
Genetic algorithms: A possible model for COVID-19

Master degree in Modelling for Science and Engineering

January 3, 2021

1 A possible relatively simple model for COVID-19

The proposed model is based on a continuous SEIR model formulated by means of the variables1

Variable Size of population class at time t

S(t) susceptible to infection,
E(t) already exposed to infection,
R(t) recovered,
I
1
(t) infectious class before the onset of symptoms (presymptomatic infectious class),

A(t) almost asymptomatic infectious class with so mild symptoms that are never detected by the
health system,

A
d
(t) almost asymptomatic infectious class that is detected by the health system,

I2(t) infectious class with strong symptoms,
Y (t) infectious class with serious symptoms.

It can be schematised by:

Infectious classessS(t) E(t) I1(t)

A(t)

A
d
(t)

I2(t)

Y (t)

R(t)

Inf
ect

ed
cla

sse
ss

λ(t) σ γ1

1
−
p

p

κ

γ2

α

γ2

γ2

γ2

δ

where P is the (known) population size and2

λ(t) := β
φI1(t) +A(t) + (1 − ε

I
) [A

d
(t) + I2(t)] + (1 − ε

Y
)Y (t)

P

is the strength of the infection at time t, and the meaning of the remaining 11 parameters is:

1Individuals with strong or severe symptoms are isolated from the whole population at home or in the hospital, respectively,
with a different degree of isolation effectiveness, and, therefore, they contribute less to transmission.

2The normalization of λ(t) by dividing it by P, has a lot of meaning from the theoretical point of view but may seem trivial
from the computational point of view. This normalization can also be interpreted as a normalization of the parameter β relative
to the population size. This has the beneficial effect of highly decreasing the sensitivity of the parameter β.

1

Parameter Meaning
(
unit is per capita rate

day

)

β average infectivity,
φ < 1 pre-symptomatic infectivity factor,
εI isolation effectiveness of strong cases,
εY isolation effectiveness of serious cases,
σ rate of appearance of infectious ability,
γ

1
rate of appearance of symptoms,

γ2 rate of recovery,
κ detectability rate of asymptomatic people,
p probability for strong symptoms (probability of the health system to clinically detect cases),
α rate of appearance of serious symptoms (i.e. rate at which individuals with strong symptoms

become so seriously ill that they are in need of hospitalization and a fraction of those will
require intensive care and respirators),

δ disease-induced mortality.

Non-negativity: All parameters and variables are non-negative.

1.1 The model in Differential Equations

The model described in the above schema can be formulated in terms of the following system of Differential
Equations in dimension 8:

(1)





dS(t)

dt
= −λ(t)S(t),

dE(t)

dt
= λ(t)S(t) − σE(t),

dI
1
(t)

dt
= σE(t) − γ1I1(t),

dA(t)

dt
= γ

1
(1 − p)I

1
(t) − (κ+ γ

2
)A(t),

dA
d
(t)

dt
= κA(t) − γ

2
A

d
(t),

dI
2
(t)

dt
= γ

1
pI

1
(t) − (α+ γ

2
)I

2
(t),

dY (t)

dt
= αI2(t) − (δ + γ2)Y (t),

dR(t)

dt
= γ

2
(A(t) +A

d
(t) + I

2
(t) + Y (t)) .

Observation 1. Model (1) has the serious drawback of assuming isotropic behaviour and parameters according
to age strata and mobility habits, and distribution of classes among cities and neighbourhoods.

The total population at time t is

P (t) := S(t) + E(t) + I
1
(t) +A(t) +A

d
(t) + I

2
(t) + Y (t) +R(t).

Hence, the population size is P coincides with P (0) = S(0) +E(0) + I
1
(0) +A(0) +A

d
(0) + I

2
(0) +Y (0) +R(0),

and the accumulated number of disease-induced deaths at time t is:

D(t) := P − P (t) ≥ 0.

Clearly, if E(t), I
1
(t), A(t), A

d
(t), I

2
(t), Y (t) and R(t) are known, then S(t) can be determined by

S(t) := P −
(
E(t) + I1(t) +A(t) +A

d
(t) + I2(t) + Y (t) +R(t)

)
−D(t).

Observe also that, usually, the known data is A
d
(t), I2(t), Y (t), and also R(t) and D(t) (assuming that there

are no under-reported cases). The values of E(t), I1(t) and A(t) are unknown by assumption. Consequently
S(t) is also unknown.

2 The exercise

There has been a COVID-19 pandemic (pandemonium?), that we suppose governed by the Model (1) with
unknown parameters. For simplicity we assume that there are no under-reported cases among the publicly
known variables. In particular the value R(t) is considered to be true.

2

On the initial condition (what happens at t = 0): We can assume that R(0) = D(0) = 0 and, more
important, A

d
(0) + I

2
(0) + Y (0) > 0. Then we must have E(0), I

1
(0) > 0, and A(0) > 0 if A

d
(0) > 0; but these

values are unknown. The value of S(0) is also unknown but, since P is known,

S(0) := P −
(
E(0) + I1(0) +A(0) +A

d
(0) + I2(0) + Y (0)

)
.

The data below is a figured pandemic public data about a period of 100 days (the fact that these values
are, indeed, observed data of the corresponding variables at time t is indicated by the over-lines in the names
of the variables). Clearly, the values of the 11 parameters of the model are unknown and, as explained above,
E(0), I1(0), A(0) and S(0) are also unknown.

Population size P = 1, 000, 000

t Ad (t) I2 (t) Y (t) R(t) D(t)

0 1.000 1.000 0.000 0.000 0.000
1 1.841 1.253 0.056 0.348 0.000
2 2.285 1.607 0.123 0.733 0.002
3 2.571 2.041 0.203 1.169 0.004
4 2.812 2.541 0.300 1.670 0.008
5 3.059 3.096 0.414 2.249 0.013
6 3.337 3.702 0.546 2.915 0.020
7 3.655 4.356 0.698 3.681 0.029
8 4.018 5.060 0.870 4.555 0.040
9 4.428 5.814 1.062 5.548 0.054

10 4.889 6.626 1.276 6.673 0.071
11 5.402 7.499 1.513 7.941 0.091
12 5.972 8.442 1.773 9.364 0.115
13 6.603 9.462 2.058 10.959 0.143
14 7.299 10.570 2.369 12.739 0.175
15 8.067 11.776 2.710 14.723 0.212
16 8.914 13.091 3.083 16.931 0.253
17 9.847 14.529 3.490 19.382 0.301
18 10.875 16.103 3.934 22.102 0.355
19 12.008 17.830 4.420 25.116 0.415
20 13.257 19.725 4.952 28.454 0.483
21 14.633 21.808 5.534 32.147 0.559
22 16.150 24.099 6.172 36.231 0.644
23 17.823 26.620 6.871 40.746 0.738
24 19.667 29.395 7.638 45.735 0.844
25 21.701 32.453 8.480 51.245 0.960
26 23.943 35.822 9.406 57.331 1.090
27 26.416 39.535 10.422 64.051 1.233
28 29.143 43.628 11.540 71.469 1.392
29 32.151 48.141 12.770 79.656 1.569
30 35.469 53.116 14.124 88.693 1.763
31 39.128 58.603 15.615 98.666 1.979
32 43.164 64.654 17.256 109.670 2.217
33 47.616 71.328 19.064 121.812 2.480
34 52.527 78.688 21.056 135.210 2.770
35 57.944 86.805 23.252 149.991 3.091
36 63.918 95.758 25.671 166.298 3.446
37 70.508 105.632 28.338 184.289 3.837
38 77.777 116.523 31.278 204.136 4.269
39 85.795 128.535 34.520 226.031 4.745
40 94.638 141.782 38.094 250.183 5.271
41 104.391 156.393 42.035 276.826 5.851
42 115.149 172.506 46.380 306.216 6.492
43 127.013 190.277 51.172 338.635 7.198
44 140.099 209.874 56.456 374.394 7.978
45 154.529 231.485 62.282 413.837 8.838
46 170.444 255.316 68.708 457.342 9.787
47 187.994 281.594 75.793 505.327 10.833
48 207.347 310.569 83.606 558.252 11.988
49 228.687 342.516 92.222 616.623 13.261
50 252.217 377.737 101.722 681.000 14.666

t Ad (t) I2 (t) Y (t) R(t) D(t)

51 278.160 416.566 112.197 751.997 16.215
52 306.763 459.370 123.746 830.294 17.924
53 338.296 506.551 136.480 916.637 19.809
54 373.057 558.552 150.519 1011.850 21.887
55 411.372 615.862 165.995 1116.839 24.180
56 453.603 679.015 183.056 1232.602 26.708
57 500.144 748.598 201.861 1360.238 29.496
58 551.431 825.258 222.588 1500.956 32.570
59 607.940 909.702 245.431 1656.087 35.960
60 670.196 1002.705 270.602 1827.096 39.697
61 738.773 1105.119 298.338 2015.593 43.818
62 814.301 1217.874 328.894 2223.347 48.361
63 897.473 1341.989 362.553 2452.305 53.369
64 989.042 1478.579 399.625 2704.605 58.889
65 1089.838 1628.858 440.449 2982.593 64.974
66 1200.765 1794.155 485.396 3288.848 71.680
67 1322.811 1975.914 534.874 3626.195 79.069
68 1457.053 2175.710 589.326 3997.735 87.212
69 1604.666 2395.253 649.239 4406.864 96.183
70 1766.929 2636.396 715.142 4857.302 106.065
71 1945.231 2901.150 787.612 5353.119 116.949
72 2141.079 3191.686 867.280 5898.765 128.936
73 2356.106 3510.345 954.827 6499.101 142.133
74 2592.078 3859.646 1050.997 7159.429 156.661
75 2850.898 4242.291 1156.593 7885.531 172.651
76 3134.614 4661.169 1272.484 8683.701 190.246
77 3445.426 5119.362 1399.610 9560.781 209.600
78 3785.685 5620.137 1538.981 10524.199 230.885
79 4157.899 6166.949 1691.682 11582.004 254.286
80 4564.733 6763.432 1858.876 12742.907 280.004
81 5009.003 7413.384 2041.802 14016.312 308.258
82 5493.676 8120.751 2241.781 15412.350 339.286
83 6021.857 8889.602 2460.210 16941.914 373.345
84 6596.777 9724.093 2698.565 18616.677 410.714
85 7221.773 10628.429 2958.390 20449.122 451.691
86 7900.265 11606.813 3241.302 22452.549 496.601
87 8635.723 12663.380 3548.971 24641.082 545.789
88 9431.630 13802.127 3883.121 27029.662 599.628
89 10291.435 15026.829 4245.506 29634.031 658.513
90 11218.496 16340.939 4637.900 32470.693 722.867
91 12216.019 17747.481 5062.074 35556.871 793.138
92 13286.985 19248.930 5519.771 38910.428 869.799
93 14434.065 20847.086 6012.679 42549.783 953.349
94 15659.535 22542.936 6542.399 46493.794 1044.309
95 16965.181 24336.518 7110.407 50761.622 1143.224
96 18352.193 26226.782 7718.015 55372.566 1250.660
97 19821.068 28211.456 8366.327 60345.878 1367.197
98 21371.503 30286.926 9056.199 65700.547 1493.434
99 23002.296 32448.131 9788.183 71455.071 1629.977

100 24711.260 34688.480 10562.489 77627.195 1777.437

Statement of the exercise. Compute values of the 11 parameters that are consistent with the observed
provided data. To do this it is also necessary to determine the initial condition

(
S(0) = P −

(
E(0) + I1(0) +A(0) +A

d
(0) + I2(0) + Y (0)

)
, E(0), I1(0), A(0), A

d
(0), I2(0), Y (0), R(0) = 0

)
;

that is, to determine the values of E(0), I
1
(0), and A(0) that are consistent with the observed provided data.

3

3 Proposed solution strategy

The exercise is to be solved with a minimising genetic algorithm with an appropriate fitness function.

3.1 Individuals

Clearly, an individual in the population may have two chromosomes: the first one is a vector formed by a
possible choice of the 3 unknown initial conditions, and the second one is a vector formed by a possible choice
of the 11 parameters:

(
E(0), I

1
(0), A(0)

)
, and

(
β, φ, εI , εY , σ, γ1

, γ
2
, κ, p, α, δ

)
.

As recommended repeatedly, this “phenotype” is better encoded with a two-chromosome genotype of integers
in binary. In the following table we explain, for each element of the phenotype the range and desired precision
(or sensitivity), thus fixing the range and discretization formula for the genotype.

Phenotype Genotype

upper
limit

precision
upper
limit

Factor from genotype
to phenotype

In
it

ia
l

C
on

d
it

io
n

s

E(0)
I
1
(0)

A(0)



 P 10−3 230 1

1000

P
a
ra

m
et

er
s

β 1 10−12 240 2−40

φ 1 10−6 220 2−20

εI 1 10−3 210 2−10

εY 1 10−3 210 2−10

σ 1 10−6 220 2−20

γ1 1 10−6 220 2−20

γ2 1 10−6 220 2−20

κ 1 10−3 210 2−10

p 1 10−6 220 2−20

α 1 10−12 240 2−40

δ 1 10−12 240 2−40

Observations:

� All upper limit and precision values for the phenotype have been set to “common sense reasonable values”.

� All upper limit values of the genotype have been chosen to be powers of two with following condition that

genotype upper limit of the form 2n > phenotype upper limit/precision.

For example, for the initial conditions the above formula gives

230 = 1, 073, 741, 824 > 1, 000, 050, 000 = 1, 000, 050 · 103 = P/10−3,

and for β,

240 = 1, 099, 511, 627, 776 > 1012 =
1

10−12
.

Observe that the number 2n − 1 when written in binary in 64 a bits representation, has a string of 64−n
consecutive zeroes at the left, and a string of n consecutive ones at the right. Moreover, the expression in
binary of all integers in the range [0, 2n − 1] has a string of at least 64 − n consecutive zeroes at the left.
This is very useful, when programming crossovers and mutations, to avoid complicate feasibility tests.

� All powers of two have exponent less than or equal to 40, and there are some with exponents larger than
32. So, the base data type for the genes in the chromosomes must be unsigned long int.

4

3.2 Fitness function

The Genetic Algorithm must identify an individual that could possibly have generated the observed pandemic.
This is done by finding the ”fittest” individual from the point of view of generating the observed data. In other
words, the fitness function must measure how similar is the observed data to the pandemic data generated from
an individual.

More precisely, an individual Ind (together with the row t = 0 of the observed data) provides all the
necessary information to generate a pandemic by means of Model 1. This amounts building a full determined
initial condition (

S(0), E(0), I
1
(0), A(0), A

d
(0), I

2
(0), Y (0), R(0) = 0

)
;

where E(0), I
1
(0), and A(0) are provided by Ind, A

d
(0), I

2
(0), Y (0), and R(0) = 0 are determined by the row

t = 0 of the observed data, and S(0) is computed with the help of the formula

S(0) = P −
(
E(0) + I

1
(0) +A(0) +A

d
(0) + I

2
(0) + Y (0)

)
.

Then, the values of the 11 parameters provided by Ind allow to numerically compute (as in the observed data)

(
S(t), E(t), I

1
(t), A(t), A

d
(t), I

2
(t), Y (t), R(t)

)
for t = 1, 2, . . . , 100

and, in particular, (
A

d
(t), I2(t), Y (t), R(t), D(t)

)
for t = 1, 2, . . . , 100.

As above, for t = 1, 2, . . . , 100, let A
d
(t), I

2
(t), Y (t), R(t), and D(t) denote, respectively, the values of the

variables A
d
(t), I

2
(t), Y (t), R(t), and D(t) from the figured pandemic public data. Two possible norms that

measure the agreement between the pandemic data generated by Ind and the figured pandemic public data are:

(2) max
t=1,...,100

{(
A

d
(t) −A

d
(t)
)2

+
(
I
2
(t) − I

2
(t)
)2

+
(
Y (t) − Y (t)

)2
+
(
R(t) −R(t)

)2
+
(
D(t) −D(t)

)2}
,

and

(3)

100∑

t=1

Wt

((
A

d
(t) −A

d
(t)
)2

+
(
I
2
(t) − I

2
(t)
)2

+
(
Y (t) − Y (t)

)2
+
(
R(t) −R(t)

)2
+
(
D(t) −D(t)

)2)
,

where W1,W2, . . . ,W100 > 0 are weights. Clearly, a value zero in the above fitness function indicates that Ind’s
phenotype is the one that drives the pandemic through Model 1.

Reasonable weights in the above norm (3) are Wt = 1, Wt = t, or Wt = exp(νt) for some value ν > 0.

3.3 Integrating an ODE: Computing the values of(
S(t), E(t), I1(t), A(t), A

d
(t), I2(t), Y (t), R(t)

)
for t = 1, 2, . . . , 100

We will use the Runge-Kutta-Fehlberg method of order 7-8 with adaptive space (see the appendix to this
document).

In the file RKF78.c (also needed RKF78.h for definitions and prototypes) there is an implementation for
ODE’s and another one for systems (see the implementation notes in RKF78.c for the meaning of parameters
and how to use the procedure).

However as an example on how to use RKF78 we provide here a full programmed implementation of the
computation of the values

(
S(t), E(t), I1(t), A(t), A

d
(t), I2(t), Y (t), R(t)

)
for t = 1, 2, . . . , 100.

First we need a structure (arbitrary) to store the ODE 11 parameters:

typedef struct{ double beta, phi, epsI, epsY;

double sigma;

double gamma1, gamma2;

double kappa;

double p;

double alpha;

double delta;

double PopSize;

} ODE_Parameters;

Now, as explained in the implementation notes in RKF78.c we need a function the computes the Vector Field
given by Model 1:

5

#define CoreModelDIM 8

void CoreModel(double t, double *x, unsigned dim, double *der, void *Params){

ODE_Parameters *par = (ODE_Parameters *) Params; // To simplify the usage of Params (void pointer)

double sigmae = par->sigma*x[1],

gamma1i1 = par->gamma1*x[2],

kappaA = par->kappa*x[3],

alphai2 = par->alpha*x[5];

der[0] = par->phi*x[2] + x[3] + (1-par->epsI)*(x[4]+x[5]) + (1-par->epsY)*x[6];

der[0] = - par->beta * (x[0] * der[0])/par->PopSize;

der[1] = -der[0] - sigmae;

der[2] = sigmae - gamma1i1;

der[3] = (1-par->p)*gamma1i1 - kappaA - par->gamma2*x[3] ;

der[4] = kappaA - par->gamma2*x[4];

der[5] = par->p*gamma1i1 - par->gamma2*x[5] - alphai2;

der[6] = alphai2 - (par->gamma2+par->delta)*x[6];

der[7] = par->gamma2*(x[3] + x[4] + x[5] + x[6]);

}

We also need our computer individuals data-type (the order of the initial conditions is assumed the be the
one specified above; the order of the parameters is assumed to be the one specified in ODE_Parameters, which
coincides with the ordering specified in the table above):

#define IC_GENES_NUMBER 3

#define PARAMETERS_GENES_NUMBER 11

typedef struct {

unsigned long IC[IC_GENES_NUMBER];

unsigned long Pars[PARAMETERS_GENES_NUMBER];

double fitness;

} individual;

Now, we can give the function that, by using RKF78Sys, integrates the EDO until t = 100 with the data
provided by an individual. First we need to define the parameters HMAX, HMIN and RKTOL as required in the
implementation notes in RKF78.c. The DataForFitting part is completely free and it is recommended that
you use exactly the technology used to store the observed data (to make it easier to compare the observed data
with the solution computed by the RKF78Sys function). The basic message at this stage is to store the predicted
data instead of printing it.

#define HMAX 1.0

#define HMIN 1.e-3

#define RKTOL 1.e-5

int GeneratePredictionFromIndividual(double *xt, void *ODE_pars, DataForFitting *Pred) {

register unsigned ndays;

double t = 0.0, err, h = 1.e-3;

for(ndays=1; ndays <= Pred->N_Days; ndays++) { int status;

while(t+h < ndays) {

status = RKF78Sys(&t, xt, CoreModelDIM, &h, &err, HMIN, HMAX, RKTOL, ODE_pars, CoreModel);

if(status) return status;

}

h = ndays - t;

status = RKF78Sys(&t, xt, CoreModelDIM, &h, &err, HMIN, HMAX, RKTOL, ODE_pars, CoreModel);

if(status) return status;

Pred->Data_Time_Series[ndays][0] = xt[4];

Pred->Data_Time_Series[ndays][1] = xt[5];

Pred->Data_Time_Series[ndays][2] = xt[6];

Pred->Data_Time_Series[ndays][3] = xt[7];

Pred->Data_Time_Series[ndays][4] = Pred->PopSize -

(xt[0]+xt[1]+xt[2]+xt[3]+xt[4]+xt[5]+xt[6]+xt[7]);

}

return 0;

}

6

Another ingredient that you need is a function that converts an individual to data useful for Runge-Kutta
prediction. In other words that converts genotype to phenotype and, after computing the prediction, it computes
the fitness function by comparing the observed data with the predicted data with the individual phenotype with
the help of the norms (2) or (3).

#define crom2IC(c) (((double) c)/1000)

#define crom2HSPar(c) (((double) c)/1099511627776UL)

#define crom2Par(c) (((double) c)/1048576U)

#define crom2LSPar(c) (((double) c)/1024U)

void CoreModelVersusDataQuadraticError(individual *ind, void *TheData) {

DataForFitting *TDfF = (DataForFitting *) TheData;

DataForFitting ThePrediction = { TDfF->PopSize, TDfF->N_Days, {

{ TDfF->Data_Time_Series[0][0], TDfF->Data_Time_Series[0][1],

TDfF->Data_Time_Series[0][2], TDfF->Data_Time_Series[0][3],

TDfF->Data_Time_Series[0][4] } } };

double xt[CoreModelDIM] = { TDfF->PopSize, crom2IC(ind->IC[0]), crom2IC(ind->IC[1]),

crom2IC(ind->IC[2]), TDfF->Data_Time_Series[0][0],

TDfF->Data_Time_Series[0][1], TDfF->Data_Time_Series[0][2],

TDfF->Data_Time_Series[0][3] };

xt[0] -= (xt[1]+xt[2]+xt[3]+xt[4]+xt[5]+xt[6]);

ODE_Parameters ODE_pars = { crom2HSPar(ind->Pars[0]), crom2Par(ind->Pars[1]),

crom2LSPar(ind->Pars[2]), crom2LSPar(ind->Pars[3]),

crom2Par(ind->Pars[4]), crom2Par(ind->Pars[5]),

crom2Par(ind->Pars[6]), crom2LSPar(ind->Pars[7]),

crom2Par(ind->Pars[8]), crom2HSPar(ind->Pars[9]),

crom2HSPar(ind->Pars[10]), TDfF->PopSize };

if(GeneratePredictionFromIndividual(xt, &ODE_pars, &ThePrediction)) {

ind->fitness = MAXDOUBLE;

return;

}

ind->fitness = ... Here compute the fitness function by comparing

the observed data (i.e. TDfF or TheData) with the predicted data (ThePrediction)

with the help of the norms (2) or (3) ...

3.4 Infeasible individuals

In genetic algorithms, individuals have an important random ingredient. When an individual is used to deter-
mine the parameters and initial conditions of a System of ODE’s we can easily expect that the integrator (RKF78)
gets lost; which amounts to the fact that we cannot compute the fitness of the corresponding individual. In
this situation it may happen that the generations (specially the initial population) could be almost completely
infeasible, and this is very bad for the performance of the algorithm. In this regard it might be advisable:

� to introduce a count that gives the proportion of feasible individuals of every generation, and informs us
when this proportion goes below a certain value.

� For the initial population this could be specially important, and so it is recommended to loop around the
random building of the initial population until its proportion of feasible individuals is larger than a given
security bound (for instance 0.7; meaning that at least 70% of the initial population must be feasible).

7

Appendix A
Runge-Kutta Methods

The Runge-Kutta methods are an important family of iterative methods for the ap-
proximation of solutionsof ODE’s, that weredevelovedaround 1900 bythegerman
mathematiciansC. Runge(1856–1927) andM.W. Kutta(1867–1944).Westart with
the considereation of the explicit methods. Let us consider an initail value problem
(IVP)

d x
d t

= f (t, x(t)), (A.1)

x(t) = (x1(t), x2(t), . . . xn(t))T , f ∈ [a, b]×Rn → Rn, with an initial condition

x(0) = x0 . (A.2)

We are interested in a numerical approximation of the continuously differentiable
solution x(t) of the IVP (A.1)–(A.2) over the time interval t ∈ [a, b]. To this aim
wesubdividethe interval [a, b] into M equal subintervalsandselect the mesh points
t j [11, 8]

t j = a+ j h , j = 0, 1, . . . , M, h =
b−a

M
. (A.3)

Thevalueh is called a step size.
The family of explicit Runge–Kutta (RK) methods of the m’ th stage is given

by [11, 9]

x(tn+1) := xn+1 = xn +h
m

∑
i=1

ciki , (A.4)

where

13

8

k1 = f (tn, xn),

k2 = f (tn +α2h, xn +hβ21k1(tn, xn)),

k3 = f (tn +α3h, xn +h(β31k1(tn, xn)+β32k2(tn, xn))),

...

km = f (tn +αmh, xn +h
m−1

∑
j=1

βm jk j).

To specify a particular method, we need to provide the integer m (the number of
stages), and the coefficients αi (for i = 2,3, ...,m), βi j (for 1 ≤ j < i ≤ m), and ci

(for i = 1,2, ...,m). These data are usually arranged in a co-called Butcher tableau
(after JohnC. Butcher) [11, 9]:

Table A.1 TheButcher tableau.

0
α2 β21
α3 β31 β32
...

...
...

.. .
...

...
...

αm βm1 βm2 βmm−1

c1 c2 cm−1 cm

Examples

1. Let m = 1. Then

k1 = f (tn, xn) ,

xn+1 = xn +hc1 f (tn, xn) .

On theother hand, the Taylor expansion yields

xn+1 = xn +h ẋ
∣∣
tn
+ · · ·= xn +h f (tn, xn)+O(h2) ⇒ c1 = 1.

Thus, thefirst-stageRK-methodisequivalent to the explicit Euler’smethod. Note
that theEuler’smethodisof thefirst order of accuracy. Thuswe can speak about
theRK method of thefirst order.

2. Now consider the case m = 2. In this caseEq. (A.4) isequivalent to thesystem

9

k1 = f (tn, xn) , (A.5)

k2 = f (tn +α2h, xn +hβ21k1) ,

xn+1 = xn +h(c1k1+ c2k2) .

Now let uswritedown theTaylor seriesexpansion of x in theneighborhood of tn
upto theh2 term, i.e.,

xn+1 = xn +h
dx
dt

∣∣∣∣
tn

+
h2

2
d2x
dt2

∣∣∣∣
tn

+O(h3) .

However, weknow that ẋ = f (t, x), so that

d2x
dt2 :=

d f (t, x)
dt

=
∂ f (t, x)

∂ t
+ f (t, x)

∂ f (t, x)
∂x

.

Hencethe Taylor seriesexpansioncan berewritten as

xn+1−xn = h f (tn, xn)+
h2

2

(
∂ f
∂ t

+ f
∂ f
∂x

)∣∣∣∣
(tn,xn)

+O(h3) . (A.6)

On the other hand, the term k2 in theproposed RK methodcan also expanded to
O(h3) as

k2= f (tn+α2 h, xn+hβ21k1)= h f (tn,xn)+hα2
∂ f
∂ t

∣∣∣∣
(tn,xn)

+hβ21 f
∂ f
∂x

∣∣∣∣
(tn,xn)

+O(h3) .

Now, substituting this relation for k2 into the last equation of (A.5), we achieve
the followingexpression:

xn+1−xn = h(c1+c2) f (tn, xn)+h2c2 α2
∂ f
∂ t

∣∣∣∣
(tn,xn)

+h2c2β21 f
∂ f
∂x

∣∣∣∣
(tn,xn)

+O(h3) .

Makingcomparision the last equationandEq. (A.6) we can write down the sys-
tem of algebraic equationsfor unknown coefficients

c1+ c2 = 1,

c2 α2 =
1
2
,

c2β21 =
1
2
.

The system involves four unknowns in three equations. That is, one additional
condition must be supplied to solve the system. We discusstwo useful choices,
namely

a) Let α2 = 1. Then c2 = 1/2, c1 = 1/2, β21 = 1. The corresponding Butcher
tableau reads:

10

0
1 1

1/2 1/2

Thus, in this case the two-stagesRK methodtakes the form

xn+1 = xn +
h
2

(
f (tn, xn)+ f (tn +h, xn +h f (tn, xn))

)
,

and is equivalent to the Heun’s method, so we refer the last method to as
RK-method of thesecond order.

b) Now let α2 = 1/2. In this case c2 = 1, c1 = 0, β21 = 1/2. The corresponding
Butcher tableau reads:

0
1/2 1/2

0 1

In thiscase thesecond-order RK method(A.4) can be written as

xn+1 = xn +h f
(
tn +

h
2
, xn +

h
2

f (tn, xn)
)

and iscalled the RK2 method.

RK4 Methods

Onemember of thefamily of Runge–Kuttamethods(A.4) isoften referred to asRK4
method or classical RK method andrepresentsoneof thesolutionscorrespondingto
the casem = 4. In thiscase, by matchingcoefficientswith thoseof theTaylor series
oneobtains the followingsystem of equations[8]

11

c1+ c2+ c3+ c4 = 1,

β21 = α2 ,

β31+β32 = α3 ,

c2α2+ c3α3+ c4α4 =
1
2
,

c2α2
2 + c3α2

3 + c4α2
4 =

1
3
,

c2α3
2 + c3α3

3 + c4α3
4 =

1
4
,

c3α2β32+ c4(α2β42+α3β43) =
1
6
,

c3α2α3β32+ c4α4(α2β42+α3β43) =
1
8
,

c3α2
2β32+ c4(α2

2β42+α2
3β43) =

1
12

,

c4α2β32β43 =
1
24

.

The system involvesthirteen unknownsin eleven equations. That is, two additional
conditionmust besupplied to solve thesystem. Themost useful choices is [9]

α2 =
1
2
, β31= 0.

The correspondingButcher tableau ispresented in TableA.2. Thetableau A.2 yields

Table A.2 TheButcher tableau corresponding to theRK4 method.

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

the equivalent correspondingequationsdefining the classical RK4 method:

xn+1 = xn +
h
6

(
k1+2k2+2k3+ k4

)
, (A.7)

where

12

k1 = f (tn, xn),

k2 = f (tn +
h
2
, xn +

h
2

k1),

k3 = f (tn +
h
2
, xn +

h
2

k2),

k4 = f (tn +h, xn +hk3).

This method is reasonably simple and robust and is a good general candidate for
numerical solution of ODE’s when combined with an intelli gent adaptive step-size
routine or an embedded methods (,e.g., so-called Runge-Kutta-Fehlberg methods
(RKF45)).

Remark:

Notice that except for the classical method (A.7), one can also construct other
RK4 methods. We mention only so-called 3/8-Runge-Kutta method. The Brutcher
tableau, correspondingto thismethodispresented in TableA.3.

Table A.3 TheButcher tableau corresponding to the3/8- Runge-Kutta method.

0
1/3 1/3
2/3 -1/3 1
1 1 -1 1

1/8 3/8 3/8 1/8

Geometrical interpretation of the RK4 method

Let us consider a curve x(t), obtained by (A.7) over a single time step from tn
to tn+1. The next value of approximation xn+1 is obtained ty integrating the slope
function, i.e.,

xn+1−xn =

tn+1∫

tn

f (t,x)dt . (A.8)

Now, if the Simpson’s rule is applied, the approximation to the integral of the last
equationreads [10]

tn+1∫

tn

f (t,x)dt ≈ h
6

(
f (tn,x(tn))+4 f (tn +

h
2
,x(tn +

h
2
))+ f (tn+1,x(tn+1))

)
. (A.9)

13

On the other hand, the values k1, k2, k3 and k4 are approximations for slopes of
the curvex, i.e., k1 is theslopeof the left end of the interval, k2 andk3 describe two
estimationsof theslopein themiddleof thetimeinterval, whereask4 correspondsto
theslope at the right. Hence, we can choose f (tn,x(tn)) = k1 and f (tn+1,x(tn+1)) =
k4, whereas for thevalue in themiddlewe choosethe averageof k2 andk3, i.e.,

f (tn +
h
2
,x(tn +

h
2
)) =

k2+ k3

2
.

Then Eq. (A.8) becomes

xn+1 = xn +
h
6

(
k1+

4(k2+ k3)

2
+ k4

)
,

which isequivalent to theRK4 schema(A.7).

Stage versus Order

The local truncation error ε for the method(A.7) can be estimated from the error
term for theSimpson’s rule (A.9) andequals [10, 8]

εn+1 =−h5 x(4)

2880
.

Now we can estimatethefinal global error E, if wesupposethat only the error above
ispresented. After M steps the accumulated error for theRK4 methodreads

E(x(b), h) =−
M

∑
k=1

h5 x(4)

2880
≈ b−a

2880
x(4)h = O(h4) .

That is, the RK4 method (A.7) is of the fourth order. Now, let us compare two
appximations, obtained using the time steps h and h/2. For the step sizeh we have

E(x(b), h)≈ K h4 ,

with K = const. Hence, for thestep h/2 weget

E(x(b),
h
2
) = K

h4

16
≈ 1

16
E(x(b), h) .

That is, if the step size in (A.7) is reduced by the factor of two, the global error of
themethodwill be reduced by the factor of 1/16.

Remark:

In general there are two ways to improvethe accuracy:

14

1. One can reducethe timestep h, i.e., the amount of steps increases;
2. Themethod of thehigher convergency order can beused.

However, increasing of the convergency order p isreasonableonly upto somelimit,
given by so-called Butcher barrier [11], which says, that the amount of stages m
grows faster, as the order p. In other words, for m ≥ 5 there are no explicit RK
methods with the convergency order p = m (the corresponding system is unsolv-
able). Hence, in order to reach convergency order five one needs six stages. Notice
that further increasing of the stage m = 7 leads to the convergency order p = 5 as
well .

A.0.1 Adaptive stepsize control and embedded methods

As mentioned above, one way to guarantee accuracy in the solution of (A.1)–
(A.1) is to solve the problem twice using step sizes h and h/2. To ill ustrate this
approach, let usconsider theRK method of theorder p and denote an exact solution
at the point tn+1 = tn + h by x̃n+1, whereas x1 and x2 represent the approximate
solutions, corresponding to the step sizes h and h/2. Now let us perform one step
with the step size h and after that two steps each of size h/2. In this case the true
solutionand two numerical approximationsare related by

x̃n+1 = x1+C hp+1+O(hp+2) ,

x̃n+1 = x2+2C

(
h
2

)p+1

+O(hp+2) .

That is,

|x1−x2|=C hp+1
(

1− 1
2p

)
⇔ C =

|x1−x2|
(1−2−p)hp+1 .

Substituing the relation for C in the secondestimate for the truesolutionwe get

x̃n+1 = x2+ ε +O(hp+2) ,

where

ε =
|x1−x2|
2p −1

can be considered asa convenient indicator of the truncationerror. That is, wehave
improved our estimate to theorder p+1. For example, for p = 4 weget

x̃n+1 = x2+
|x1−x2|

15
+O(h6) .

This estimate is accurate to fifth order, one order higter than with the original step
h. However, thismethodis not efficient. First of all , it requiresa significant amount

15

of computation (we should solve the equation threetimes at each time step). The
second point is, that we have no possibilit y to control the truncation error of the
method(higher order meansnot alwayshigher accuracy).
However we can use an estimateε for the step size control, namely we can compare
ε with some desired accuracy ε0 (seeFig A.1).

Input t j, x j, ε0, h j, j = 0

Calculate x(t j +h j, h j), x(t j +h j,
h j
2) and ε

ε ≪ ε0 Doublestep size: h j+1 := 2h j

ε > ε0 t j+1 = t j +h j, j := j+1

Halvestep size: h j+1 :=
h j
2 ; Reiterate thestep

no
no

yes

yes

Fig. A.1 Flow diagramm of thestep size control by use of thestep doubling method.

Alternatively, using the estimateε , we can try to formulate the following problem of theadap-
tive step size control, namely: Using the given values x j and t j, find the largest possible step size
hnew, so that thetruncationerror after thestep with this step sizeremainsbelow somegiven desired
accuracy ε0, i.e,

C hp+1
new ≤ ε0 ⇔

(
hnew

h

)p+1 |x1−x2|
1−2−p ≤ ε0 .

That is,

hnew = h

(
ε0

ε

)1/p+1

.

Then if the two answers are in close agreement, the approximation is accepted. If ε > ε0 the step
sizehas to be decreased, whereas the relation ε < ε0 means, that the step sizehas to be increased
in thenext step.

Notice that because our estimate of error is not exact, we should put some ”safety” factor
β ≃ 1 [11, 9]. Usually, β = 0.8, 0.9. The flow diagramm, corresponding to the the adaptive step
size control is shown onFig. A.2

Noticeone additional technical point. The choise of the desired error ε0 depends on the IVP
we are interested in. In some applications it i sconvinient to set ε0 propotional to h [9]. In thiscase
the exponent 1/p+1 in the estimateof thenew timestep isno longer correct (if h is reduced from
a too-large value, thenew predicted value hnew will fail to meet thedesired accuracy, so instead of
1/p+1 we should scale with 1/p (see[9] for details)). That is, the optimal new step size can be
written as

hnew =





β h

(
ε0
ε

)1/p+1

, ε ≥ ε0,

β h

(
ε0
ε

)1/p

, ε < ε0,

(A.10)

16

Input t0, x0, ε0, h, j = 0

Calculate x(t j +h, h), x(t j +h, h
2) and ε

ε < ε0 Thestep isaccepted; hnew := β h

(
ε0
ε

)1/p+1

, t j+1 = t j +hnew, j := j+1

hnew := β h

(
ε0
ε

)1/p

Reiterate thestep

yes

no

Fig. A.2 Flow diagramm of the adaptivestep size control by use of thestep doubling method.

where β is a ”safety” factor.

Runge-Kutta-Fehlberg method

The alternative stepsize adjustment algorithm is based on the embedded Runge-Kutta formulas,
originally invented byFehlberg andiscalled the Runge-Kutta-Fehlberg methods (RKF45) [11, 10].
At each step, two different approximations for the solution are made and compared. Usually an
fourth-order method with five stages is used together with an fifth-order method with six stages,
that uses all of the points of the first one. The general form of a fifth-order Runge-Kutta with six
stages is

k1 = f (t, x),

k2 = f (t +α2h, x+hβ21k1),

...

k6 = f (t +α6h, x+h
5

∑
j=1

β6 jk j) .

The embedded fourth-order formula is

xn+1 = xn +h
6

∑
i=1

ci ki +O(h5) .

Andabetter value for thesolution isdetermined using aRunge-Kutta method of fifth-order:

x∗n+1 = xn +h
6

∑
i=1

c∗i ki +O(h6)

The two particlular choises of unknown parametrs of themethodare given in Tables A.4–A.5.
The error estimate is

ε = |xn+1−x∗n+1|=
6

∑
i=1

(ci − c∗i)ki.

17

Table A.4 Fehlberg parameters of theRunge-Kutta-Fehlberg 4(5) method.

1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 -7200/2197 7296/2197
1 439/216 -8 3680/513 -845/4104

1/2 -8/27 2 -3544/2565 1859/4104 -11/40
25/216 0 1408/2565 2197/4104 -1/5
16/135 0 6656/12825 28561/56430 -9/50 2/55

Table A.5 Cash-Karp parameters of theRunge-Kutta-Fehlberg 4(5) method.

1/5 1/5
3/10 3/40 9/40
3/5 3/10 -9/10 6/5
1 -11/54 5/2 -70/27 35/27

7/8 1631/55296 175/512 575/13828 44275/110592 253/4096
37/378 0 250/621 125/594 512/1771

2825/27648 0 18575/48384 13525/55296 277/14336 1/4

As was mentioned above, if we take the current step h and produce an error ε , the corresponding
”optimal” step hopt is estimated as

hopt = β h

(
εtol

ε

)0.2

,

where εtol is a desired accuracy and β is a ”safety” factor, β ≃ 1. Then if the two answers are
in close agreement, the approximation is accepted. If ε > εtol the step size has to be decreased,
whereas the relation ε < εtol means, that thestep size are to be increased in thenext step.
UsingEq. (A.10), theoptimal step can be often written as

hopt =





β h

(
εtol
ε

)0.2

, ε ≥ εtol,

β h

(
εtol
ε

)0.25

, ε < εtol,

18

