
Genetic Clustering Algorithms for Detecting
Money-Laundering

Llúıs Alsedà1, Abhishek Awasthi2?, and Jörg Lässig2

1 Department of Mathematics, Autonomous University of Barcelona, Spain
alseda@mat.uab.cat

2 Department of Electrical Engineering and Computer Science ,
University of Applied Sciences Zittau/Görlitz, Germany

{aawasthi,jlaessig}@hszg.de

Abstract. Genetic Algorithms are one of the most applied class of algo-
rithms for solving global/multi-modal optimization problems and have
been extensively studied for solving NP-hard optimization problems.
This work presents the development of genetic algorithms for detecting
money-laundering by finding the clusters in a graph, constructed using
financial and customer data. The developed algorithm can be applied in
other related areas as well. We present two algorithms based on Genetic
Algorithms for (i) detecting all the clusters in a graph and (ii) detecting
the cluster of any given node.

Keywords: Genetic Algorithms, Money-Laundering, Graph Clustering,
Modularity, Island Model

1 Introduction

Money-laundering is the practice of engaging in financial transactions to con-
ceal the identity, source or destination of illegal money. It is one major concern
for many countries and international organizations like I.M.F., U.N. and the
World Bank. This work presents one way to detect money-laundering by de-
tecting and studying well connected communities in the network of financial
and telecommunication data. Basic work-flow steps for this approach are (i) to
collect the relevant financial data, (ii) to construct a graph of the data repre-
senting financial and telecommunication transfers between the entities and (iii)
to find the clusters of entities which are suspicious. In money-laundering it is
sometimes unnecessary to find all the clusters in the financial graph. In such a
situation, finding all the clusters in a huge graph could be an unnecessary and
time consuming task and one may be only interested in finding the cluster of
one particular node only. Moreover, Financial Intelligence Units (FIUs) usually
have knowledge of one or more suspicious entities which cause money-laundering
or some financial fraud. Hence, it makes perfect sense to find the cluster of the

? The work presented here is the MathMods Master Thesis of the second author, made
under the supervision of the first author, at the Universitat Autònoma de Barcelona.

2 Genetic Clustering Algorithms for Detecting Money-Laundering

suspicious node (entity) instead of finding all the clusters in the network. All the
standard and recent developments in clustering algorithms focus on finding all
the clusters in the graph [1, 2, 5, 6]. Not much research has been carried out in
finding the cluster of just one desired node. Almost all of the metrics which are
available for evaluating the quality of the clusters work only if one is aware of
all the clusters in the graph. Modularity for instance is one such measure for a
graph which takes into account all the clusters present in a graph. Nonetheless,
we show that modularity can be used in a different manner to find the cluster
of any given node. This work presents genetic clustering algorithms which can
be used for (i) detecting all the clusters in a graph and (ii) finding the cluster of
any given node. Our approach for both clustering problems also incorporates the
concept of an island model with migration, making the algorithm more efficient
than a single population GA.

2 Related Work

Graph clustering is an efficient methodology to detect groups of entities in a net-
work or graph, possessing certain similar characteristics. Many networks of inter-
est in the sciences, including social networks, computer networks, and metabolic
& regulatory networks are found to divide naturally into communities or mod-
ules. The problem of detecting and characterizing this community structure is
one of the outstanding issues in the study of networked systems. Several tech-
niques and algorithms have been proposed for community detection such as
k-means [1], hierarchical clustering [2], evolutionary algorithms [9–11, 14] and
other algorithms of different nature [3, 6, 7]. One highly effective approach for
cluster detection is the optimization of the quality function known as modular-
ity over the possible divisions of a network. Newman and Girvan highlighted
the relevance of the community structure in complex networks and proposed a
method to detect it [4]. This work opened a new scenario that has attracted
a great deal of attention in recent years. Modularity is one of the most recent
and important advancement in community detection that allows quantification
of the modular structure of a network. Given a network represented as weighted
graph and partitioned into communities or modules; Ci being the community to
which node i is assigned, the mathematical definition of modularity is expressed
in terms of wij , which represents the value of the weight in the link between the
nodes i & j (0 if no link exists), the strengths wi =

∑
j

wij and w = 1
2

∑
i

wi, as:

Q =
1

2w

∑
i

∑
j

(wij −
wiwj

2w
)δ(Ci, Cj), (1)

where the kronecker delta function δ(Ci, Cj) takes the value 1 if the nodes i
and j are in the same module and 0 otherwise. For unweighted networks, wi

becomes the degree of node i, and w the total number of links of the network
[8]. The modularity of a given partition is the probability of having edges falling
within modules in the network minus the expected probability in an equivalent

Genetic Clustering Algorithms for Detecting Money-Laundering 3

(null case) network with the same number of nodes and edges placed at random
preserving the nodes strength. The larger the modularity value the better is
the partitioning of the network into communities. In fact, modularity gives a
quantitative definition of the notion of clusters in a graph (modularity-clusters).
In this paper “clusters” will mean the divisions of a graph which are obtained by
maximizing modularity. As a small example, Figure 1 illustrates the modularity
of a graph with different possible clusters. The modularity of the graph clustering
is highest if the nodes are divided into two separate clusters: {1,2,3,4,5,6} and
{7,8,9,10,11,12,13}.

2

3

4

8

6 7

12

10

1 13

11

95

c

(a)

Clusters Modularity
{1,12,13,5,6,7};
{2,3,4,8,9,10,11} -0.1701

{2,4,6,8};
{1,3,5,7,9,10,11,12,13} 0.0521

{1,2,3,4,5,6,7,8};
{9,10,11,12,13} -0.0868

{1,2,3,4,5,6,7};
{8,9,10,11,12,13} -0.1250

{1,2,3,4,5,6};
{7,8,9,10,11,12,13} 0.4132

{8,3,7,5,12,2};
{1,4,6,9,10,11,13} -0.1667

{3,6,2,7,1,9,4,5};
{8,10,11,12,13} -0.0868

(b)

Fig. 1. Modularity values for several divisions.

Modularity optimization is a very effective method to detect communities,
both in real and in artificially generated networks. However, modularity itself
has not yet been thoroughly investigated, and only a few general properties are
known. Recently, Fortunato and Barthélemy presented critical analysis commu-
nity detection [12]. They showed that modularity contains an intrinsic scale that
depends on the total number of links in the network. Modules that are smaller
than this scale may not be resolved, even in the extreme case where they consist
of complete graphs as subgraphs connected by single bridges. The resolution
limit of modularity actually depends on the degree of interconnectedness be-
tween pairs of communities and can reach values of the order of the size of the
whole network. The problem of the resolution limit of modularity arises if in a
huge graph there are communities of very small sizes. In that case modularity
might not recognize all the smaller clusters and might club them with the clus-
ters of bigger size. An examplary case could be a graph having 1000 nodes with
10 clusters of 90 nodes each and 2 clusters of 5 nodes each, as optimal cluster-
ing. In such a case modularity optimization could end up in clubbing the smaller
clusters with the larger ones. However, the resolution limit of modularity is not
accounted for in this work and needs further investigation.

4 Genetic Clustering Algorithms for Detecting Money-Laundering

3 Proposed Genetic Clustering Algorithm (GAC)

The genetic clustering algorithm which we propose takes the graph data, G =
(V,E); the population size, PopSize; and an upper bound for the number of
clusters, NCUB ; as inputs and returns the best fit clusters present in the graph,
as per the modularity optimization. In our algorithm, we have taken the upper

bound value for the number of clusters as
⌈√

N
⌉
, where N is the number of

nodes in the graph (see [15]) and d·e denotes the ceiling function. The algorithm
is based on the evolution of the solutions. To improve the efficiency and accu-
racy of the algorithm the island model of the genetic algorithm has been used,
with migration every specific number of generations [13]. In the next sections
we describe the population initialization, fitness function, selection methodology,
methodologies for all the genetic operations implemented and the implementa-
tion of the island model.

Algorithm 1: Genetic Clustering Algorithm (GAC).

Data: G = (V,E), PopSize and NCUB

Result: Clusters in the graph
while modularity value not stabilized do

crossover & mutation in each island ;
calculate modularity ;
elitist selection in each island ;
migrate best individual to all other islands, after every τ iterations ;

end

3.1 Population Initialization

The clustering problem can be solved using a GA by either the binary or decimal
representation of the population. But considering the fact that the size of the
graph could be really huge, and from our own experiments with both kinds of
population representation, the decimal representation of the population seems
to yield the results more efficiently. A decimal number for a node indicates to
which cluster the node belongs. Let us say, we have a graph with 15 nodes, then
one may represent an individual of the population as shown in Table 1. Hence,
each individual in the population would be a vector of size n where n is the
total number of nodes in the graph and each entry of the vector indicates which
cluster the nodes belong to. The population size in both algorithms has been
taken as approximately 1.5 times the number nodes in the graph.

Table 1. Chromosomes of a single individual in the population.

Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Chromosomes 1 2 3 1 1 1 1 2 2 2 2 3 3 3 3

Genetic Clustering Algorithms for Detecting Money-Laundering 5

3.2 Fitness Function

The fitness function is one of the corner stones of a genetic algorithm. It is used to
identify and select the best fit solutions (individuals) in the entire population.
For the clustering problem, we use modularity as fitness function. As stated
in the earlier section, modularity is a well accepted criterion and measure to
evaluate the quality of graph clustering. Moreover, as it has been said before its
maximization defines the clusters of a graph in this paper.

3.3 Selection

The next step is to select the individuals in the population for mating and pro-
ducing new offspring. There are several methods available for selection; however
for our clustering problem we have adopted the elitist selection methodology,
keeping in mind that the best fit individuals are more prone to produce better
offspring. Let us say, the population size is PopSize, then the best individual
(highest modularity value) moves to the next generation without any genetic
operations (to avoid the loss of better fit individual of the population) and
the remaining PopSize − 1 individuals move to the mating pool and undergo
crossover and mutation. Likewise, each island undergoes this elitist selection pro-
cedure. The mating pool is created by coupling each individual with its adjacent
individual, as per the ranking (e.g. individuals (2 and 3), (4 and 5) and so on).
PopSize has to be an odd number so as to pair up the individuals in the mating
pool.

3.4 Crossover

Crossover is one of the two standard genetic operations during which certain
genes of the two mating parent-individuals get swapped forming two new in-
dividuals with mixed characteristics. Crossover is an essential operation if one
wants to combine characteristics of different individuals. Two types of crossover
techniques that have been applied here are explained below. Each island imple-
ments only of these crossover operations as shown in Table 2.

• 2-Point Sectional Crossover (CdecS): The two mating individuals are divided
in almost three equal sections (using the ceil or floor functions) and the first
and last sections of each of the two mating individuals are swapped with
each other forming two new individuals with mixed characteristics of the
parent genes. Figure 2 shows two selected sections of the mating individuals
and their flipping.

1 3 1 3 2 3 4 3 1 3

1 5 2 4 2 4 1 4 1 2
=⇒ 1 5 2 3 2 3 4 4 1 2

1 3 1 4 2 4 1 3 1 3

Fig. 2. 2-Point sectional crossover (CdecS).

6 Genetic Clustering Algorithms for Detecting Money-Laundering

• Uniform Crossover (CdecU): In this operation, each gene of the mating indi-
viduals is swapped or retained with an equal probability of 0.5. A set of N
(number of nodes in the graph) random numbers are generated correspond-
ing to each gene of the pair of chromosomes. If the random number for a
gene is less than 0.5 then they are swapped otherwise they are retained as
it is. Figure 3 illustrates this operation with 3 genes flipped.

1 3 1 3 2 3 4 3 1 3

1 5 2 4 2 4 1 4 1 2
=⇒ 1 3 2 3 2 3 4 4 1 3

1 5 1 4 2 4 1 3 1 2

Fig. 3. Uniform crossover (CdecU).

3.5 Mutation

Mutation is an essential genetic operation particularly to gain more diversity and
be explorative. As the algorithm by itself decides and searches for the optimal
number of clusters, it should be able to incorporate certain changes crucial for
graph clustering. It might happen that at a certain point in time the solution
may contain less than the optimal number of clusters. Hence, the algorithm
should be able to add a new cluster as shown by the green box in Figure 4.
Likewise, another possibility is that the solution may contain more than the
optimal number of clusters, so the algorithm should be able to delete clusters
as shown by the red box in Figure 4. Another likely possibility is the wrong
assignment of nodes to clusters. One may need to switch one (or more) node(s)
from one cluster to another to optimize the solution, as shown by grey boxes in
Figure 4. To overcome the above three issues, two kinds of mutation operations

1 3 2 1 3 2 1 2 3 2 =⇒ 1 4 2 1 3 1 2 2 1 2

Fig. 4. Expected mutation operations.

have been implemented in this algorithm. One operation is MdecA which is
implemented be replacing each gene by randomly choosing an integer between
MaxCN+1 and NCUB , where MaxCN is the maximum cluster number present
in the population and NCUB is the upper bound for the number of clusters.
Operation MdecA ensures the possibility of addition of a cluster as it adds an
extra cluster to the gene(s). Another mutation operation which is considered
is MdecB where the gene(s) are replaced by a random integer between 1 and
MaxCN but not the gene value itself. As MdecB replaces the gene(s) with a
new integer between 1 and MaxCN , it takes into account the rearrangement of
clusters as well as deletion of the clusters. Each gene of the whole population in
an island undergoes one of the operations MdecA or MdecB with probabilities of
0.007 and 0.03, respectively, since those probabilities lead to competitive results.

Genetic Clustering Algorithms for Detecting Money-Laundering 7

The reason for implementing MdecA with a low probability is because of the
fact that the initial genes in each island consists of clusters are chosen uniformly
at random between 1 and MaxCN , where MaxCN is the upper bound for the
optimal number of clusters. Hence, the addition of a new cluster should come
with a low probability. Table 2 shows the specific combinations of crossover and
mutation operations implemented in each island.

Table 2. Crossover and mutation operations in each island.

Island 1 2 3 4 5 6

Crossover CdecU CdecS CdecU CdecS CdecU CdecS

Mutation MdecA MdecB MdecA MdecB MdecA MdecB

3.6 Island Model & Migration

The island model is one class of parallel genetic algorithms and it typically runs
serial GA’s on each of several connected processors. The algorithms at the dif-
ferent islands are usually identical, but run independently to the other islands.
A difference could be in the genetic operations or the selection procedures car-
ried out at each island. Each island usually starts with a different population
chosen uniformly at random and some individuals are transmitted between the
islands periodically (after certain number of τ generations) in a process called
migration. In our algorithm we propose 6 equal sized islands with different com-
binations of crossover and mutation, shown in Table 2. After τ iterations, the
best individual of each island is migrated (retaining in its own island) to all other
islands to replace the worst individual in every other island, according to its fit-
ness ranking. We have implemented migration with τ as 10. The concept of the
island model and migration is a very efficient and accurate enhancement of the
genetic algorithm. With the advancement of multi-core CPUs this methodology
can considerably increase the speed of the algorithm by using different cores of
the processor for different islands. This way we try to make the algorithm a lot
more efficient to attain a good solution. The number of islands could vary as
per the requirement and the presence of multi-core CPUs. However, we imple-
mented the algorithms one a single-core CPU and it seems to fetch good and
fast results with 6 islands. Another variation is the migration strategy. One may
device a number of migration strategies and experiment for the best results. We
tried with two different kinds of migration strategies in our experiments. One as
described above (Figure 5), and the second strategy was to migrate only the best
individual among all the islands to all the other islands, after every τ iterations.
But we found that the second strategy does not converge to the optimum or
better solution as fast as the first one.

8 Genetic Clustering Algorithms for Detecting Money-Laundering

Island 1

Island 6

Island 2

Island 3

Island 4Island 5

Best individual of island 1
migrating to other 5 Islands

Best individual of island 2
migrating to other 5 Islands

Best individual of island 3
migrating to other 5 Islands

Best individual of island 4
migrating to other 5 Islands

Best individual of island 5
migrating to other 5 Islands

Best individual of island 6
migrating to other 5 Islands

Removal of 5 worst
individuals from each island

Interpretation of the
arrows

Fig. 5. Graphical explanation: island Model & migration.

4 Genetic Algorithm: Cluster of a Node (GACN)

Not much research has been carried out on finding the cluster of one desired
node. However, we show that modularity can again be exploited to break up the
graph and search for the desired cluster. The main idea behind the proposed
algorithm is to iteratively divide the graph in two best fit union of clusters at
every step, discard the group of clusters which does not contain the desired node
and repeat this process in the remaining subgraph. This process is continued
until the cluster which contains the desired node cannot be bisected further
to yield a better modularity value. A small example in Figure 6 explains the
methodology behind the algorithm. The graph in Figure 6(a) contains 3 dense
subgraphs and we wish to find the cluster of the node marked with a star. At
the first iteration, a variant of the genetic clustering algorithm (Algorithm 1,
adapted to deal with only two groups of nodes) is applied to divide the graph
in two best fit clusters, Figure 6(b). The cluster which does not contain the star
node is discarded and in the next iteration the remaining graph is divided again
in two best fit clusters, Figure 6(c). This procedure is iterated until the desired
cluster cannot be divided any more, i.e., the modularity of the graph does not
improve and finally we are left with the desired cluster as shown in Figure 6(d).
The crucial aspect of this algorithm is the stopping criterion. Following the
above procedure, we definitely know that the algorithm divides the graph in
two groups of clusters since modularity defines the clusters for us. The fact
that we maximize modularity when dividing the graph in two groups, tells us
that each group is a union of modularity-cluster(s). Let us say, the proposed
GACN algorithm is run for some number of iterations and ultimately we are left

Genetic Clustering Algorithms for Detecting Money-Laundering 9

(a) (b)

(c) (d)

Fig. 6. Graphical explanation of GACN.

with a graph having just one cluster with the desired node inside it. As per the
algorithm, when this graph (with just one cluster i.e., the whole graph) is divided
in two clusters, the modularity value of such a division would be less than the
modularity value of the whole graph as one single cluster. In such a scenario the
genetic algorithm will search for the best fit solution and this solution would
be nothing but the whole graph as a single cluster. Moreover, modularity for
the whole graph is always zero; hence, this is a well defined stopping criterion
for the proposed genetic algorithm for detection of the cluster of one node. The
pseudo code for finding the cluster of a desired node is given in Algorithm 2. The
algorithm takes the data for the graph & the desired node of which the cluster
is sought as input and returns the cluster in which the desired node lies. The
Algorithm 2 uses a variant of Algorithm 1 as subroutine for detecting clusters in
the network. The only difference is that this time we implement GAC to yield the
maximum modularity while bisecting the graph in just 2 clusters, hence some
genetic operations have been eliminated or changed to preserve the “two groups
of clusters” structure. When the size of the graph increases the complexity of
GAC increases much faster than GACN which performs some number of iterations
of a less complex version of GAC (since it only has to divide the graph into two
groups). Therefore GACN is expected to perform better than GAC in determining
the cluster of a node.

10 Genetic Clustering Algorithms for Detecting Money-Laundering

Algorithm 2: Genetic Algorithm: Cluster of a node (GACN).

Data: G = (V,E), PopSize & Nd

Result: The Cluster of Node Nd

while Modularity 6= 0 do
run GAC on G for 2 clusters ;
calculate modularity (Q) ;
if (Q==0) then

return G ;
else

G = G-{Cluster without Nd} ;
end

end

4.1 Algorithm Specifications

The initial population representation is slightly different than in Algorithm 1
as here each node is assigned either 1 or 2, with an equal probability of 0.5
each. This way, at every new generation the graph is divided in only two clusters
and ultimately yields two communities in the graph with the highest modular-
ity value. Modularity is again the fitness function. The modularity divides the
graph into two clusters (union of modularity-clusters). The selection procedure
is the same as in the previous algorithm (GAC) implementing the elitist selec-
tion methodology in each island, explained in Section 3.3. However, due to the
less complex nature of GACN, we consider only one crossover and one mutation
operation. All the individuals in the mating pool of the islands undergo these
two genetic operations. In this algorithm a one point crossover (Cdec1) is im-
plemented wherein a point is randomly selected from the entire length of the
chromosome and the two sections of the genes are swapped between the mating
individuals (Figure 7). The mutation operation (Mdec1) in this algorithm flips
each gene of the population from 1 to 2 (or vice-versa) with a probability of
0.02. Each individual in the mating pool of all the islands undergoes these two
operations (Cdec1 & Mdec1). Apart from these variations, we consider 4 islands
with the same population sizes and the same number (τ) of generations between
migration events (for τ = 10).

2 1 1 2 2 2 2 1 2 2

1 1 1 1 1 2 1 1 1 2
=⇒ 2 1 1 2 2 2 1 1 1 2

1 1 1 1 1 2 2 1 2 2

Fig. 7. 1-Point sectional crossover (Cdec1).

5 Results & Conclusion

This paper presents two algorithms to find (i) all the clusters in a graph and (ii)
the cluster of any desired node in a graph using genetic algorithms. The first

Genetic Clustering Algorithms for Detecting Money-Laundering 11

Table 3. Results of GAC and GACN (runtime ± standard deviation).

Number of Number of Run Time (GAC) Run Time (GACN)
Nodes Clusters (seconds) (seconds)

1 8 2 0.06±0.033 0.55±0.035

2 11 2 0.15±0.056 0.54±0.029

3 15 3 0.24±0.066 0.79±0.086

4 21 3 0.74±0.223 2.07±0.409

5 25 4 1.27±0.305 2.40±0.025

6 29 4 1.77±0.419 2.40±0.126

7 42 5 5.62±1.538 3.53±0.307

8 61 4 12.53±3.161 4.37±0.104

9 81 4 24.08±5.737 5.50±0.279

10 101 5 34.97±9.487 6.96±0.541

11 201 10 168.23±32.315 18.98±0.565

12 301 15 430.90±110.5 25.53±0.508

13 401 10 643.23±170.032 37.61±0.625

14 619 10 967.43±270.735 82.77±1.685

algorithm (GAC) is an enhanced genetic clustering algorithm, which implements
the island model for genetic algorithms with migration and provides all the
clusters in the graph, supposedly better than the previously proposed GA based
clustering algorithms [9–11, 14]. The second manifestation of this work is a novel
algorithm (GACN) to find the cluster of any specific node in a network. The
implementation of the algorithms was carried out in MATLAB on a Windows
machine with 1.5GB RAM, 1.73GHz dual core processor. We ran both, the
algorithms, on several graphs of various size and number of clusters, Table 3.
Figure 8 shows the error plot of the logarithmic runtimes for both the algorithms.
We determined that for graphs of over 30 nodes, the Algorithm 2 for finding
the desired cluster runs much faster than the Algorithm 1, which is shown in
Table 3. The Algorithm 2 is extremely useful especially in money-laundering,
wherein one is usually aware of some suspicious entities. This algorithm can
be efficiently used for money-laundering detection, where we are interested in
finding the community of a suspicious entity. The algorithms have been applied
to a range of examples and have proven to be robust and efficient.

Acknowledgements We would like to thank AIA (Aplicaciones en Informática
Avanzada, S.A.) for providing us the environment and the financial data to
implement the algorithms for money-laundering detection. We are also thankful
to CRM (Centre de Recerca Matemàtica) for sponsoring this work.

References

1. MacQueen, J.B.: Some Methods for Classification and Analysis of Multivariate Ob-
servations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics

12 Genetic Clustering Algorithms for Detecting Money-Laundering

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

10
-1

10
0

10
1

10
2

10
3

10
4

Number of Nodes

Lo
g

of
 R

un
-T

im
e

Fig. 8. Error-plot of the logarithmic run-time; GAC (red), GACN (blue).

and Probability, University of California Press, pp. 281-297, (1967).
2. Johnson, S.C.: Hierarchical Clustering Schemes. Psychometrika 2, 241254 (1967).
3. Newman, M.E.J., Girvan, M.: Community Structure in Social and Biological Net-

works. In: Proceedings of the National Academy of Sciences 99(12), pp. 7821–7826
(2002).

4. Newman, M.E.J., Girvan, M.: Finding and Evaluating Community Structure in
Networks. Physical Review E 69:026113 (2004).

5. Newman, M.E.J.: Modularity and Community structure in Networks. In: Proceed-
ings of the National Academy of Sciences 103(23), pp. 8577-8582 (2006).

6. Huang. J., Sun, H., Han, J., Deng, H., Sun, Y., Liu, Y.: SHRINK: A Structural
Algorithm for Detecting Hierarchical Communities in Networks. ACM 978-1-4503-
0099, (2010).

7. Schaeffer, S.E.: Survey: Graph Clustering, Computer Science Review 1, 27-64
(2007).

8. Arenas, A., Fernandez, A., Gomez, S.: Analysis of the Structure of Complex Net-
works at Different Resolution Levels. New Journal of Physics 10:053039 (2008).

9. Lipczak, M., Milios, E.: Agglomerative Genetic Algorithm for Clustering in Social
Networks. ACM 978-1-60558-325, (2009).

10. Lorena, L.A.N., Furtado, J. C.: Constructive Genetic Algorithm for Clustering
Problems. Evolutionary Computation 9(3), 309-328 (2001).

11. Lin, H.J., Yan, F.W., Kao, Y.T.; An Efficient GA-based Clustering Technique.
Tamkang Journal of Science and Engineering 8(2), 113–122 (2005).

12. Fortunato, S., Barthelemy, M.: Resolution Limit in Community Detection. In: Pro-
ceedings of the National Academy of Science 104, pp. 36–41, (2007).

13. Gordon, V. S., Whitley, D.: Serial and Parallel Genetic Algorithms as Function
Optimizers. In: Proceedings of the Fifth International Conference on Genetic Al-
gorithms, pp. 177–183, (1993).

14. Chiou, Y.C., Lan, L.W.: Theory and Methodology - Genetic Clustering Algorithms.
European Journal of Operational Research 135, 413–427 (2001).

15. Yu, J.,Cheng,Q.: The Upper Bound of the Optimal Number of Clusters in Fuzzy
Clustering. Science in China Series: Information Sciences 44, 119–125 (2001).

