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Abstract—Ant colony optimization (ACO) can be applied to the
data mining field to extract rule-based classifiers. The aim of this
paper is twofold. On the one hand, we provide an overview of pre-
vious ant-based approaches to the classification task and compare
them with state-of-the-art classification techniques, such as C4.5,
RIPPER, and support vector machines in a benchmark study. On
the other hand, a new ant-based classification technique is pro-
posed, named AntMiner+. The key differences between the pro-
posed AntMiner+ and previous AntMiner versions are the usage of
the better performing - ant system, a clearly defined
and augmented environment for the ants to walk through, with the
inclusion of the class variable to handle multiclass problems, and
the ability to include interval rules in the rule list. Furthermore, the
commonly encountered problem in ACO of setting system param-
eters is dealt with in an automated, dynamic manner. Our bench-
marking experiments show an AntMiner+ accuracy that is supe-
rior to that obtained by the other AntMiner versions, and compet-
itive or better than the results achieved by the compared classifica-
tion techniques.

Index Terms—Ant colony optimization (ACO), classification,
comprehensibility, - ant system, rule list.

I. INTRODUCTION

CLASSIFICATION is one of the most frequently occurring
tasks of human decision making. A classification problem

encompasses the assignment of an object to a predefined class
according to its characteristics [1], [2]. Many decision problems
in a variety of domains, such as engineering, medical sciences,
human sciences, and management science can be considered as
classification problems. Popular examples are speech recogni-
tion, character recognition, medical diagnosis, bankruptcy pre-
diction, and credit scoring.

Throughout the years, a myriad of techniques for classifi-
cation has been proposed [3], [4], such as linear and logistic
regression, decision trees and rules, k-nearest neighbor classi-
fiers, neural networks, and support vector machines (SVMs).
Various benchmarking studies indicate the success of the latter
two nonlinear classification techniques [5], but their strength
is also their main weakness: since the classifiers generated by
neural networks and SVMs are described as complex mathemat-
ical functions, they are rather incomprehensible and opaque to
humans. This opacity property prevents them from being used
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in many real-life applications where both accuracy and compre-
hensibility are required, such as medical diagnosis and credit
risk evaluation [4], [6]. For example, in credit scoring, since
the models concern key decisions of a financial institution, they
need to be validated by a financial regulator. Transparency and
comprehensibility are, therefore, of crucial importance. Simi-
larly, classification models provided to physicians for medical
diagnosis need to be validated [7], demanding the same clarity
as for any domain that requires regulatory validation.

Our approach, AntMiner , as well as the previously pro-
posed AntMiner versions, takes into account the importance of
both accuracy and comprehensibility and aims at inferring com-
prehensible rules using ant colony optimization (ACO) [8], [9].

The remainder of this paper is structured as follows. First, in
Section II, the basics of ACO are shortly explained. Section III
discusses the use of ACO for data mining, and more specifi-
cally, for the classification task. This is further elaborated on
in Section IV, where we explain the workings of our approach:
AntMiner . In Section V, the setup and results of our bench-
marking experiments on various publicly available data sets are
discussed. Section VI concludes this paper and sets out some
interesting issues for future research.

II. ANT COLONY OPTIMIZATION (ACO)

Swarm intelligence studies the collective behavior of
unsophisticated agents that interact locally through their en-
vironment [10]. It is inspired by social insects, such as ants
and termites, or other animal societies, such as fish schools
and bird flocks. Although each individual has only limited
capabilities, the complete swarm exhibits complex overall
behavior. Therefore, the intelligent behavior can be seen as an
emergent characteristic of the swarm. When focusing on ant
colonies, it can be observed that ants communicate only in an
indirect manner—through their environment—by depositing
a substance called pheromone. Paths with higher pheromone
levels will more likely be chosen and thus reinforced, while the
pheromone intensity of paths that are not chosen is decreased
by evaporation. This form of indirect communication is known
as stigmergy, and provides the ant colony shortest-path finding
capabilities.

ACO employs artificial ants that cooperate to find good so-
lutions for discrete optimization problems [8]. These software
agents mimic the foraging behavior of their biological counter-
parts in finding the shortest-path to the food source. The first
algorithm following the principles of the ACO metaheuristic is
the Ant System [11], [12], where ants iteratively construct solu-
tions and add pheromone to the paths corresponding to these so-
lutions. Path selection is a stochastic procedure based on two pa-
rameters, the pheromone and heuristic values. The pheromone
value gives an indication of the number of ants that chose the
trail recently, while the heuristic value is a problem dependent
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quality measure. When an ant reaches a decision point, it is
more likely to choose the trail with the higher pheromone and
heuristic values. Once the ant arrives at its destination, the so-
lution corresponding to the ant’s followed path is evaluated and
the pheromone value of the path is increased accordingly. Addi-
tionally, evaporation causes the pheromone level of all trails to
diminish gradually. Hence, trails that are not reinforced gradu-
ally lose pheromone and will in turn have a lower probability of
being chosen by subsequent ants.

To summarize, the design of an ACO algorithm implies the
specification of the following aspects.

• An environment that represents the problem domain in
such a way that it lends itself to incrementally building a
solution to the problem.

• A problem dependent heuristic evaluation function ,
which provides a quality measurement for the different so-
lution components.

• A pheromone updating rule, which takes into account the
evaporation and reinforcement of the trails.

• A probabilistic transition rule based on the value of the
heuristic function and on the strength of the pheromone
trail that determines the path taken by the ants.

• A clear specification of when the algorithm converges to a
solution.

The performance of traditional ACO algorithms, however,
is rather poor on large instance problems [13]. Stützle et al.
[14] advocate that improved performance can be obtained by
a stronger exploitation of the best solutions, combined with an
effective mechanism for avoiding early search stagnation (the
situation where all ants take the same path and thus generate
the same solution). The authors propose a - ant
system that differs from the traditionally proposed Ant System
in three aspects.

• After each iteration only the best ant is allowed to add
pheromone to its trail. This allows for a better exploitation
of the best solution found.

• The range of possible pheromone trails is limited to an
interval so as to avoid early stagnation of the
search.

• The initial pheromone value of each trail is set at .
This determines a higher exploration at the beginning of
the algorithm.

Note that other variants of the initial Ant System have been
proposed as well, such as Ant Colony System [15], rank-based
Ant System [16], and Elitist Ant System [12]. A detailed
overview of these variants can be found in [8].

ACO has been applied to a variety of different problems
[8], such as vehicle routing [17]–[19], scheduling [20], [21],
timetabling [22], traveling salesman problem [12], [14], [23],
and routing in packet-switched networks [24]. Recently, ants
have also entered the data mining domain, addressing both
the clustering [25], [26], and classification task [27]–[29],
which is the topic of interest in this paper. The first application
of ACO to the classification task is reported by Parpinelli et
al. in [27] and was named AntMiner. Extensions were put
forward by Liu et al. in AntMiner2 [28] and AntMiner3 [29].
The basic concepts of these classification techniques inspired
by ants, will be discussed next. Our approach, AntMiner ,
differs from these previous AntMiner versions in several ways,

Fig. 1. Construction graph G of AntMiner.

resulting in an improved performance, as explained in detail in
Section IV.

III. ANTMINER

The first application of ACO for the classification task was
reported in [27] and [30], where the authors introduce the
AntMiner algorithm for the discovery of classification rules.
The aim is to extract from data simple rules of the form if rule
antecedent then rule consequent, where the rule antecedent is a
conjunction of terms. All attributes are assumed to be categor-
ical; that is, the terms are of the form , e.g.,

. The extracted classifier is an ordered rule list,
meaning that the discovered rules are intended to be interpreted
in a sequential order.

First of all, an environment in which the ants operate needs
to be defined in a way that when the ants move, they in-
crementally construct a solution to the problem at hand, in
this case, the classification problem. Although the AntMiner
environment is originally not conceptually defined as such,
we define the environment as a directed graph.1 Given
variables with variable having values

(with the number of pos-
sible values for variable ), the construction graph
is defined as follows.

Vertices: For each variable , we define a vertex for
each of its values , thus defining the complete set of

vertices, plus one root vertex . The set of vertices
for one variable is defined as a vertex group.

Correspondence: The correspondence is defined as

This symmetric graph2 is shown in Fig. 1. Note that the edges
are bidirectional.

The complexity of the construction graph , measured by
the number of edges, is with the average
number of values per variable

1A directed graph G can be described by specifying the set V of vertices and
a correspondence�which shows how the vertices are related to each other, with
� being a mapping of V to V [31].

2A directed graph is said to be symmetric if, whenever an edge (v ,v ) is
one of the edges of G, the opposite edge (v ,v ) is also an edge of G.
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The workings of AntMiner are described next, where de-
notes the total number of variables, the number of values for
variable , and finally, a binary variable which is set to one
if variable is not yet used by the current ant and to zero, oth-
erwise. Each ant starts in the vertex with an empty rule
and chooses an edge to follow, e.g., to vertex , implicitly
adding the term to its rule. The edge to choose,
and thus the term to add next, is dependent on the pheromone

and the heuristic value associated with each term
and normalized over all possible terms. This

probability of going to vertex is defined by (1)

(1)

This choice is additionally constrained since each variable
can occur at most once in a rule to avoid inconsistencies such
as and . The ant keeps adding
terms to its partial rule until either all variables have been used
in the rule or if adding any term would make the rule cover less
cases than a user-defined minimum. The consequent of the rule
is determined by the majority class of the training cases covered
by the rule. Finally, the rule is pruned in order to remove irrel-
evant terms and the pheromone levels are adjusted, increasing
the pheromone of the trail followed by the ant, and evaporating
all others. Another ant starts with the newly updated pheromone
trails to guide its search. This process is repeated until all ants
have constructed a rule or when a series of consecutive ants con-
struct the same rule. The best rule among these constructed rules
is added to the list of discovered rules and the training cases cov-
ered by this rule are removed from the training set. This process
is repeated until the number of uncovered training cases is lower
than a user-defined threshold.

The heuristic value in AntMiner is defined as an infor-
mation theoretic measure in terms of the entropy, as defined
by (2) and (3) with the number of classes, the set of
remaining (not yet covered by the rule list) data instances
having , and the size of the data set defined
by . is the probability of having class for
the data instances with , and is measured as

(2)

(3)

AntMiner2 [28], on the other hand, uses a simpler, though less
accurate, density estimation equation as the heuristic value (4)
with the assumption that the small induced errors are compen-
sated by the pheromone level

(4)

This makes AntMiner2 computationally less expensive without
a significant degradation of the stated performance.

Two key changes have been proposed in AntMiner3 [29], re-
sulting in a reported increased accuracy: a different update rule
is used and more exploration is encouraged by means of a dif-
ferent transition rule that increases the probability of choosing

TABLE I
ANTMINER+

terms not yet used in previously constructed rules. An overview
of the definitions for heuristic and pheromone value functions,
as well as the pheromone updating rule and initial pheromone
value are provided later in this text, in Table II.

IV. ANTMINER

Based on the previous AntMiner versions, the main novelties
implemented in AntMiner are as follows.

• Environment:
— The environment is defined as a directed acyclic graph

(DAG), so that the ants can choose their paths more ef-
fectively.

— To allow for interval rules, the construction graph ad-
ditionally exploits the difference between nominal and
ordinal variables.

— Inclusion of the weight parameters for the pheromone
and heuristic value in the construction graph.

• Implementation of the better performing -
Ant System.

• The usage of more accurate class-specific heuristic values,
with the exclusion of the majority class to be used as the
final default class.

• Application of an early stopping criterion.

A. The AntMiner Algorithm

The main workings of AntMiner are described in pseu-
docode in Table I. First, a directed acyclic construction graph
is created that acts as the ants’ environment. All ants begin in
the vertex and walk through their environment to the

vertex, gradually constructing a rule. Only the ant that de-
scribes the best rule will update the pheromone of its path. Evap-
oration decreases the pheromone of all edges. Supplementary
modifications of the pheromone levels may be needed since the

- approach additionally requires the pheromone
levels to lie within a given interval. Since the probabilities are
the same for all ants in the same iteration, they are calculated
only once, at the beginning of the iteration. Convergence occurs
when all the edges of one path have a pheromone level and
all others edges have pheromone level . Next, the rule cor-
responding to the path with is extracted and the training
data covered by this rule is removed from the training set. This
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Fig. 2. Construction graph G of AntMiner+.

iterative process will be repeated until early stopping occurs (cf.
Section IV-E) or until none of the ants describe a rule that covers
at least one training point. In the latter case, no rule can be ex-
tracted as all the paths have a quality of zero. This will typically
be attributed to an abundance of noise in the remaining data, in-
dicating that further rule induction is useless.

Details of AntMiner are provided in the following sections.

B. Construction Graph

A first modification to allow for intervals, such as
, to be included in the rules, is the expansion of the set

of variables into a set of variables by
taking the ordinal variables twice. This results in the new set of
variables , with . The
construction graph for AntMiner is shown
in Fig. 2 and defined as follows.

Vertices: First, the root and sink vertices and are
defined.

Second, just as for the AntMiner construction graph , we
define a vertex group for each of the variables , i.e., a vertex

is created for all values of the variables
. The first group of vertices, defined for an ordinal

variable , are , with the number of
values for variable . This vertex group should be regarded as
the lower bound for variable , while the second vertex group

should be seen as the upper bound
for , which in this ordinal case is equal to .

Since ants have to pass a vertex for each variable before
reaching the final vertex, a dummy vertex is
defined for each nominal variable . The value for this vertex
is undetermined, implying that any ant choosing a dummy
vertex does not make use of the variable in its rule. For the
ordinal variables, such a dummy vertex is unnecessary since
an ant choosing the first vertex and then the last vertex [thus
describing and ] also makes
no use of the variable.

To allow the ants to choose the class for which to extract a
rule, an extra vertex group is added that comes first in the con-
struction graph. This is similar to considering the class variable
as just one of the variables, and will be treated as such when
calculating the heuristic values. Therefore, we introduce a new
variable that corresponds to the class variable. To extract a
rule list that is complete, such that all future data points can be
classified, one class is not included in the construction graph
and will be the predicted class for the final else clause. Hence,
the class variable corresponds to a vertex group with ver-
tices. The class to exclude is taken to be the majority class since

Fig. 3. Example of path described by an ant for the construction graph defined
by AntMiner+.

the smaller classes are usually the classes of interest: the bad
credit customers, the malignant breast masses Additionally,
this prevents a path with all dummy vertices, which corresponds
to a rule predicting the majority class in all cases, to be chosen
by the ants. As our experiments will show, excluding one class
from the class vertex group results in an improved accuracy.

Correspondence: The correspondence is defined as

To avoid that ants incorporate inconsistencies in their rule,
such as and , we further constrain the envi-
ronment by removing the edge between any two vertices corre-
sponding to the same ordinal variable, where the first vertex has
a higher value than the second one. Therefore, in Fig. 2, among
others, the edge between and is missing. This graph is
a rooted DAG with a complexity of . Although
is a value slightly higher than , the com-
plexity is clearly lower than the complexity of the construction
graph defined by AntMiner. Notice that on average, the ants in
AntMiner need to choose among edges at each decision
point, where for AntMiner they choose among edges.
By reducing the choices without constraining the rule format,
AntMiner ants can make their decisions more effectively.

A credit scoring example of the construction graph described
so far is shown in Fig. 3. Assume we have three variables: sex
of the applicant, term of the loan, and information concerning
real estate property of the applicant. The dummy vertices for
the nominal variables sex and real estate have the corresponding
“any” value.

An ant that follows the path indicated in bold from to
describes the rule:

if and and
then

C. Edge Probabilities

The probability for an ant in vertex to choose the edge
to vertex is defined by the pheromone value
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of the edge, the heuristic value of vertex , and nor-
malized over all possible edge choices

(5)

For the AntMiner edge probabilities, we need to consider
and normalize over all variables , while for
AntMiner , we only need to consider and normalize over the
next variable . The and are weight parameters that
indicate the relative importance of the pheromone and heuristic
value.

Heuristic Value: The heuristic value gives for each vertex in
the construction graph a notion of its quality and importance
in the problem domain. For the classification task, we define
the importance of a vertex , with value for variable

, by the fraction of training cases that are correctly covered
(described) by this term, as defined by (6)

(6)

Since the heuristic value is dependent on the class chosen by
the ant (denoted as ), each vertex has as many heuristic
values as there are class values. This heuristic value for each
possible class is more accurate than using just one heuristic for
a vertex. The heuristic used in AntMiner2 and AntMiner3 only
provides a good quality indication if a rule for the majority class
is being extracted, if not, the heuristic is even misleading. As
already mentioned, the heuristic function used in AntMiner is
more accurate, but cannot provide a search direction that is as
good as the one used by AntMiner . Since AntMiner ants do
not know for which class they are extracting a rule until the rule
is constructed, guiding the ants with class-specific heuristics is
useless. Since, on the other hand, AntMiner ants already know
the class for which to extract a rule, such a class-specific and
accurate heuristic function can be used.

Note that for dummy vertices, the same formula (6) is used
to calculate the heuristic value. As stands for for
a dummy vertex, the heuristic value is simply the percentage
of uncovered training points that have the class . For
the class vertices, a similar value is chosen, that is: the ratio of
uncovered training points that have class equal to the class of
the vertex. So, if 60% of the uncovered training data is of class
1, the heuristic value for the vertex will be 0.6.

We do not take into account the history of the ant in the
heuristic value, that is, we ignore the number of data points al-
ready covered by the rule so far. This implies that the sequence
of the variables in the construction graph is irrelevant and al-
lows for distribution of the data. Often the data is collected and
stored in different sites, interconnected through an intranet or
Internet, where the traditional centralized data mining approach
requires the transfer of all the data to one central database each
time the data has been updated, AntMiner can simply send out
the ants over the network. In this case, the construction graph is
distributed, with the connections between the vertex groups pos-
sibly between geographically dispersed databases.

Pheromone Updating: Updating the pheromone trail of the
environment of - Ant Systems is accomplished
in two phases: evaporation and reinforcement. Evaporation is

accomplished by diminishing the pheromone level of each trail
by a factor . Typical values for this evaporation factor lie
in the range [0.8,0.99] [14]. Reinforcement of the pheromone
trail is only applied to the best ant’s path. The best ant can be
chosen as either the iteration best ant, or the global best ant.
Results described in the literature motivate our choice towards
the iteration best ant [14]. This means that, taking into account
the evaporation factor as well, the update rule for the best ant’s
path is described by (7), where the division by ten is a scaling
factor that is needed such that both the pheromone and heuristic
values lie within the range [0,1]

(7)

Clearly, the reinforcement of the best ant’s path should be
proportional to the quality of the path , which we define as
the sum of the confidence and the coverage of the corresponding
rule. Confidence measures the fraction of remaining (not yet
covered by any of the extracted rules) data points covered by
the rule, that are correctly classified. The coverage gives an in-
dication of the overall importance of the specific rule by mea-
suring the number of correctly classified remaining data points
over the total number of remaining data points. More formally,
the pheromone amount to add to the path of the iteration best ant
is given by the benefit of the path of the iteration best ant, as in-
dicated by (8), with , the rule antecedent (if part) being
a conjunction of terms corresponding to the path chosen by the
ant, the conjunction of with the class chosen
by the ant, and a binary variable expressing whether a data
point is already covered by one of the extracted rules
or not . The number of remaining data points can,
therefore, be expressed as

(8)

Weight Parameters: An issue typically encountered when ap-
plying ACO algorithms is the need to instantiate several system
parameters, such as the number of ants, the evaporation factor,
and the weight parameters and . In AntMiner, AntMiner2,
and AntMiner3, the weight values are set to 1. AntMiner , how-
ever, allows other values to be chosen and actually lets the ants
themselves choose suitable values. This is done by introducing
two new vertex groups in the construction graph: one for each
weight parameter. We limit the values for the weight parameters
to integers between 1 and 3, which typically provided values
around and . Since we do not have a specific pref-
erence, the heuristic values for these vertices are all set to 1, so
the search is only influenced by the pheromone levels.

The final construction graph, with the inclusion of weight pa-
rameters and , and the class variable is provided in Fig. 4.

D. Pruning

Rule pruning is a technique used to improve the generalization
behavior of a rule-based classifier by removing irrelevant terms
from a rule [32]. When all the ants have created their rule,
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Fig. 4. Multiclass construction graph G of AntMiner+ with the inclusion of weight parameters.

Fig. 5. Illustration of early stopping principle.

the rule of the best ant is selected for pruning. Suppose this
rule has terms, then all possible rules with one term less,
thus rules are created and the corresponding confidence
is calculated. The rule that experiences the highest confidence
increase is selected for further pruning (thus considering rules
with terms). This process is repeated until none of the
rules with one term less have a confidence that is higher or the
same. When a rule is pruned, a better rule is obtained, both in
terms of accuracy (as only confidence is considered, and not
the coverage) and comprehensibility (the rule is less complex
since it consists of one term less). The path corresponding to
this pruned path will be updated next, as we have described
in Table I.

E. Early Stopping

To accomplish good generalization properties, and thus avoid
the classifier from fitting the noise in the training data, a sep-
arate validation set can be monitored during the training ses-
sion. When the error measure on the validation set starts to in-
crease, training is stopped, thus effectively preventing the rule
base from fitting the noise in the training data. Typical evolu-

tions of the accuracy on the training, validation, and test set are
shown in Fig. 5 for a selection of data sets. This stopping tech-
nique is known as early stopping and is used in AntMiner .
Note that this causes loss of data that cannot be used for con-
structing the rules and, hence, this method is less appropriate for
small data sets. Alternatively, for such small data sets, the stop-
ping criterion can be defined by a user-defined minimum for the
percentage of data points covered by the rule list, or a maximum
number of rules. As stated in the next section, we have opted for
the first alternative.

Implementing the early stopping criterion involves the sep-
aration of the data set in three parts: a training set used by
AntMiner to infer rules from, a validation set to implement
the early stopping rule, and a test set to calculate an unbiased
performance estimate. As a rule of thumb, 2/3 of the complete
data set is typically used for training and validation and the re-
maining 1/3 for testing. Of the data points set aside for training
and validation, 2/3 is training data and 1/3 validation data.

Our experiments will demonstrate that this stopping criterion
results in an improved average accuracy over using a user-spec-
ified minimum threshold for data coverage.
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TABLE II
OVERVIEW OF ANTMINER VERSIONS

F. Curse of Dimensionality

The curse of dimensionality is a phenomenon where many
types of data analysis become significantly harder as the data
dimensionality increases [32], and arises from the fact that a
large dimensional space with relatively few data points is sparse.
For classification, this implies that insufficient data points are
available to create a reliable classification model. In our case,
none of the ants are able to extract a rule that covers at least one
data point when dealing with such a high-dimensional data set.

To deal with this curse of dimensionality, we have two op-
tions: either lower the number of values per variable, or lower
the number of variables. The first option is dealt with using dis-
cretization, the latter variable selection option with a -based
filter [33] (see Appendix II). For AntMiner , experimental in-
vestigation suggests to limit the number of variables to 20, with
maximum 15 values each. These guidelines are set for data sets
with about 1000 observations; for larger data sets these guide-
lines can of course be relaxed.

G. Overview AntMiner Versions

A complete overview of the differences between the proposed
AntMiner versions is shown in Table II.3 The table presents the
used heuristic function , the initial pheromone value

, and the pheromone update rule, as well as how these are
combined to determine the edge probability , and finally if
pruning occurs.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

AntMiner has been applied to a wide range of publicly
available data sets, corresponding to both binary and multiclass
classification problems [34]. Training, validation, and test set
are determined in the manner discussed before, although the

3Note that majority class is abbreviated to maj. class.

early stopping rule (and thus validation set) is only used for data
sets with more than 250 data points. The stopping criterion for
data sets with less data points is determined by a user-defined
minimum for the percentage of data points covered by the rule
list, which we have set to 1%. To eliminate any chance of having
unusually good or bad training and test sets, ten runs are con-
ducted where the data is randomized before the training, valida-
tion, and test set are chosen.

The only parameters that need to be set are the number of ants
and the evaporation factor . The higher these values, better the
results that can be expected, since more ants will automatically
imply that more candidate rules are generated and increasing
evaporation factor will result in a slower convergence process.
However, from a certain threshold on, a flat-maximum effect is
reached: increasing the parameter(s) only results in more execu-
tion time and no significant increase in accuracy. The execution
time scales linearly with the number of ants and exponentially
with the evaporation factor . Fig. 6 shows the influence of these
parameters on both accuracy [left side of Fig. 6(a) and (b)] and
execution time [right side of Fig. 6(a) and (b)] for the tic-tac-toe
and wine data sets. The two-dimensional plots show the sur-
face lines for a constant number of ants and constant evaporation
factor , with a wider line used for the experiments with 1000
ants and varying , and the experiments with set to 0.85 and
varying number of ants. Although the shape of the plots varies
across the different data sets, the choice of 1000 ants and an
evaporation factor of 0.85 (indicated with the white dot) pro-
vides an accuracy in the maximum plateau, while maintaining a
reasonable execution time, and are therefore the parameter set-
tings chosen for our experiments.

To compare the results of AntMiner , a benchmarking
study is performed that includes the previous ACO-based
classification techniques and commonly used state-of-the-art
classification techniques. Both AntMiner, as the adapted
AntMiner2 and AntMiner3 versions, are implemented by the
authors in Matlab®. C4.5 is the popular decision tree builder
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Fig. 6. Influence of the number of ants and evaporation factor � on accuracy and execution time for (a) tic-tac-toe and (b) wine data sets. The choice of 1000 ants
and an evaporation factor of 0.85 is denoted with a white dot.

[35] where each leaf assigns class labels to observations. Each
of these leaves can be represented by a rule and, therefore, C4.5
also builds comprehensible classifiers. Since C4.5 discovers
unordered rule sets—whereas the AntMiner versions discover
ordered rule lists—the RIPPER technique is also included
in our experiments, since it also builds rule lists and, hence,
has the same representation bias as the AntMiner versions.
K-nearest neighbor classifiers (kNN) classify a data instance by
considering only the k most similar data points in the training
set. This technique is called lazy, since it does not involve
creating a classification model, but rather defers the decisions
on how to classify new data points beyond the training session.
For both C4.5 and kNN, we used the Weka workbench [36],
with the use of the standard pruning mechanism of C4.5, as
implemented by the Weka workbench. Also, included is the
commonly used logistic regression (logit) classifier and the
nonlinear SVM classifier [37], with the nominal variables
encoded with weights of evidence [33]. We report the results of
the SVM with radial basis function kernel and hyperparameters
set by a gridsearch procedure [38]. Since SVM and logit are
binary classifiers, a set of classifiers of size equal to the number
of classes are built using a one versus all scheme [39] for the
multiclass data.

B. Datasets

AntMiner has been applied to a wide range of data sets. As
we are interested in studying the algorithm’s performance and
also in situations which require comprehensibility of the gener-
ated classification models, some of the data sets are related to
the credit scoring and medical diagnosis domains. Unless men-
tioned otherwise, all data sets are publicly available and can be
retrieved from the UCI data repository [34].

Two credit scoring data sets are included in our experiments.
The first one is the australian (aus) credit approval data set,
which concerns credit card applications. The second credit

TABLE III
EXAMPLE RULE LIST ON GERMAN CREDIT SCORING DATA SET

scoring data set is the german (ger) data set, for which an
extracted rule list is shown in Table III.

The breast cancer diagnosis data sets are breast cancer
Ljubljana (bcl) and breast cancer Wisconsin (bcw). For these
data sets, the task consists of classifying breast masses as being
either benign or malignant. The contraceptive method choice
(cmc) data set involves the prediction of the current contracep-
tive method choice (no use, long-term methods, or short-term
methods) of a married woman based on her demographic and
socioeconomic characteristics. An example rule list for this
data set is shown in Table IV.

Several toy problems are included as well. The iris data set
is a commonly used data set in the pattern recognition litera-
ture, where each of the three possible classes refer to a type
of iris plant. The tic-tac-toe (ttt) data set encodes the complete
set of possible board configurations at the end of tic-tac-toe
games, where the target concept is “win for X.” Ripley’s data
set (rip) has two variables and two classes, which allows for vi-
sualization of the extracted rules. The classes are drawn from
two normal distributions with a high degree of overlap [40].
We used a training set of size 250 and a test set of 1000 data
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TABLE IV
EXAMPLE RULE LIST ON CONTRACEPTIVE METHOD CHOICE DATA SET

Fig. 7. AntMiner+ rules (—) and SVM decision boundary (--) for Ripley’s
data set.

points. Fig. 7 shows the decision boundary defined by the ex-
tracted AntMiner rules (accuracy 90.8%), as well as a SVM
model (accuracy 91.4%).

The teacher assistant evaluation (tae) data set consists of
evaluations of teaching assistant performance at the University
of Wisconsin–Madison. The scores were divided into three
roughly equal-sized categories to form the class variable. Each
example in the balance (bal) data set is classified as having the
balance scale tip to the right, tip to the left, or be balanced. The
car evaluation data set evaluates cars in four classes according
to the price and technical properties; and finally, the wine data
set is the result of a chemical analysis of wines grown in the
same region in Italy but derived from three different cultivars.

C. Results

The results of our experiments on the binary classification
problems are summarized in Table V, and the results for the mul-
ticlass classification problems are shown in Table VI. For each
data set, the number of data instances (inst) and attributes (attr),
as well as the average accuracy and, if applicable, the number of
generated rules (#R) are displayed. The complexity of the rules
is given by the average number of terms per rule (#T/R). The
best average test set performance over the ten randomizations is
underlined and denoted in bold face for each data set. We then

use a paired t-test to test the performance differences. Perfor-
mances that are not significantly different at the 5% level from
the top performance with respect to a one-tailed paired t-test
are tabulated in bold face. Statistically significant underperfor-
mances at the 1% level are emphasized in italics. Performances
significantly different at the 5% level but not at the 1% level are
reported in normal script. Since the observations of the random-
izations are not independent, we remark that this standard t-test
is used as a common heuristic to test the performance differ-
ences [41].

Table VII shows the results averaged over all the data sets,
with the best performances shown in bold. Also provided is the
average test set accuracy, the average number of rules and terms
per rule, and the computational time required to obtain the re-
sults. Furthermore, we have assigned ranks to the techniques
according to their accuracy on each data set, and the average
ranking over the different data sets is also included in the table.

D. Discussion

The first observation that can be made is that our implemen-
tation of the previous AntMiner versions obtains very similar
results, both in terms of accuracy as in terms of comprehensi-
bility, with differences that are never statistically significant at
the 5% level.

Considering the average accuracy and average ranking over
all binary classification problems, AntMiner performs best
with an average ranking of 3.2, even though it uses less training
data than the other techniques to allow for a validation set, and
thus early stopping. C4.5 and RIPPER do not perform signifi-
cantly worse, except for the tic-tac-toe data set. The results ob-
tained by 1NN are never the most accurate and are significantly
worse than the best technique at a 1% level on 1/2 of the data
sets. Logistic regression and SVM consistently perform well,
with an average ranking of 3.5 and 3.8, respectively. Only on
the tic-tac-toe data set, where the data set can be described by
simple rules, do these mathematical classifiers perform signifi-
cantly worse than AntMiner .

When reviewing the results for the multiclass classification
problems, SVM comes out as the most accurate technique,
closely followed by AntMiner and logistic regression. 1NN
comes in fourth, but it still performs significantly worse at a
1% level on 1/2 of the data sets. Since each multiclass problem
requires a set of SVM or logit classifiers to be built in a one
versus all setup, an ensemble of models is created, which can
explain the added accuracy of these classifiers compared with
the single model multiclass classification results.

Looking at the overall average accuracy and ranking in
Table VII, SVM performs best, as could be expected from
this nonlinear classification technique. Still the SVM models
perform significantly worse on the bcl and tae data sets. This
finding is typical for data mining, as no technique performs best
on all data sets [5]. AntMiner achieves the second best av-
erage accuracy, whereas logistic regression achieves the second
best average ranking. Considering accuracy and ranking only,
AntMiner provides the best results of all included rule-based
classifiers.

As motivated earlier in this paper, accuracy is not the only
performance indicator: comprehensibility should be considered
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TABLE V
AVERAGE OUT-OF-SAMPLE PERFORMANCE FOR BINARY CLASSIFICATION PROBLEMS

TABLE VI
AVERAGE OUT-OF-SAMPLE PERFORMANCE FOR MULTICLASS CLASSIFICATION PROBLEMS

TABLE VII
OVERALL AVERAGE OUT-OF-SAMPLE PERFORMANCES

as well. The nearest neighbor technique is lazy in the sense
that there is no actual classifier. Comprehensibility of such
decisions, based on the similarity with training data, is limited.
Although the SVM models perform consistently well, the
nonlinear, black-box nature of the generated classifiers makes
them rather incomprehensible to humans. Logistic regression
achieves good results as well but is troubled with similar opacity
issues. The form of the SVM and logistic regression classifiers,
respectively, are described by (9) and (10) and clearly indicate
the opacity problem of these models

(9)

(10)

The only techniques that deal with the comprehensibility aspect
are the rule-based classifiers C4.5, RIPPER, and the AntMiner
versions. RIPPER obtains the lowest number of rules, with an

average of only 3.2 rules. Although the previous AntMiner ver-
sions extract more rules than RIPPER, they require less terms
per rule than RIPPER. AntMiner extracts more rules and ob-
tains more terms per rule when compared with RIPPER. C4.5
performs worst on this performance measure, with an average
of 30 rules. An issue faced by C4.5 that can explain this higher
number of rules is its greedy character, since every split made in
the decision tree is irreversibly present in all leaves underneath.

When comparing the AntMiner versions, AntMiner
achieves an average accuracy that is significantly better than the
previous AntMiner versions on most of the data sets, and needs
less rules to achieve this accuracy gain. On the other hand, the
average number of terms per AntMiner rule is more than
double the number of terms per rule for the other AntMiner
versions.

The tradeoff between accuracy and comprehensibility is
clearly present in our results: the most accurate results are
obtained by incomprehensible nonlinear SVM models, whereas
the most accurate rule-based classifier, AntMiner , needs
more rules and terms per rule to outperform the second best
rule-based classifier, RIPPER.

The better results of AntMiner can be attributed to the
- Ant System which has a proven record of pro-

viding high performing solutions, but also to our construction
graph which allows for an effective decision making process
for the ants and the ability to include interval rules. Since
the ants choose the rule consequent (the class) before the
antecedent, the ants can direct their search towards the intended
class. The inclusion of dummy variables and the distinction
between ordinal and nominal variables do not only contribute
to the comprehensibility, but also to the accuracy achieved, as
demonstrated in the following section.

Some disadvantages still need to be addressed. AntMiner
requires more computational time than the other techniques
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Fig. 8. Average accuracies for each data set over ten runs with the different AntMiner versions.

to achieve its results and, as all AntMiner versions, is only
able to deal with categorical variables, while continuous vari-
ables must be discretisized. Parallelization of the inherently
distributed AntMiner system could decrease the computation
time needed, although one also needs to be aware of the minor
importance of computational time for classification tasks such
as credit scoring and medical diagnosis.

E. Experimental Investigation of Key Concepts

To explore the significance of the differences between
AntMiner and previous AntMiner versions, we have studied
several modifications of AntMiner , of which the average
results over ten runs for each data set are given in Fig. 8 and
the overall averages in Fig. 9. Although the studied modifi-
cations might seem straightforward, one has to consider that
many of the features are entangled with one another. It is the
combined working of all the features of our approach, such as
the construction graph, - Ant System, heuristic
and pheromone function, etc., that yield the reported results.
For example, because of our directed acyclic construction
graph, where no ant can stop before having passed all vertex
groups, it is more likely for an ant to generate a rule with lower
coverage than in the original AntMiner construction graph. By
using the - Ant System, however, this effect is
overcome and we actually obtain better results. In view of that,
the accuracy drop accomplished by omitting some features of
AntMiner cannot always be expected to be obtained when
adding these to other techniques.

The considered modifications are described next.
1) - Ant System: Demonstrating the favor-

able effect of the - Ant System in AntMiner
needs no modification, as it is revealed by Fig. 6. As the

- Ant System only adds pheromone to the path
of the best ant, using fewer ants results in a lowering accuracy.

Fig. 9. Average accuracies over all data sets with the different AntMiner ver-
sions.

Adding pheromone to the path of each ant, as is done in the
traditional Ant System, will therefore yield worse results.

2) AntMiner3 With the Entropy-Based Heuristic: The first
reported results are the accuracy for AntMiner (AM) and
AntMiner3 (AM3). To determine the importance of the more
complex heuristic function used in AntMiner, we applied the
entropy-based heuristic function to AntMiner3, providing the
third results (AM3 entr.). Although the difference in accuracy
is not significant, still an overall average improvement is
reported. This observation, together with the positive results
of AntMiner which uses more accurate heuristic values and
the reported typical values of and , indicate the
importance of providing a good heuristic function, as suggested
before for other applications [8].
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3) AntMiner Without Early Stopping: We replaced the
early stopping criterion with a similar stopping criterion as the
one used in previous AntMiner versions, i.e., a user-specified
minimum threshold for coverage (AM no e.s.). As the sizes
of the data sets vary greatly, instead of using a threshold for
the number of uncovered data instances, we use a threshold for
the percentage of uncovered data instances. Determining such
a threshold that can be applied to all data sets is not an easy
task as a proper value depends upon the noise present in the
data: for some data sets (such as for bcl), the best accuracies
are obtained when stopping if less than 25% of the data set
remains uncovered, whereas for other data sets (such as for rip
and iris), best accuracies are obtained when stopping at 5%,
and even other data sets obtain best results at 1% (among others
for car and wine). The 1% threshold is chosen, since for most
data sets this is optimal, and since AntMiner stops anyway
when no ant finds a rule that covers at least one data instance,
so the algorithm can stop even though more than 1% of the data
remains uncovered. The results show a rather slight decrease
in average accuracy of 1.3%, in favor of the early stopping
criterion.

4) AntMiner With the Inclusion of All Classes: A more sig-
nificant change is observed for AntMiner when including all
the classes in the class vertex (AM all cl.), meaning no class
is set apart to act as default class in the final else clause. As
for the previous AntMiner versions, rules are extracted for all
possible classes, with the final class being the majority class of
the remaining, uncovered training instances. When no class is
set apart, the remaining data instances will be spread rather uni-
formly over all the classes, whereas setting a class apart will
yield a clear majority of data entries with that class. So, as-
signing all remaining data instances to the majority class of the
remaining instances will naturally yield a higher error when no
class is set apart.

5) All Variables Declared Nominal: The final change consid-
ered is the declaration of all variables as nominal, as shown by
our fifth adaptation (AM+ all nom.). Being unable to include in-
terval rules results in an accuracy drop from 81.6% to 75.4%. As
we can also distinguish between nominal and ordinal variables
in C4.5 and RIPPER, we applied the same modification to those
techniques, i.e., declaring all the variables as nominal. This re-
sulted in an average accuracy decrease for C4.5 and RIPPER of
2.2% and 2.9%, respectively. These results clearly indicate the
beneficial value of being able to include interval rules, in gen-
eral, and its key role in AntMiner .

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, we have discussed the use of ACO for classifica-
tion. By providing an appropriate environment, the ants choose
their paths and implicitly construct a rule. One of the strengths
of the ant-based approaches is that the results are comprehen-
sible, as they are in a rule-based format. Such rule lists provide
insight into the decision making, which is a key requirement in
domains such as credit scoring and medical diagnosis.

The proposed AntMiner technique can handle both binary
and multiclass classification problems and generates rule lists
consisting of propositional and interval rules. Furthermore,
the problem commonly encountered in ACO of setting system

TABLE VIII
EXAMPLE RULE LIST ON BREAST CANCER LJUBLJANA DATA SET WITH

INCONSISTENCY UNDERLINED

Fig. 10. Vertex groups for variable tumor-size (a) without and (b) with envi-
ronment adjustment to reflect domain knowledge.

parameters and is dealt with in an automated, dynamic
manner. Another advantage of ACO that comes out more
clearly in our approach is the possibility to handle distributed
environments. Since the AntMiner construction graph is
defined as a sequence of vertex groups (of which the order is of
no relevance), we are able to mine distribute databases.

Our experiments show only little differences in the re-
sults obtained by the previous AntMiner versions, while the
AntMiner technique achieves a significantly higher accuracy.
Experimental investigation revealed the importance of the
interval rules and accurate class-specific heuristic values for
this performance gain. When compared with state-of-the-art
classification techniques, AntMiner ranks at the absolute top
when considering both accuracy and comprehensibility.

An issue faced by any rule-based classifier is that, although
the classifier is comprehensible, it is not necessarily in line with
existing domain knowledge [7]. It may well occur that data in-
stances, that are very evident to classify by the domain expert, do
not appear frequently enough in the data in order to be appropri-
ately modeled by the rule induction technique. Hence, to be sure
that the rules are intuitive and logical, expert knowledge needs to
be incorporated. An example rule-set of such an unintuitive rule
list, generated by AntMiner , is provided in Table VIII. The un-
derlined term is contradictory to medical knowledge suggesting
that increasing tumor sizes result in higher probability of recur-
rence. As shown in Fig. 10, such domain knowledge can be in-
cluded in AntMiner by changing the environment.4 Since the
ants extract rules for the recurrence class only, we can remove
the second vertex group corresponding to the upper bound on
the variable. Doing so ensures that the rules comply with the
constraint required for the tumor size variable. Applying such
constraints on relevant data sets to obtain accurate, comprehen-
sible, and intuitive rule lists is surely an interesting topic for
future research.

4The variable tumor-size actually has 12 possible values, which we limit to 4
in Fig. 10 to avoid overloading the figure.



MARTENS et al.: CLASSIFICATION WITH ANT COLONY OPTIMIZATION 663

TABLE IX
NOTATIONS

Finally, additional comprehensibility to the current
AntMiner implementation can be provided by visualizing
the extracted rule lists with decision tables [6] and decision
diagrams [42], allowing for truly easy and user-friendly con-
sultation in every day practices.

APPENDIX I
NOTATIONS

An overview of the notations are found in Table IX.

APPENDIX II
-BASED FILTER FOR VARIABLE SELECTION

In order to reduce the number of variables, a filter can be
used that provides an indication of the predictiveness of each
of the variables. By choosing those variables that are the most
predictive, a reduced set of variables is obtained.

The statistic can be used as a filter in the following manner
[33]. We measure the observed frequencies of all possible com-
binations of values for class and variable, as shown in Table X.
Based on this, we calculate the theoretical frequencies shown in

TABLE X
OBSERVED FREQUENCIES

TABLE XI
THEORETICAL FREQUENCIES

Table XI, assuming complete independence between the vari-
able and the class. The hypothesis of equal odds provides a
test statistic; the higher this value, the more the assumption of
independence is invalid, and thus the more predictive the vari-
able is. A detailed and theoretical framework is provided next.

From the observed frequencies , as defined by (11), the
theoretical frequencies under the independence assumption
can be constructed, as shown by (12) with the total number
of observations

(11)

(12)

Under independence, (13) would hold. The more deviates
from , the less the assumption of independence is valid and,
hence, the more predictive the variable is

(13)

The test characteristic, as defined by (14) can be seen as
a measure for the predictiveness: the higher its value, the more
predictive the variable. This characteristic can be used as a filter
by ranking all the variables with respect to their -value and
selecting the most predictive ones

(14)
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