitness of children, insert them into new 
population.

3.4 If the size of the new population is still smaller than the old 
population, go to 3.1

4. Replace the old population with the new one.
5. If satisfied with the fittest organism (solution), finish. If population 

converged (over 95% of individuals have the same genotype), finish. 
Otherwise go to 3.



The artificial analog
 This is exactly what evolution does, but there are 

several simplifications:
 children replace parents after a generation change,
 every time two children are produced,
 recombination (crossover) does not look at gene 

boundaries, genetic material is split blindly.
 Initial population need not have random genotypes – if 

we know part of the search space is more important, we 
may create more individuals with appropriate 
genotypes.

 The most important point – selection for mating is 
based on fitness – the fitter an individual is, the 
greater chances it has to reproduce.



Why this works, in simple words
 The basic two assumptions are:

 only the fittest individuals get a chance to reproduce,
 because of crossover, children will usually / often / 

sometimes be fitter that their parents. (Those which 
are not will likely not reproduce).

 That way the population evolves towards better (fitter) 
solutions.

 Thus the search is not blind – the solutions that are 
better are investigated more in the next generations.

 “Only the strongest will survive”.



Choosing the fittest – 
The fitness bias

 We need to select individuals for mating with a bias 
towards the fittest ones.

 Average mating count must be 1, because new 
population size must be the same as old population 
size.

 One simple way:
 calculate average fitness:           ,
 let individual i mate       times.
 the problem is, this number will generally not be an 

integer. How do you allow an organism to mate 1.65 
times?

 The canonical way is Stochastic Universal Sampling.

f =
∑
i=1

N

f i

Nf i / f



Stochastic Universal Sampling
 Assume the population is randomly laid on a pie graph, 

with the space on the pie graph being proportional to 
fitness.

 Place an outer roulette wheel around the pie graph with 
equally spaced N points.

 Spin the roulette 
wheel. 

 The N individuals 
that get to mate 
are instantane-
ously selected.



Details of 1-point crossover
 The mixing of the genetic material of the two parents.

 The chromosome is split into two parts at a random point. 
The resulting parts of chromosomes are interchanged.

 Crossover point may lie at gene boundary by chance, but in 
general it will not.

 Crossover occurs with a set probability pc (usually 0.6 < pc < 1). 
If there is no crossover, children are clones of their parents.

crossover 
point

crossover 
point



Other ways to cross-over
 2-point crossover.
 n-point (multipoing) crossover.
 Uniform crossover.

 No agreement on whether a single crossover method is 
apparently superior to the other methods. Some are 
more disruptive than others, which may or may not be a 
good thing, depending on the problem solved.
Detailed analysis: [2], p. 2-3.

 Note how shorter genes are less likely to be disrupted 
by crossover (non-uniform), while longer sequences will 
be split with a higher probability.

Illustration of 2-point crossover. 
Note how the genetic material wraps around.

Image taken from [2].



Why GAs work 
– a more mathematical approach

 Described on the blackboard:
 schema, instance of a schema.
 defined bits of a schema, defining length of a schema, 

order of a schema.
 How many schemata of length L are there?
 How many schemata does a bit string represent?
 How many schemata does a population represent?
 Implicit calculation of estimated average fitness of 

every H present in the population.
 Low-order as the key to surviving mutation.
 Short defining length as the key to surviving 

crossover.
 The Schema TheoremThe Schema Theorem.



Visualizing schemata



Visualizing schemata
All length-three strings can be 
arranged on the corners of a 3D cube.

All length-four strings 
can be arranged on the 
corners of a 4D cube 
(a hypercube).



Visualizing schemata

∗∗0



Visualizing schemata

∗∗1



Visualizing schemata

∗∗0



Visualizing schemata

∗∗1



Visualizing schemata

∗11



Visualizing schemata

∗1 0



Visualizing schemata

∗0 1



Visualizing schemata

∗∗∗0
is the outer cube

∗∗∗1
is the inner cube



Visualizing schemata

∗∗10



Visualizing schemata

∗∗11



Visualizing schemata
∗1 10

Thus 1-star schemata can 
be visualized as lines, 2-
star schemata as planes, 
3-star schemata as “3D-
planes” (hyperplanes) and 
so on...

Then, if we know that the 
GA samples many 
schemata at the same 
time (remember implicit 
parallelism) and each 
schema corresponds to 
many points (bitstrings)... 
we can visualize where 
the power of GA comes 
from.



Why GAs work 
– a more mathematical approach

Interpretation of the Schema Theorem (simplified):
Short defining-length, low-order schemata whose 
average fitness is above the average receive 
exponentially larger number of samples (instances 
evaluated) over time – because their number increases 

by a factor of             in each generation.

 Remember that we have only considered the 
destructive power of crossover and mutation, whereas 
they also have constructive power – especially 
crossover tries to combine good schemata to obtain 
even better schemata.

u H , t 
f t 



Why GAs work 
– a more mathematical approach

 Thus, when evaluating the fitness of the population of N 
strings, the GA implicitly evaluates the average fitnesses 
of all schemata that are present  in the population, and 
increases or decreases their representation according to 
the Schema Theorem.

 Selection acts in such a way, that more and more 
samples are rapidly given to the schemata whose fitness 
is (estimated to be) above average.

 Good schemata get exponentially increasing number of 
samples in subsequent generations.

 Poor schemata get exponentially decreasing number of 
samples in subsequent generations.



Why GAs work 
– a more mathematical approach

 The short defining length, low-order schemata with 
fitnesses above average are called building blocks – they 
act as partial solutions to the problem, as the solution 
candidates are composed of them.

 We found out that between 2l  and N·2l  schemata are 
represented in a population. How many  useful schemata 
evaluations  (evaluations of schemata that will survive to 
the next generation with a set, constant probability ps) 
are made at each time?

 It can be proven that this number is proportional to N3 
with the proportionality constant depending on ps.

 This is a suprising result if we keep in mind that we only 
need computer memory and time proportional to N.



Why GAs work 
– a more mathematical approach

 The conclusion that we get c·N3  useful schemata 
evaluations with a population of only N is termed implicit 
parallelism, reflecting the fact that GA implicitly evaluates 
many schemata simultaneously.

 The Building Block Hypothesis  is a less formal way of 
explaining the power of GAs. It simply states that GAs 
work by discovering, promoting and recombining good 
building blocks, in a highly parallel fashion. Here the 
building blocks can be simply thought of as 
“combinations of bits which confer higher fitness on the 
strings that contain them”. These building blocks do not 
necessarily need to have schemata representations, but 
schemata are easiest to think about.



Why GAs work 
– a more mathematical approach

 The role of the various parts of the GA algorithm can be 
summarized as follows:
 Selection  increasingly focuses the search on subsets 

of search space which have estimated above-average 
fitness. It simply pushes the search towards the 
regions which we think are more likely to contain good 
solutions.

 Crossover  tries to combine good building blocks on 
the same bit string to build strings of better and better 
fitness.

 Mutation  is an insurance policy against irreversibly 
losing genetic diversity at a certain locus. This is 
important if the population is too quickly dominated by 
copies of superfit individuals.



Exploration vs. exploitation
 The search is a constant struggle between two forces:

 exploration – the search for new, useful solutions,
 exploitation – using and propagating (exploiting) the useful 

solutions that have already been found.
 The struggle comes about because any move towards 

exploration (trying new solutions in the parts of search space 
that have so far given poor results) takes away time from 
exploitation  (concentrating on the good solutions found 
already). 

 The algorithm must balance these two forces:
 if we move too far towards exploration, we search blindly, 

not paying attention to the good results we have found 
already

 if we move too far towards exploitation, we may overadapt 
(get stuck in a local maximum and forget about trying new 
possibilities).



Why GAs work 
– a more mathematical approach

 The competition then moves from low-order schemata, 
to higher-order schemata as time proceeds. 

 The fact that selection rules change with time (because 
they depend on the current average fitness,  ) 
complicates the matters even more.

 In fact, until today we only understand the “rough 
general picture” of how it works.

f t 



Applications
– quick overview

 OptimizationOptimization, especially with otherwise difficult problems. 
We now understand well why they are applicable there. 
The PCB layout problem is a classic example.



Applications
– quick overview

 DesignDesign. This can involve a mix of combinatorial and 
functional optimization. For example the structure of a 
bridge must be designed so that it withstands a set of 
loads, has defined length and must be as cheap as 
possible. The combinatorial part involves designing the 
shape and then functional optimization deals with the 
dimensions of the components. GAs often try things that a 
human designer would never have thought of – they do 
not have preconceived ideas (“this is usually done like 
that” or "that is supposed to look like this") and are not 
afraid to experiment. Many alternative designs can be 
produced quickly, which are then assessed by human 
engineers. 



Applications
– quick overview

 Automatic programmingAutomatic programming. Evolving computer programs for 
specific tasks. The genetic algorithm can be used to 
evolve the rules of a cellular automaton with time, to 
create rules that better reproduce the desired behaviour.

 Population geneticsPopulation genetics. As a model for evolution. Attempts to 
answer questions like “under what conditions will a gene 
favouring recombination of other genes be evolutionally 
viable?”.

 Social systemsSocial systems, especially their evolutionary aspects. 
How does the social behaviour in insect colonies appear? 
Under what conditions will the agents in a multi-agent 
system communicate and cooperate?



Applications
– quick overview

 Combinatorial problemsCombinatorial problems. Recall the travelling salesman 
problem. GAs can find near-optimum solutions with cases of 
hundreds of cities. This can be used to find routes that are 
shortest or cheapest or fastest (or close-to-best) for train-
journey planners, GPS navigationdevices, etc..

 Combinatorial problemsCombinatorial problems – typically require different encodings 
than typical optimization (because of the discreteness). 

 Combinatorial problemsCombinatorial problems. Job-shop scheduling – there is a set 
of a resources in a company (such as machines, people and 
rooms) and a set of tasks, like manufacturing some batches 
goods. The resources must be assigned to task with the 
constraint that the same machine/person/room cannot be used 
to do two things at the same time. Cheapest, fastest, most 
efficient or otherwise “best” or “close-to-best” arrangements 
can be sought for with GAs.



More applications
 – parallel sort

 Sorting elements is fundamental to computer science.
 Many efficient method exist (e.g. QuickSort, HeapSort, 

MergeSort), but in the traditional formulations they are 
serial, i.e. work on a single processor.

 A parallel sorting technique, which could utilize many 
processors would be of interest, especially nowadays 
when parallel computing is becoming more popular.

 An example parallel implementation, which sorts 16 
elements follows.



More applications
 – parallel sort

 A parallel-sorting network (“Batcher sort”) for a list of n=16 elements. It takes k = 63 
compare-and-maybe-swap operations to sort the list. Comparisons that are in the same 
column can be made in parallel, so the time to sort would be that of (roughly) t = 26 
comparisons.
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e12

e13

e14

e15

means: “compare the 
two elements and swap 
them if they are not in 
the right order”



More applications
 – parallel sort

 Important questions:
 What is the minimal sorting network for this case (minimize k)?
 What is the minimal parallel sorting network for this case (minimize t)?
 How, in general, does one find minimal (or close-to-minimal) networks?
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More applications
 – parallel sort

 In 1962 Bose and Nelson developed a method of 
designing sorting networks for n  = 16, assuming k  =  65 
comparisons. They were fairly convinced that this was a 
minimum value.

 In 1964 Batcher discovered the network with k = 63 (the 
one shown in the picture). He was fairly convinced that this 
was the minimum value.

 In 1969 Shapiro constructed a network with k = 62. He 
knew better not to assume this was the minimum value.

 The same year Green found a network with k = 60. There 
is no proof that this is a minimal network.

 In late 1980's Hillis tried a GA on the problem.



More applications
 – parallel sort – Hillis' experiment

 Hillis tried to find the minimum network, not the most 
parallel version (so he optimized for k, not for t).

 The network can be encoded as ordered list of pairs, like 
(2,5), (4,2), (7,14), ...  – meaning first compare-and-
maybe-swap elements 2 and 5, then 4 and 2, then 7 and 
14 and so on.

 Every element number can be encoded in four bits:
<0, 15> → <00002, 11112>, so a pair can be encoded in 8 
bits.

 Hillis used a diploid representation. Each 8-bit gene coded 
one pair, but since the representation was diploid, two 
values (pairs) for each gene were stored. Draw on the blackboard.



More applications
 – parallel sort – Hillis' experiment

 If the alleles for the gene in both chromosomes were equal 
(“homozygous”), then it meant the (one) pair coded in the 
gene must be added to the network.

 If the alleles for the gene in both chromosomes were 
different (“heterozygous”), then it mean both (!) pairs must 
be added to the network (so no dominance).

 The length of the chromosome was 60 genes.
 That way networks for k between 60 (all homozygous) and 

120 (all heterozygous) were tested, Hillis hoped that the 
network will evolve to the k = 60 best-known network by 
gradually becoming all-homozygous.



More applications
 – parallel sort – Hillis' experiment

 Hillis cheated (or “used the knowledge about the problem 
domain to help the GA”) by starting from a population 
where the initial comparisons were encoded “right” – he 
noticed that almost all k = 60 sorting networks start from 
the same pattern of 32 comparisons.

 Note that a great majority of individuals will not represent 
correct networks – that is, they will describe networks that 
do not correctly sort numbers. Awarding all of them a 
fitness of 0 would be a mistake, it is better to give “partial 
credit” for getting part of the job done.

 Thus Hillis tested the networks on a set of input test-cases 
and awarded partial credit for the % of cases sorted 
correctly.



More applications
 – parallel sort – Hillis' experiment

 Notice how the fitness function depends only on “how correct 
the network is” and not on how short it is. Hillis claimed that 
shorter networks will be favoured implicitly, because a good 
comparison encoded in a heterozygous gene can be lost during 
crossover, whereas a homozygous gene will not lose it (he used 
more complicated crossover than we have used, since it was a 
diploid model).

 Also, Hillis placed his individuals on a 2D lattice, trying to 
improve speciation (differentiation) in the population – he hoped 
that groups of individuals living in different parts of his “world” 
would have genetic similarities “in the family”, but not across 
families. In this way he attempted to escape the scenario in 
which all (almost all) individuals represent very similar networks.

 Mating occured only within a “neighbourhood”.



More applications
 – parallel sort – Hillis' experiment

 Hillis had access to a large (at the time) parallel machine, 
so he could afford using large populations (he tried 
between 29=512 and 220=1048576 individuals). He ran the 
experiment for 5000 generations.

 His GA discovered the k=65 sorting network, but could not 
find the better ones (remember, best known has k=60).

 He was disappointed with the result and looked for 
reasons that could have led to GA getting stuck in one of 
the local optima.

 One convincing reason was that the test-cases were not 
difficult enough  – once the GA found a network that 
worked on all test-cases, the selection pressure dropped 
radically. Nature thought “It works, so why improve it?”.



More applications
 – parallel sort – Hillis' experiment

 So Hillis took another hint from biology and looked at 
biological “arms races”, such as host-parasite interactions.

 When a parasite is successful in exploiting weaknesses in 
host organisms, the host tries to evolve a defence to the 
parasite. As soon as it evolves, the parasite tries to evolve 
a way to go around the new defence, a better way to enter 
the host and this “arms race spiral” continues.

 Using an analogy, Hills made the test cases live on the 
same 2D grid that his networks lived on, and made them 
evolve to become more difficult as the networks got better. 
So the test cases got harder and harder and tried to 
exploit any weaknesses in the sorting networks. 

 That forced the population to keep changing.



More applications
 – parallel sort – Hillis' experiment

 The result was the discovery of a k = 61 sorting network...
 Thus, a major improvement when compared to the first 

model, yet a disappointing one comparison from the best 
human result. So “close, but no cigar.”



More applications – study of evolution,
the Baldwin Effect

 More applications of GA to study biological processes.
 Two well-known adaptive processes in biology:

 evolution – adapting life per se  on Earth in the long-
term, across 109 years,

 individual learning – adapting the behaviour of every 
individual during the course of its life, across 100-102 
years.

 Do these two processes interact? If so, how?



More applications – study of evolution,
the Baldwin Effect

 The Lamarckian hypothesis (1801).
 Lamarck postulated that traits 

acquired during the lifetime of an 
organism can be transmitted to the 
organism's offspring.

 E.g. shortening a dog's tail would 
cause its offspring to have shorter 
tails.

 Or a giraffe reaches for leaves in high 
trees and, consequently, its offspring 
has longer necks.

A rendition of Lamarck, 
image taken from 

Wikipedia



More applications – study of evolution,
the Baldwin Effect

 Notice that Lamarck had this idea before Darwin 
“discovered” evolution and long before we understood 
the mechanisms of genetics.

 Today biologists agree that the Lamarckian hypothesis 
cannot be true – there is no conceivable way in which 
the fact that we have shortened a dog's tail would 
influence its genetic material and we firmly believe that 
the genetic code is the only way in which information 
can be transferred from a parent to a newborn.

 We can generalize a bit and instead of physical traits 
(like “short tail”) think about things learned during the 
life of an individual.



More applications – study of evolution,
the Baldwin Effect

 We can generalize a bit and instead of physical traits (like 
“short tail”) think about things learned during the life of 
an individual.

 For example one capybara 
discovers that a certain plant is 
poisonous (after eating it, it gets 
very sick, but it survives). If the 
capybara can learn, it will never 
touch that plant again.

 The question is – will the 
offspring of the capybara know?



More applications – study of evolution,
the Baldwin Effect

 The question is – will the offspring of the capybara 
know?

 Lamarck would say yes, but we disagree with 
Lamarck.

 Yet, maybe there is a way in which what we learn 
can influence evolution (i.e. we don't talk about the 
capybara warning its children about the plant “in 
language”, but maybe, in some way, the information 
that the plant is poisonous can be transferred 
genetically)?



More applications – study of evolution,
the Baldwin Effect

 Baldwin (1896) proposed a less-direct mechanism for this 
(a non-Lamarckian mechanism in which individual learning 
could have an effect on evolution). He claimed:

 If learning helps survival, then the individual with good 
learning skills will have a larger chance of having children.

 Thus, the gene responsible for learning will have a larger 
chance of reproduction.

 Thus, the number of copies of this gene will increase (in GA 
lingo: “gene for learning is a good schema”).

 Thus, the individuals that learn  have a larger chance of 
developing the gene that encodes the trait that originally had 
to be learned.

 So the intelligent capybara will have more offspring, which 
will have more offspring, ..., allowing evolution more tries to 
find the gene that codes “don't eat this plant” and further 
capybaras will not have to learn this, they will know.



More applications – study of evolution,
the Baldwin Effect

 Having the right behaviour encoded genetically gives an 
organism a direct advantage over the other organisms, 
because learning  is less reliable than knowing  (genetically) 
(e.g. once in a while the capybara could die after eating the 
poisonous plant).

 What is more, genetic information is available right from the 
point of birth, whereas learning takes time.

 In summary: learning increases the chance of survival, 
giving nature more chances to independently discover 
the same trait genetically.



More applications – study of evolution,
the Baldwin Effect

 Opponents of Baldwin argue that it is not clear how the 
correlation  between what is learned and what has to 
be discovered genetically takes place.

 The randomness of genetic variation is the central 
principle of modern evolutionary theory, so we would 
expect the “lucky intelligent capybaras” to have the 
same chance of evolving a different eye colour, better 
kind of fur as evolving a phobia of the poisonous plant. 

 Just because there are more of them, doesn't imply that 
they will learn what we think they should learn.

 We cannot claim that genetic variation can be directed 
by individual (phenotypic) trait – this is a disguised 
version of Lamarckian hypothesis.



More applications – study of evolution,
the Baldwin Effect

 More complicated models that allow for the Baldwin 
effect (i.e. learning influencing evolution) were 
formulated (e.g. Waddington, 1942), but biologists still 
cannot agree.

 A perfect spot for a Genetic Algorithm to model the 
behaviour and to see what happens!

 In 1987 Hinton and Nowlan employed a GA to try to 
demonstrate the Baldwin effect empirically and to 
measure its magnitude.

 Let us study their experiment.



More applications – study of evolution,
the Baldwin Effect

 Each individual in the model is described by 20 binary 
values describing specific traits. We can hold a 
simplified view that this is a set of 20 rules for “eat this, 
don't eat that” (20 commandments?).

 It is assumed that there is only one set of “correct” 
values. The fitness of an individual that got even 
one value wrong is zero.

 Note how this is similar to Weinberg's reaction 
constants for E. coli.

 Thus our search space includes 220=1048576 possible 
configurations, of which only one (!) is correct (“a needle 
in a haystack problem”).



More applications – study of evolution,
the Baldwin Effect

 How do we include learning in the picture?
 Hinton and Nowlan allow a value in an organism to have 

one of three values “1”, “0” and “?” (meaning “learnable”).
 They use the simplest way to learn – random guessing. 

Thus on each learning trial, an individual tries to guess 
the right value for every “?” in its genetic make-up.
10011011101111001101  – (the genotype for) an individual that 

“genetically knows” everything (if got it right – maximum fitness, if 
got it wrong, fitness =0).

100110??1011??00?101  – (the genotype for) an individual that 
“genetically knows” 15 of 20 traits, but can (try to) learn the 
remaining 5.

????????????????????  – (the genotype for) an individual that 
doesn't “genetically know” anything, but can (try to) learn it.



More applications – study of evolution,
the Baldwin Effect

 In each generation Hinton and Nowlan gave every 
individual maximum 1000 chances to guess the correct 
values for “?”. Let us denote by n the number of learning 
trials that remained out of the maximum 1000 given to an 
individual to guess (learn) the correct solution.

 The fitness of an individual was assumed to be:

 Thus, an individual that already had the correct genetic 
make-up (did not need to guess) had a fitness of 
1+19000/1000 = 20.

 An individual that never learned the right solution got a 
fitness of 1.

f =1 19 n1000 .



More applications – study of evolution,
the Baldwin Effect

 Notice, how the addition of learning  changes this from a 
“needle in a haystack problem” to a “climb a hill by a 
combination of learning and evolution” problem).

 We now have a trade-off between efficiency (“knowing 
genetically”) and plasticity ("learning" or “having a lot of 
'?'”).

 If you have a lot of “?”, you can survive, but the more “?” 
you have, the more difficult it is to find the right solution.

 If you have few “?”, you "know a lot" genetically, but if 
you “know it wrong”, you have a fitness of zero.

 Of course, to avoid Lamarck's perspective, the learned 
information was NOT passed genetically to the next 
generation.



More applications – study of evolution,
the Baldwin Effect

 Hinton and Nowlan managed to show that, without 
learning, the average fitness did not improve with time.

 Yet, with learning (even though the learned information 
was not passed genetically), evolution quickly eliminated 
the wrong alleles [4, Fig. 3.4].

 That way, they proved that learning can guide evolution, 
even if the learned information is not passed genetically. 
Even with this simple form of learning (guessing) 
evolution was able to discover individuals with all values 
set correctly.

 Thus, they have confirmed the Baldwin effect.



More applications – study of evolution,
the Baldwin Effect

 Notice, however, that the although the wrong alleles 
disappeared completely, the frequency of “?” (undecided) 
values did not drop below ca. 40%.

 So the wrong behaviours were eliminated by evolution, 
but there was not enough selection pressure to make the 
individuals know all the answers genetically.

 Increasing the length of the experiment 10-times allowed 
evolution to reduce the number of undecided alleles to 
30%, but the convergence was very slow.

 Thus, it was confirmed that learning can guide evolution, 
at least on a very simple model.

 Yet, it only forced evolution to eliminate the wrong 
notions, did not eliminate the possibility of learning.



Genetic algorithms – key points
 Powerful tool in search for optimimum values of 

parameters (optimization). Works well where 
traditional methods fail (difficult functions, many-
dimensional problems).

 Tool to study models of evolution.
 Tool to evolve programs (evolware).
 Robust technique, usually the basic algorithm works 

surprisingly well.
 Only the basics of the underlying maths are understood, 

still an object of research.
 Several techniques exist to improve the capabilities, they 

are usually needed in specific cases (e.g. dynamically 
changing fitness landscape).
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