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ABSTRACT 
 

Optimization is a mathematical technique that concerns the 

finding of maxima or minima of functions in some feasible 

region. There is no business or industry which is not involved 

in solving optimization problems. A variety of optimization 

techniques compete for the best solution. Particle Swarm 

Optimization (PSO) is a relatively new, modern, and powerful 

method of optimization that has been empirically shown to 

perform well on many of these optimization problems. It is 

widely used to find the global optimum solution in a complex 

search space. This thesis aims at providing a review and 

discussion of the most established results on PSO algorithm as 

well as exposing the most active research topics that can give 

initiative for future work and help the practitioner improve 

better result with little effort. This paper introduces a 

theoretical idea and detailed explanation of the PSO algorithm, 

the advantages and disadvantages, the effects and judicious 

selection of the various parameters. Moreover, this thesis 

discusses a study of boundary conditions with the invisible wall 

technique, controlling the convergence behaviors of PSO, 

discrete-valued problems, multi-objective PSO, and 

applications of PSO. Finally, this paper presents some kinds of 

improved versions as well as recent progress in the 

development of the PSO, and the future research issues are also 

given. 

       

        Keywords: Optimization, swarm intelligence, particle swarm,   

        social network, convergence, stagnation, multi-objective. 
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CHAPTER 1 
 

Introduction  
 

Scientists, engineers, economists, and managers always have to take many 

technological and managerial decisions at several times for construction and 

maintenance of any system. Day by day the world becomes more and more 

complex and competitive so the decision making must be taken in an optimal way. 

Therefore optimization is the main act of obtaining the best result under given 

situations. Optimization originated in the 1940s, when the British military faced 

the problem of allocating limited resources (for example fighter airplanes, 

submarines and so on) to several activities [6]. Over the decades, several 

researchers have generated different solutions to linear and non-liner optimization 

problems. Mathematically an optimization problem has a fitness function, 

describing the problem under a set of constraints which represents the solution 

space for the problem. However, most of the traditional optimization techniques 

have calculated the first derivatives to locate the optima on a given constrained 

surface. Due to the difficulties in evaluation the first derivative for many rough 

and discontinuous optimization spaces, several derivatives free optimization 

methods have been constructed in recent time [15].  

 

There is no known single optimization method available for solving all 

optimization problems. A lot of optimization methods have been developed for 

solving different types of optimization problems in recent years. The modern 

optimization methods (sometimes called nontraditional optimization methods) are 

very powerful and popular methods for solving complex engineering problems. 

These methods are particle swarm optimization algorithm, neural networks, 

genetic algorithms, ant colony optimization, artificial immune systems, and fuzzy 

optimization [6] [7]. 

 

The Particle Swarm Optimization algorithm (abbreviated as PSO) is a novel 

population-based stochastic search algorithm and an alternative solution to the 

complex non-linear optimization problem. The PSO algorithm was first introduced 

by Dr. Kennedy and Dr. Eberhart in 1995 and its basic idea was originally inspired 

by simulation of the social behavior of animals such as bird flocking, fish 

schooling and so on. It is based on the natural process of group communication to 

share individual knowledge when a group of birds or insects search food or 

migrate and so forth in a searching space, although all birds or insects do not know 

where the best position is. But from the nature of the social behavior, if any 

member can find out a desirable path to go, the rest of the members will follow 

quickly.  

 

The PSO algorithm basically learned from animal’s activity or behavior to solve 

optimization problems. In PSO, each member of the population is called a particle 

and the population is called a swarm. Starting with a randomly initialized 

population and moving in randomly chosen directions, each particle goes through 
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the searching space and remembers the best previous positions of itself and its 

neighbors. Particles of a swarm communicate good positions to each other as well 

as dynamically adjust their own position and velocity derived from the best 

position of all particles. The next step begins when all particles have been moved. 

Finally, all particles tend to fly towards better and better positions over the 

searching process until the swarm move to close to an optimum of the fitness 

function          

 

The PSO method is becoming very popular because of its simplicity of 

implementation as well as ability to swiftly converge to a good solution. It does 

not require any gradient information of the function to be optimized and uses only 

primitive mathematical operators.  

 

As compared with other optimization methods, it is faster, cheaper and more 

efficient. In addition, there are few parameters to adjust in PSO. That’s why PSO 

is an ideal optimization problem solver in optimization problems. PSO is well 

suited to solve the non-linear, non-convex, continuous, discrete, integer variable 

type problems. 

 

1.1 PSO is a Member of Swarm Intelligence 
 

Swarm intelligence (SI) is based on the collective behavior of decentralized, self-

organized systems. It may be natural or artificial. Natural examples of SI are ant 

colonies, fish schooling, bird flocking, bee swarming and so on. Besides multi-

robot systems, some computer program for tackling optimization and data analysis 

problems are examples for some human artifacts of SI. The most successful swarm 

intelligence techniques are Particle Swarm Optimization (PSO) and Ant Colony 

Optimization (ACO). In PSO, each particle flies through the multidimensional 

space and adjusts its position in every step with its own experience and that of 

peers toward an optimum solution by the entire swarm. Therefore, the PSO 

algorithm is a member of Swarm Intelligence [3]. 

 

1.2 Motivation 
 

PSO method was first introduced in 1995. Since then, it has been used as a robust 

method to solve optimization problems in a wide variety of applications. On the 

other hand, the PSO method does not always work well and still has room for 

improvement.  

 

This thesis discusses a conceptual overview of the PSO algorithm and a number of 

modifications of the basic PSO. Besides, it describes different types of PSO 

algorithms and flowcharts, recent works, advanced topics, and application areas of 

PSO. 
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1.3 Research Questions 
 

This thesis aims to answer the following questions: 

  

Q.1: How can problems of premature convergence and stagnation in the PSO    

         algorithm be prevented? 

 

Q.2: When and how are particles reinitialized? 

 

Q.3: For the PSO algorithm, what will be the consequence if 

        a) the maximum velocity Vmax is too large or small? 

        b) the acceleration coefficients c1 and c2 are equal or not? 

        c) the acceleration coefficients c1 and c2 are very large or small? 

 

Q.4: How can the boundary problem in the PSO method be solved? 

 

Q.5: How can the discrete-valued problems be solved by the PSO method? 

 

 

Q.1 is illustrated in Section 4.1 and 4.3; Q.2 in Section 5.1; Q.3 (a) in Section 

4.1.1; Q.3 (b) and (c) in Section 3.3.5; Q.4 and Q.5 in Section 4.2 and 5.5 

respectively. 
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CHAPTER 2 
 

Background 

 

This chapter reviews some of the basic definitions related to this thesis. 

 

2.1 Optimization 

 

Optimization determines the best-suited solution to a problem under given 

circumstances. For example, a manager needs to take many technological and 

managerial plans at several times. The final goal of the plans is either to minimize 

the effort required or to maximize the desired benefit. Optimization refers to both 

minimization and maximization tasks. Since the maximization of any function    is 

mathematically equivalent to the minimization of its additive inverse    , the term 

minimization and optimization are used interchangeably [6]. For this reason, now-

a-days, it is very important in many professions.  

 

Optimization problems may be linear (called linear optimization problems) or non-

linear (called non-linear optimization problems). Non-linear optimization 

problems are generally very difficult to solve. 

 

Based on the problem characteristics, optimization problems are classified in the 

following: 

 

2.1.1 Constrained Optimization 
 

Many optimization problems require that some of the decision variables satisfy 

certain limitations, for instance, all the variables must be non-negative. Such types 

of problems are said to be constrained optimization problems [4] [8] [11] and 

defined as 

                                                                     

                                                             

                                                                        

                                                                                                        (2.1) 

where            are the number of inequality and equality constraints 

respectively. 

 

Example: Minimize the function  
 

                                     
          

                 

                                        
        

                                           
       

                                                                           

Then, the global optimum is              , with              
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2.1.2 Unconstrained Optimization 
 

Many optimization problems place no restrictions on the values of that can be 

assigned to variables of the problem. The feasible space is simply the whole search 

space. Such types of problems are said to be unconstrained optimization problems 

[4] and defined as 

                                                                                (2.2) 

where    is the dimension of   . 

 

2.1.3 Dynamic Optimization 
 

Many optimization problems have objective functions that change over time and 

such changes in objective function cause changes in the position of optima. These 

types of problems are said to be dynamic optimization problems [4] and defined as 
 

                                                           
     

                                        

                                                   

                                                                                                        (2.3) 

where      is a vector of time-dependent objective function control parameters, 

and        is the optimum found at time step  . 

 

There are two techniques to solve optimization problems: Global and Local 

optimization techniques. 

 

2.2 Global Optimization 

 

A global minimizer is defined as    such that 
    

                                                                                                    (2.4)                                                                         

where   is the search space and       for unconstrained problems.  

 

Here, the term global minimum refers to the value      , and    is called the 

global minimizer. Some global optimization methods require a starting point 

       and it will be able to find the global minimizer    if     . 

 

2.3 Local Optimization 

 

A local minimizer    
   of the region  , is defined as  

    

                                        
                                                             (2.5)                                                                         

where        

Here, a local optimization method should guarantee that a local minimizer of the 

set    is found. 
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Finally, local optimization techniques try to find a local minimum and its 

corresponding local minimizer, whereas global optimization techniques seek to 

find a global minimum or lowest function value and its corresponding global 

minimizer.  

 

Example: Consider a function                              , 

and then the following figure 2.1.1 illustrates the difference between the global 

minimizer     and the local minimizer   
 . 

Figure 2.1 : Illustration of  the local minimizer xL* and the global minimizer x*.
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2.4 Uniform Distribution 
 

A uniform distribution, sometimes called a rectangular distribution, is a 

distribution where the probability of occurrence is the same for all values of   , i.e. 

it has constant probability. For instance, if a die is thrown, then the probability of 

obtaining any one of the six possible outcomes is 1/6. Now, since all outcomes are 

equally probable, the distribution is uniform.  

 

Therefore, if a uniform distribution is divided into equally spaced intervals, there 

will be an equal number of members of the population in each interval. The 

distribution is defined by       , where         are its minimum and maximum 

values respectively.  

 

A uniform distribution A nonuniform distribution
 

 

 

 

The probability density function (PDF) and cumulative distribution function 

(CDF) for a continuous uniform distribution on the interval       are respectively 

 

                        

                                                                    
 

   
                                                            

                                                                     

       (2.6)   

 

 

and                   

                                                                        
   

   
                                                               

                                                                          

     (2.7) 

 

 

Uniform PDF

)(xf

x

)/(1 ab 

a b
Uniform CDF

)(xF

x

1

a b

 

       is called a standard uniform distribution. 
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2.5 Sigmoid function 

 

Sigmoid function, sometimes called a logistic function, is an ’S’ shape curve and 

defined by the formula 

 

                                                   
 

                                                              (2.8) 

 

It is a monotonically increasing function with 

 

                                             

                    
 

 
                     

                   

                                    (2.9) 
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Figure 2.2: Sigmoid function.  

 

Since, sigmoid function is monotonically increasing, we can write 

              

                                                                                                  (2.10) 
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CHAPTER 3 
 

Basic Particle Swarm Optimization 

 

This chapter discusses a conceptual overview of the PSO algorithm and its 

parameters selection strategies, geometrical illustration and neighborhood 

topology, advantages and disadvantages of PSO, and mathematical explanation. 

 

3.1 The Basic Model of PSO algorithm 

 

Kennedy and Eberhart first established a solution to the complex non-linear 

optimization problem by imitating the behavior of bird flocks. They generated the 

concept of function-optimization by means of a particle swarm [15]. Consider the 

global optimum of an n-dimensional function defined by 
 

                                                                                                  (3.1)  

where     is the search variable, which represents the set of free variables of the 

given function. The aim is to find a value    such that the function       is either 

a maximum or a minimum in the search space. 

 

Consider the functions given by  
 

                                         
    

                                                                   (3.2)                 

                         and                                                (3.3) 

 

(b) Multi-model

Figure 3.1: Plot of the functions f1 and f2.
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From the figure 3.1 (a), it is clear that the global minimum of the function     is 

at              , i.e. at the origin of function    in the search space. That means 

it is a unimodel function, which has only one minimum. However, to find the 

global optimum is not so easy for multi-model functions, which have multiple local 

minima. Figure 3.1 (b) shows the function    which has a rough search space with 

multiple peaks, so many agents have to start from different initial locations and 
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continue exploring the search space until at least one agent reach the global 

optimal position. During this process all agents can communicate and share their 

information among themselves [15]. This thesis discusses how to solve the multi-

model function problems. 

 

The Particle Swarm Optimization (PSO) algorithm is a multi-agent parallel search 

technique which maintains a swarm of particles and each particle represents a 

potential solution in the swarm. All particles fly through a multidimensional search 

space where each particle is adjusting its position according to its own experience 

and that of neighbors. Suppose    
  denote the position vector of particle    in the 

multidimensional search space (i.e.   ) at time step  , then the position of each 

particle is updated in the search space by 
                      

                             
       

     
     with   

                                   (3.4)      

where, 

                    
  is the velocity vector of particle   that drives the optimization process   

                   and reflects both the own experience knowledge and the social  

                   experience knowledge from the all particles;  
 

                              is the uniform distribution where                are its   

                   minimum and maximum values respectively. 

 

Therefore, in a PSO method, all particles are initiated randomly and evaluated to 

compute fitness together with finding the personal best (best value of each 

particle) and global best (best value of particle in the entire swarm). After that a 

loop starts to find an optimum solution. In the loop, first the particles’ velocity is 

updated by the personal and global bests, and then each particle’s position is 

updated by the current velocity. The loop is ended with a stopping criterion 

predetermined in advance [22].  

 

Basically, two PSO algorithms, namely the Global Best (gbest) and Local Best 

(lbest) PSO, have been developed which differ in the size of their neighborhoods. 

These algorithms are discussed in Sections 3.1.1 and 3.1.2 respectively. 

 

3.1.1 Global Best PSO 
 

The global best PSO (or gbest PSO) is a method where the position of each 

particle is influenced by the best-fit particle in the entire swarm. It uses a star 

social network topology (Section 3.5) where the social information obtained from 

all particles in the entire swarm [2] [4]. In this method each individual particle, 

                   , has a current position in search space   , a current 

velocity,   , and a personal best position in search space,        . The personal best 

position         corresponds to the position in search space where particle   had the 

smallest value as determined by the objective function  , considering a 

minimization problem. In addition, the position yielding the lowest value amongst 

all the personal best         is called the global best position which is denoted 
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by       [20]. The following equations (3.5) and (3.6) define how the personal and 

global best values are updated, respectively. 

 

Considering minimization problems, then the personal best position         at the 

next time step,                   , is calculated as  
 

                        
     

       
                  

             
   

  
                       

             
   

                       (3.5) 

where        is the fitness function. The global best position       at time 

step   is calculated as  
 

                                 
  ,                                             (3.6) 

 

Therefore it is important to note that the personal best         is the best position 

that the individual particle   has visited since the first time step. On the other hand, 

the global best position       is the best position discovered by any of the particles 

in the entire swarm [4]. 

 

For gbest PSO method, the velocity of particle    is calculated by 
 

                    
       

       
         

      
        

            
              (3.7) 

where  

   
             is the velocity vector of particle   in dimension     at time    ; 

   
             is the position vector of particle   in dimension     at time    ; 

       
       is the personal best position of particle   in dimension     found   

                from initialization through time t; 

            is the global best position of particle   in dimension     found from    

                initialization through time t; 

   and     are positive acceleration constants which are used to level the    

                contribution of the cognitive and social components respectively; 

   
  and    

  are random numbers from uniform distribution        at time t. 
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The following Flowchart 1 shows the gbest PSO algorithm. 

Initialize position xij
0, c1, c2, velocity vij

0 , evaluate fij
0 using xij

0, 

D= max. no of dimentions, P=max. no of  particles, N = max.no of iterations.
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t , Pt
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t

fij
t ≤ f gbest  f gbest = fij

t , Gbest = xij
t

vij
t+1=vij

t+c1rt
1j[Pt

best,i-xij
t]+c2rt

2j[Gbest-xij
t]

j = j+1
xij

t+1=xij
t+vij

t+1

t ≤ N

stop

j = 1

No
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Flowchart 1: gbest PSO 
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Yes

Yes

i = 1

Choose randomly rt
1j, rt

2j

 
 

3.1.2 Local Best PSO 
 

The local best PSO (or lbest PSO) method only allows each particle to be 

influenced by the best-fit particle chosen from its neighborhood, and it reflects a 

ring social topology (Section 3.5). Here this social information exchanged within 

the neighborhood of the particle, denoting local knowledge of the environment [2] 

[4]. In this case, the velocity of particle    is calculated by 
      

                       
       

       
         

      
        

              
                 (3.8)  
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where,           is the best position that any particle has had in the neighborhood of    

                      particle   found from initialization through time t.  

 

The following Flowchart 2 summarizes the lbest PSO algorithm: 

Initialize position xij
0, c1, c2, velocity vij

0 , evaluate fij
0 using xij

0,  

D= max. no of dimentions, P=max. no of  particles, N = max.no of iterations.

fij
t ≤ f best,i  f best,i = fij

t , Pt
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t

(  f tbest,i-1, ft best,i , ft best,i+1) ≤ f lbest f lbest = fij
t,Lbest,i = xij

t

vij
t+1=vij

t+c1rt
1j[Pbest,i

t-xij
t]+c2rt

2j[Lbest,i-xij
t]

j = j+1
xij
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Flowchart 2: lbest PSO 
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Finally, we can say from the Section 3.1.1 and 3.1.2 respectively, in the gbest PSO 

algorithm every particle obtains the information from the best particle in the entire 

swarm, whereas in the lbest PSO algorithm each particle obtains the information 

from only its immediate neighbors in the swarm [1]. 
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3.2 Comparison of ‘gbest’ to ‘lbest’ 
 

Originally, there are two differences between the ‘gbest’ PSO and the ‘lbest’ PSO: 

One is that because of the larger particle interconnectivity of the gbest PSO, 

sometimes it converges faster than the lbest PSO. Another is due to the larger 

diversity of the lbest PSO, it is less susceptible to being trapped in local minima 

[4]. 

 

3.3 PSO Algorithm Parameters 

 

There are some parameters in PSO algorithm that may affect its performance. For 

any given optimization problem, some of these parameter’s values and choices 

have large impact on the efficiency of the PSO method, and other parameters have 

small or no effect [9]. The basic PSO parameters are swarm size or number of 

particles, number of iterations, velocity components, and acceleration coefficients 

illustrated bellow. In addition, PSO is also influenced by inertia weight, velocity 

clamping, and velocity constriction and these parameters are described in Chapter 

IV. 

 

3.3.1 Swarm size 

 

Swarm size or population size is the number of particles n in the swarm. A big 

swarm generates larger parts of the search space to be covered per iteration. A 

large number of particles may reduce the number of iterations need to obtain a 

good optimization result. In contrast, huge amounts of particles increase the 

computational complexity per iteration, and more time consuming. From a number 

of empirical studies, it has been shown that most of the PSO implementations use 

an interval of           for the swarm size. 

 

3.3.2 Iteration numbers 
 

The number of iterations to obtain a good result is also problem-dependent. A too 

low number of iterations may stop the search process prematurely, while too large 

iterations has the consequence of unnecessary added computational complexity 

and more time needed [4].  

 

3.3.3 Velocity Components 

 

The velocity components are very important for updating particle’s velocity. There 

are three terms of the particle’s velocity in equations (3.7) and (3.8): 

 

1. The term    
  is called inertia component that provides a memory of the previous 

flight direction that means movement in the immediate past. This component 

represents as a momentum which prevents to drastically change the direction of 

the particles and to bias towards the current direction. 
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2. The term      
         

      
   is called cognitive component which measures the 

performance of the particles    relative to past performances. This component looks 

like an individual memory of the position that was the best for the particle. The 

effect of the cognitive component represents the tendency of individuals to return 

to positions that satisfied them most in the past. The cognitive component referred 

to as the nostalgia of the particle. 

  

3. The term      
            

   for gbest PSO or      
              

   for lbest PSO 

is called social component which measures the performance of the particles 

   relative to a group of particles or neighbors. The social component’s effect is 

that each particle flies towards the best position found by the particle’s 

neighborhood. 

 

3.3.4 Acceleration coefficients 

 

The acceleration coefficients     and    , together with the random values     and 

   , maintain the stochastic influence of the cognitive and social components of the 

particle’s velocity respectively. The constant     expresses how much confidence a 

particle has in itself, while     expresses how much confidence a particle has in its 

neighbors [4]. There are some properties of     and   : 

 

●When            , then all particles continue flying at their current speed until 

they hit the search space’s boundary. Therefore, from the equations (3.7) and (3.8), 

the velocity update equation is calculated as 

 

                                          
       

                                                                    (3.9) 

 

●When        and       , all particles are independent. The velocity update 

equation will be  

                                          
       

       
         

      
                            (3.10) 

 

On the contrary, when       and      , all particles are attracted to a single 

point                in the entire swarm and the update velocity will become 

 

                    
       

       
            

   for gbest PSO,                         (3.11) 

 

          or,     
       

       
              

    for lbest PSO.                        (3.12) 

 

●When       , all particles are attracted towards the average of        
  and      . 

 

●When       , each particle is more strongly influenced by its personal best 

position, resulting in excessive wandering. In contrast, when        then all 

particles are much more influenced by the global best position, which causes all 

particles to run prematurely to the optima [4] [11]. 
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Normally,            are static, with their optimized values being found 

empirically. Wrong initialization of            may result in divergent or cyclic 

behavior [4]. From the different empirical researches, it has been proposed that the 

two acceleration constants should be             

 

3.4 Geometrical illustration of PSO 
 

The update velocity for particles consist of three components in equations (3.7) 

and (3.8) respectively. Consider a movement of a single particle in a two 

dimensional search space. 

 

(a) Time step t

Cognitive velocity, Pt
best,i-xi

t

Social velocity, Gbest -xi
t

Inertia velocity, vi
t

New velocity, vi
t+1

New position, xi
t+1

Personal best position, Pt
best,i Best position of neighbors, Gbest

x1

x2

Initial position, xi
t

(b) Time step t +1

 vi
t+1

 xi
t+1

Pt+1
best,i Gbest

x1

x2

xi
t

 xi
t+2

Figure 3.2: velocity and position update for a particle in a two-dimensional search space.

 

Figure 3.2 illustrates how the three velocity components contribute to move the 

particle towards the global best position at time steps    and      respectively. 

 

Gbest 

x2

x1

(a) at time t = 0

Gbest 

x2

x1

(b) at time t = 1

Figure 3.3: Velocity and Position update for Multi-particle in gbest PSO.

 

Figure 3.3 shows the position updates for more than one particle in a two 

dimensional search space and this figure illustrates the gbest PSO. The optimum 

position is denoted by the symbol ‘ ’. Figure 3.3 (a) shows the initial position of 

all particles with the global best position. The cognitive component is zero 

at      and all particles are only attracted toward the best position by the social 

component. Here the global best position does not change. Figure 3.3 (b) shows 
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the new positions of all particles and a new global best position after the first 

iteration i.e. at     . 

 

Lbest 

x2

x1

(a) at time t = 0

i

j
h

a

g

f

e

d

c b

Lbest 

Lbest 

3

2 1 Lbest 

x2

x1

(b) at time t = 1

i
j

h

a

g

f

e

d

c

b
Lbest 

Lbest 

3

2 1

Figure 3.4: Velocity and Position update for Multi-particle in lbest PSO.

 

Figure 3.4 illustrates how all particles are attracted by their immediate neighbors in 

the search space using lbest PSO and there are some subsets of particles where one 

subset of particles is defined for each particle from which the local best particle is 

then selected. Figure 3.4 (a) shows particles a, b and c move towards particle d, 

which is the best position in subset 1. In subset 2, particles e and f move towards 

particle g. Similarly, particle h moves towards particle i, so does j in subset 3 at 

time step    . Figure 3.4 (b) for time step    , the particle d is the best 

position for subset 1 so the particles a, b and c move towards d. 

 

 3.5 Neighborhood Topologies 

 

A neighborhood must be defined for each particle [7]. This neighborhood 

determines the extent of social interaction within the swarm and influences a 

particular particle’s movement. Less interaction occurs when the neighborhoods in 

the swarm are small [4]. For small neighborhood, the convergence will be slower 

but it may improve the quality of solutions. For larger neighborhood, the 

convergence will be faster but the risk that sometimes convergence occurs earlier 

[7]. To solve this problem, the search process starts with small neighborhoods size 

and then the small neighborhoods size is increased over time. This technique 

ensures an initially high diversity with faster convergence as the particles move 

towards a promising search region [4].  

 

The PSO algorithm is social interaction among the particles in the entire swarm. 

Particles communicate with one another by exchanging information about the 

success of each particle in the swarm. When a particle in the whole swarm finds a 

better position, all particles move towards this particle. This performance of the 

particles is determined by the particles’ neighborhood [4]. Researchers have 

worked on developing this performance by designing different types of 

neighborhood structures [15]. Some neighborhood structures or topologies are 

discussed below: 
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(a) Star or gbest. (b) Ring or lbest.

(c) Wheel.

Focal particle

(d) Four Clusters.

Figure 3.5: Neighborhood topologies.

 

Figure 3.5 (a) illustrates the star topology, where each particle connects with every 

other particle. This topology leads to faster convergence than other topologies, but 

there is a susceptibility to be trapped in local minima. Because all particles know 

each other, this topology is referred to as the gbest PSO.  

 

Figure 3.5 (b) illustrates the ring topology, where each particle is connected only 

with its immediate neighbors. In this process, when one particle finds a better 

result, this particle passes it to its immediate neighbors, and these two immediate 

neighbors pass it to their immediate neighbors, until it reaches the last particle. 

Thus the best result found is spread very slowly around the ring by all particles. 

Convergence is slower, but larger parts of the search space are covered than with 

the star topology. It is referred as the lbest PSO.       

 

Figure 3.5 (c) illustrates the wheel topology, in which only one particle (a focal 

particle) connects to the others, and all information is communicated through this 

particle. This focal particle compares the best performance of all particles in the 

swarm, and adjusts its position towards the best performance particle. Then the 

new position of the focal particle is informed to all the particles.     

 

Figure 3.5 (d) illustrates a four clusters topology, where four clusters (or cliques) 

are connected with two edges between neighboring clusters and one edge between 

opposite clusters. 
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There are more different neighborhood structures or topologies (for instance, 

pyramid topology, the Von Neumann topology and so on), but there is no the best 

topology known to find the optimum for all kinds of optimization problems. 

 

3.6 Problem Formulation of PSO algorithm 

 

Problem: Find the maximum of the function 

 

                                             with           

using the PSO algorithm. Use 9 particles with the initial positions    

     ,      ,        ,        ,                             , 

and      . Show the detailed computations for iterations 1, 2 and 3. 

 

Solution:  
 

Step1: Choose the number of particles:          ,      ,        ,    

                     ,                             , and      . 

 

            The initial population (i.e. the iteration number    ) can be represented    

            as   
                        

 

  
       ,   

    ,   
      , 

  
      ,   

     ,   
       

  
     ,      

     ,   
    . 

 

Evaluate the objective function values as 

 

   
             

         
         

  
          

           
          

  
          

          
       

  

            Let            
 

Set the initial velocities of each particle to zero: 

   
          

    
    

    
    

    
    

    
    

     

            

Step2: Set the iteration number as          and go to step 3. 

 

Step3: Find the personal best for each particle by 
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So, 

       
               

            
         

       
               

              
        

       
     ,        

              
    . 

 

Step4: Find the global best by 

 

                  
                              

 

Since, the maximum personal best is         
        thus              

 

Step5:  Considering the random numbers in the range (0, 1) as    
         and    

               
         and find the velocities of the particles by 

 

  
      

      
         

     
       

       
    

              
 

so 

  
                                           

  
        ,   

            
        ,   

        ,   

  
        

         ,      
              

         . 

 

Step6: Find the new values of    
          by 

 

  
       

     
    

 

So 

  
        ,   

        ,   
        , 

  
        ,   

        ,   
     , 

  
       ,   

       ,   
        . 

 

Step7:  Find the objective function values of   
               

                  

  
             

             
            

  
            

             
          

  
           

            
         .  

 

Step 8:  Stopping criterion: 

 

If the terminal rule is satisfied, go to step 2,  

Otherwise stop the iteration and output the results. 
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Step2: Set the iteration number as         , and go to step 3. 

 

Step3: Find the personal best for each particle. 

 

            
                

                
           

           
                 

                
          

           
                

                
        . 

 

Step4: Find the global best. 
 

                           

 

Step5: By considering the random numbers in the range (0, 1) as                      

              
         and   

          find the velocities of the particles by 
 

                
      

      
         

     
       

           
           . 

          

           so  
 

              
             

            
           

              
            

        ,   
        , 

              
         ,   

         ,   
         . 

 

Step6: Find the new values of    
            by 

 

                                               
       

     
      

 

so  

  
             

       ,   
          

  
        ,   

        ,   
        , 

  
  1.9240,   

             
         . 

 

Step7: Find the objective function values of   
           

  
             

             
           

  
              

                
           

  
            

             
            

 

Step 8:  Stopping criterion: 

 

If the terminal rule is satisfied, go to step 2,  

Otherwise stop the iteration and output the results. 
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Step2: Set the iteration number as         , and go to step 3. 

 

Step3: Find the personal best for each particle. 

 

            
                

                
           

           
                 

                
             

           
                 

                   
        . 

 

Step4: Find the global best. 
 

                          
 

Step5: By considering the random numbers in the range (0, 1) as                      

              
        and   

         find the velocities of the particles by 
 

                
      

      
         

     
       

           
           . 

         so  
 

              
            

            
           

              
            

        ,   
       , 

              
         ,   

         ,   
         . 

 

Step6: Find the new values of    
            by 

 

                                               
       

     
      

 

so  

  
             

         ,   
         

  
        ,   

        ,   
        , 

  
       ,   

             
         . 

 

Step7: Find the objective function values of   
           

 

  
              

             
           

  
                       

               
           

  
               

              
            

 

Step 8:  Stopping criterion: 

 

If the terminal rule is satisfied, go to step 2,  

            Otherwise stop the iteration and output the results. 
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Finally, the values of   
                      did not converge, so we increment 

the iteration number as      and go to step 2. When the positions of all particles 

converge to similar values, then the method has converged and the corresponding 

value of   
  is the optimum solution. Therefore the iterative process is continued 

until all particles meet a single value. 

 

3.7 Advantages and Disadvantages of PSO  

 

It is said that PSO algorithm is the one of the most powerful methods for solving 

the non-smooth global optimization problems while there are some disadvantages 

of the PSO algorithm. The advantages and disadvantages of PSO are discussed 

below: 

 

Advantages of the PSO algorithm [14] [15]: 

 

1) PSO algorithm is a derivative-free algorithm.  

 

2) It is easy to implementation, so it can be applied both in scientific research 

and engineering problems. 

 

3) It has a limited number of parameters and the impact of parameters to the 

solutions is small compared to other optimization techniques. 

 

4) The calculation in PSO algorithm is very simple. 

 

5) There are some techniques which ensure convergence and the optimum 

value of the problem calculates easily within a short time. 

 

6) PSO is less dependent of a set of initial points than other optimization 

techniques. 

 

7) It is conceptually very simple. 

 

Disadvantages of the PSO algorithm [13]: 

 

1) PSO algorithm suffers from the partial optimism, which degrades the 

regulation of its speed and direction. 

 

2) Problems with non-coordinate system (for instance, in the energy field) 

exit. 
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CHAPTER 4 
 

Empirical Analysis of PSO Characteristics 
 

This chapter discusses a number of modifications of the basic PSO, how to 

improve speed of convergence, to control the exploration-exploitation trade-off, to 

overcome the stagnation problem or the premature convergence, the velocity-

clamping technique, the boundary value problems technique, the initial and 

stopping conditions, which are very important in the PSO algorithm. 

  

4.1 Rate of Convergence Improvements 
 

Usually, the particle velocities build up too fast and the maximum of the objective 

function is passed over. In PSO, particle velocity is very important, since it is the 

step size of the swarm. At each step, all particles proceed by adjusting the velocity 

that each particle moves in every dimension of the search space [9]. There are two 

characteristics: exploration and exploitation. Exploration is the ability to explore 

different area of the search space for locating a good optimum, while exploitation 

is the ability to concentrate the search around a searching area for refining a 

hopeful solution. Therefore these two characteristics have to balance in a good 

optimization algorithm. When the velocity increases to large values, then particle’s 

positions update quickly. As a result, particles leave the boundaries of the search 

space and diverge. Therefore, to control this divergence, particles’ velocities are 

reduced in order to stay within boundary constraints [4]. The following techniques 

have been developed to improve speed of convergence, to balance the exploration-

exploitation trade-off, and to find a quality of solutions for the PSO: 

 

4.1.1 Velocity clamping 

 

Eberhart and Kennedy first introduced velocity clamping; it helps particles to stay 

within the boundary and to take reasonably step size in order to comb through the 

search space. Without this velocity clamping in the searching space the process 

will be prone to explode and particles’ positions change rapidly [1]. Maximum 

velocity       controls the granularity of the search space by clamping velocities 

and creates a better balance between global exploration and local exploitation. 

New position, x´i
t+1 using velocity clamping.

x1

x2

Initial position, xi
t

Figure 4.1: Illustration of effects of Velocity Clampnig for a particle in a two-dimensinal search space.

xi
t+1 without using velocity clamping.  
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Figure 4.1 illustrates how velocity clamping changes the step size as well as the 

search direction when a particle moves in the process. In this figure,    
    and 

   
 
   

 denote respectively the position of particle i without using velocity 

clamping and the result of velocity clamping [4]. 

 

Now if a particle’s velocity goes beyond its specified maximum velocity      , 

this velocity is set to the value       and then adjusted before the position update 

by, 

                                 
            

 
   

                                                       (4.1) 

                   where,    
 
   

 is calculated using equation (3.7) or (3.8). 

 

If the maximum velocity       is too large, then the particles may move erratically 

and jump over the optimal solution. On the other hand, if       is too small, the 

particle’s movement is limited and the swarm may not explore sufficiently or the 

swarm may become trapped in a local optimum. 

 

This problem can be solved when the maximum velocity       is calculated by a 

fraction of the domain of the search space on each dimension by subtracting the 

lower bound from the upper bound, and is defined as 

 

                                                                                                       (4.2) 

 

where,                  are respectively the maximum and minimum values of 

     and          . For example, if       and              on each 

dimension of the search space, then the range of the search space is 300 per 

dimension and velocities are then clamped to a percentage of that range according 

to equation (4.2), then the maximum velocity is                

 

There is another problem when all velocities are equal to the maximum 

velocity      . To solve this problem       can be reduced over time. The initial 

step starts with large values of      , and then it is decreased it over time. The 

advantage of velocity clamping is that it controls the explosion of velocity in the 

searching space. On the other hand, the disadvantage is that the best value of       

should be chosen for each different optimization problem using empirical 

techniques [4] and finding the accurate value for         for the problem being 

solved is very critical and not simple, as a poorly chosen       can lead to 

extremely poor performance [1]. 

 

Finally,      was first introduced to prevent explosion and divergence. However, 

it has become unnecessary for convergence because of the use of inertia-weight ω 

(Section 4.1.2) and constriction factor χ (Section 4.1.3) [15]. 
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4.1.2 Inertia weight 

 

The inertia weight, denoted by ω, is considered to replace       by adjusting the 

influence of the previous velocities in the process, i.e. it controls the momentum of 

the particle by weighing the contribution of the previous velocity. The inertia 

weight ‘ω’ will at every step be multiplied by the velocity at the previous time 

step, i.e.    
 . Therefore, in the gbest PSO, the velocity equation of the particle 

  with the inertia weight changes from equation (3.7) to 

                  

                    
        

       
         

      
        

           
                   (4.3) 

 

In the lbest PSO, the velocity equation changes in a similar way as the above 

velocity equation do. 

 

The inertia weight was first introduced by Shi and Eberhart in 1999 to reduce the 

velocities over time (or iterations), to control the exploration and exploitation 

abilities of the swarm, and to converge the swarm more accurately and efficiently 

compared to the equation (3.7) with (4.3). If       then the velocities increase 

over time and particles can hardly change their direction to move back towards 

optimum, and the swarm diverges. If       then little momentum is only saved 

from the previous step and quick changes of direction are to set in the process. If 

      particles velocity vanishes and all particles move without knowledge of 

the previous velocity in each step [15].  

 

The inertia weight can be implemented either as a fixed value or dynamically 

changing values. Initial implementations of   used a fixed value for the whole 

process for all particles, but now dynamically changing inertia values is used 

because this parameter controls the exploration and exploitation of the search 

space. Usually the large inertia value is high at first, which allows all particles to 

move freely in the search space at the initial steps and decreases over time. 

Therefore, the process is shifting from the exploratory mode to the exploitative 

mode. This decreasing inertia weight   has produced good results in many 

optimization problems [16]. To control the balance between global and local 

exploration, to obtain quick convergence, and to reach an optimum, the inertia 

weight whose value decreases linearly with the iteration number is set according to 

the following equation [6] [14]: 

 

                                         
         

    
    ,                       (4.4) 

where, 

                          are the initial and final values of the inertia weight     

                                      respectively,     

                 is the maximum iteration number, 

    and          is the current iteration number.  

 

Commonly, the inertia weight   decreases linearly from 0.9 to 0.4 over the entire 

run. 
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Van den Bergh and Engelbrecht, Trelea have defined a condition that  
 

                                                 
 

 
                                     (4.5) 

guarantees convergence [4]. Divergent or cyclic behavior can occur in the process 

if this condition is not satisfied. 

 

Shi and Eberhart defined a technique for adapting the inertia weight dynamically 

using a fuzzy system [11]. The fuzzy system is a process that can be used to 

convert a linguistic description of a problem into a model in order to predict a 

numeric variable, given two inputs (one is the fitness of the global best position 

and the other is the current value of the inertia weight). The authors chose to use 

three fuzzy membership functions, corresponding to three fuzzy sets, namely low, 

medium, and high that the input variables can belong to. The output of the fuzzy 

system represents the suggested change in the value of the inertia weight [4] [11]. 

The fuzzy inertia weight method has a greater advantage on the unimodal function. 

In this method, an optimal inertia weight can be determined at each time step. 

When a function has multiple local minima, it is more difficult to find an optimal 

inertia weight [11]. 

 

The inertia weight technique is very useful to ensure convergence. However there 

is a disadvantage of this method is that once the inertia weight is decreased, it 

cannot increase if the swarm needs to search new areas. This method is not able to 

recover its exploration mode [16]. 

 

4.1.3 Constriction Coefficient 

 

This technique introduced a new parameter ‘χ’, known as the constriction factor. 

The constriction coefficient was developed by Clerc. This coefficient is extremely 

important to control the exploration and exploitation tradeoff, to ensure 

convergence behavior, and also to exclude the inertia weight ω and the maximum 

velocity       [19]. Clerc’s proposed velocity update equation of the particle    for 

the j dimension is calculated as follows: 

                   

                            
         

            
      

               
                 (4.6) 

where  

                          
 

            
 ,        ,          and         . 

 

If      then all particles would slowly spiral toward and around the best solution 

in the searching space without convergence guarantee. If      then all particles 

converge quickly and guaranteed [1]. 

  

The amplitude of the particle’s oscillation will be decreased by using the 

constriction coefficient and it focuses on the local and neighborhood previous best 

points [7] [15]. If the particle’s previous best position and the neighborhood best 

position are near each other, then the particles will perform a local search. On the 

other hand, if their positions are far from each other then the particles will perform 
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a global search. The constriction coefficient guarantees convergence of the 

particles over time and also prevents collapse [15]. Eberhart and Shi empirically 

illustrated that if constriction coefficient and velocity clamping are used together, 

then faster convergence rate will be obtained [4]. 

 

The disadvantage of the constriction coefficient is that if a particle’s personal best 

position and the neighborhood best position are far apart from each other, the 

particles may follow wider cycles and not converge [16]. 

 

Finally, a PSO algorithm with constriction coefficient is algebraically equivalent to 

a PSO algorithm with inertia weight. Equation (4.3) and (4.6) can be transformed 

into one another by the mapping     and                [19]. 

 

4.2 Boundary Conditions 

 

Sometimes, the search space must be limited in order to prevent the swarm from 

exploding. In other words, the particles may occasionally fly to a position beyond 

the defined search space and generate an invalid solution. Traditionally, the 

velocity clamping technique is used to control the particle’s velocities to the 

maximum value     . The maximum velocity      , the inertia weight   , and the 

constriction coefficient value    do not always confine the particles to the solution 

space. In addition, these parameters cannot provide information about the space 

within which the particles stay. Besides, some particles still run away from the 

solution space even with good choices for the parameter     .  

 

There are two main difficulties connected with the previous velocity techniques: 

first, the choice of suitable value for      can be nontrivial and also very 

important for the overall performance of the method, and second, the previous 

velocity techniques cannot provide information about how the particles are 

enforced to stay within the selected search space all the time [18]. Therefore, the 

method must be generated with clear instructions on how to overcome this 

situation and such instructions are called the boundary condition (BC) of the PSO 

algorithm which will be parameter-free, efficient, and also reliable.  

 

To solve this problem, different types of boundary conditions have been 

introduced and the unique features that distinguish each boundary condition are 

showed in Figure 4.2 [17] [18]. These boundary conditions form two groups: 

restricted boundary conditions (namely, absorbing, reflecting, and damping) and 

unrestricted boundary conditions (namely, invisible, invisible/reflecting, 

invisible/damping) [17].  
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Figure 4.2: Various boundary conditions in PSO.
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The following Figure 4.3 shows how the position and velocity of errant particle is 

treated by boundary conditions. 
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y
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vt = vx.x+vy.y 

v´t = 0.x+vy.y 

(a) Absorbing
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(b) Reflecting
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(c) Damping
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v´t = -vx.x+vy.y 
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(f) Invisible/Damping

v´t = -r.vx.x+vy.y 

Figure 4.3: Six different boundary conditions for a two-dimensional search space. x´ and v´ represent 

the modified position and velocity repectively, and r is a random factor [0,1].   
 

 

The six boundary conditions are discussed below [17]: 

   

● Absorbing boundary condition (ABC): When a particle goes outside the 

solution space in one of the dimensions, the particle is relocated at the wall of the 

solution space and the velocity of the particle is set to zero in that dimension as 

illustrated in Figure 4.3(a). This means that, in this condition, such kinetic energy 

of the particle is absorbed by a soft wall so that the particle will return to the 

solution space to find the optimum solution.  

 

● Reflecting boundary condition (RBC): When a particle goes outside the 

solution space in one of the dimensions, then the particle is relocated at the wall of 
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the solution space and the sign of the velocity of the particle is changed in the 

opposite direction in that dimension as illustrated in Figure 4.3(b). This means 

that, the particle is reflected by a hard wall and then it will move back toward the 

solution space to find the optimum solution. 

  

● Damping boundary condition (DBC): When a particle goes outside the 

solution space in one of the dimensions, then the particle is relocated at the wall of 

the solution space and the sign of the velocity of the particle is changed in the 

opposite direction in that dimension with a random coefficient between 0 and 1 as 

illustrated in Figure 4.3(c). Thus the damping boundary condition acts very similar 

as the reflecting boundary condition except randomly determined part of energy is 

lost because of the imperfect reflection. 

 

● Invisible boundary condition (IBC): In this condition, a particle is considered 

to stay outside the solution space, while the fitness evaluation of that position is 

skipped and a bad fitness value is assigned to it as illustrated in Figure 4.3(d). Thus 

the attraction of personal and global best positions will counteract the particle’s 

momentum, and ultimately pull it back inside the solution space.   

 

● Invisible/Reflecting boundary condition (I/RBC): In this condition, a particle 

is considered to stay outside the solution space, while the fitness evaluation of that 

position is skipped and a bad fitness value is assigned to it as illustrated in Figure 

4.3(e). Also, the sign of the velocity of the particle is changed in the opposite 

direction in that dimension so that the momentum of the particle is reversed to 

accelerate it back toward in the solution space.  

 

● Invisible/Damping boundary condition (I/DBC): In this condition, a particle 

is considered to stay outside the solution space, while the fitness evaluation of that 

position is skipped and a bad fitness value is assigned to it as illustrated in Figure 

4.3(f). Also, the velocity of the particle is changed in the opposite direction with a 

random coefficient between 0 and 1 in that dimension so that the reversed 

momentum of the particle which accelerates it back toward in the solution space is 

damped. 

 

4.3 Guaranteed Convergence PSO (GCPSO) 
 

When the current position of a particle coincides with the global best position, then 

the particle moves away from this point if its previous velocity is non-zero. In 

other words, when    
         

       
 , then the velocity update depends only on 

the value of     
 . Now if the previous velocities of particles are close to zero, all 

particles stop moving once and they catch up with the global best position, which 

can lead to premature convergence of the process. This does not even guarantee 

that the process has converged to a local minimum, it only means that all particles 

have converged to the best position in the entire swarm. This leads to stagnation of 

the search process which the PSO algorithm can overcome by forcing the global 

best position to change when     
         

       
  [11]. 
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To solve this problem a new parameter is introduced to the PSO. Let   be the 

index of the global best particle, so that 
 

                                                                                                                    (4.7)                                                                            
 

A new velocity update equation for the globally best positioned particle,    , has 

been suggested in order to keep    moving until it has reached a local minimum. 

The suggested equation is 
 

                             
        

       
      

           
                  (4.8) 

where 

          ‘  ’ is a scaling factor and causes the PSO to perform a random search in an   

                  area surrounding the global best position      . It is defined in equation   

                 (4.10) below,            

         ‘    
 ’ resets the particle’s position to the position      

 , 

         ‘    
 ’ represents the current search direction, 

         ‘         
  ’ generates a random sample from a sample space with side   

                   lengths    . 

 

Combining the position update equation (3.4) and the new velocity update 

equation (4.8) for the global best particle   yields the new position update equation 

  

                                        
         

      
          

                      (4.9) 

while all other particles in the swarm continue using the usual velocity update 

equation (4.3) and the position update equation (3.4) respectively. 

 

The parameter    controls the diameter of the search space and the value of    is 

adapted after each time step, using 
 

                                      
 

                             

                                 

                                    

                                                

                         (4.10)  

 

where            and           respectively denote the number of consecutive 

successes and failures, and a failure is defined as        
             

  . The 

following conditions must also be implemented to ensure that equation (4.10) is 

well defined: 
 

                                                                                            

and 

                                                                  (4.11) 

 

Therefore, when a success occurs, the failure count is set to zero and similarly 

when a failure occurs, then the success count is reset.  
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The optimal choice of values for    and    depend on the objective function. It is 

difficult to get better results using a random search in only a few iterations for 

high- dimensional search spaces, and it is recommended to use       and 

    . On the other hand, the optimal values for     and    can be found 

dynamically. For instance,    may be increased every time that             

   i.e. it becomes more difficult to get the success if failures occur frequently 

which prevents the value of    from fluctuating rapidly. Such strategy can be used 

also for    [11].  

 

GCPSO uses an adaptive   to obtain the optimal of the sampling volume given the 

current state of the algorithm. If a specific value of   repeatedly results in a 

success, then a large sampling volume is selected to increase the maximum 

distance traveled in one step. On the other hand, when   produces    consecutive 

failures, then the sampling volume is too large and must be consequently reduced. 

Finally, stagnation is totally prevented if       for all steps [4]. 

 

4.4 Initialization, Stopping Criteria, Iteration Terms and 

Function Evaluation 

 

A PSO algorithm includes particle initialization, parameters selection, iteration 

terms, function evaluation, and stopping condition. The first step of the PSO is to 

initialize the swarm and control the parameters, the second step is to calculate the 

fitness function and define the iteration numbers, and the last step is to satisfy 

stopping condition. The influence and control of the PSO parameters have been 

discussed in Sections 3.3 and 4.1 respectively. The rest of the conditions are 

discussed below: 

 

4.4.1 Initialization 

 

In PSO algorithm, initialization of the swarm is very important because proper 

initialization may control the exploration and exploitation tradeoff in the search 

space more efficiently and find the better result. Usually, a uniform distribution 

over the search space is used for initialization of the swarm. The initial diversity of 

the swarm is important for the PSO’s performance, it denotes that how much of the 

search space is covered and how well particles are distributed. Moreover, when the 

initial swarm does not cover the entire search space, the PSO algorithm will have 

difficultly to find the optimum if the optimum is located outside the covered area. 

Then, the PSO will only discover the optimum if a particle’s momentum carries 

the particle into the uncovered area. Therefore, the optimal initial distribution is to 

located within the domain defined by               which represent the 

minimum and maximum ranges of    for all particles   in dimension   respectively 

[4]. Then the initialization method for the position of each particle is given by 
 

                                                                                  (4.12)  

where                 
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The velocities of the particles can be initialized to zero, i.e.          since 

randomly initialized particle’s positions already ensure random positions and 

moving directions. In addition, particles may be initialized with nonzero velocities, 

but it must be done with care and such velocities should not be too large. In 

general, large velocity has large momentum and consequently large position 

update. Therefore, such large initial position updates can cause particles to move 

away from boundaries in the feasible region, and the algorithm needs to take more 

iterations before settling the best solution [4]. 

 

4.4.2 Iteration Terms and Function Evaluation 
 

The PSO algorithm is an iterative optimization process and repeated iterations will 

continue until a stopping condition is satisfied. Within one iteration, a particle 

determines the personal best position, the local or global best position, adjusts the 

velocity, and a number of function evaluations are performed. Function evaluation 

means one calculation of the fitness or objective function which computes the 

optimality of a solution. If n is the total number of particles in the swarm, then n 

function evaluations are performed at each iteration [4]. 

 

4.4.3 Stopping Criteria 

 

Stopping criteria is used to terminate the iterative search process. Some stopping 

criteria are discussed below: 

 

1)  The algorithm is terminated when a maximum number of iterations or 

function evaluations (FEs) has been reached. If this maximum number of 

iterations (or FEs) is too small, the search process may stop before a good 

result has been found [4]. 

 

2) The algorithm is terminated when there is no significant improvement 

over a number of iterations. This improvement can be measured in 

different ways. For instance, the process may be considered to have 

terminated if the average change of the particles’ positions are very small 

or the average velocity of the particles is approximately zero over a 

number of iterations [4]. 

 

3) The algorithm is terminated when the normalized swarm radius is 

approximately zero. The normal swarm radius is defined as 

 

                                         
    

          
                                   (4.13) 

where diameter(S) is the initial swarm’s diameter and      is the 

maximum radius,  
 

                                              

with 

                                                    ,           ,  

                      and     is a suitable distance norm. 
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The process will terminate when        . If    is too large, the process 

can be terminated prematurely before a good solution has been reached 

while if   is too small, the process may need more iterations [4]. 
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CHAPTER 5 
 

Recent Works and Advanced Topics of PSO 

 

This chapter describes different types of PSO methods which help to solve 

different types of optimization problems such as Multi-start (or restart) PSO for 

when and how to reinitialize particles, binary PSO (BPSO) method for solving 

discrete-valued problems, Multi-phase PSO (MPPSO) method for partition the 

main swarm of particles into sub-swarms or subgroups, Multi-objective PSO for 

solving multiple objective problems. 

 

5.1 Multi-Start PSO (MSPSO) 

 

In the basic PSO, one of the major problems is lack of diversity when particles 

start to converge to the same point. To prevent this problem of the basic PSO, 

several methods have been developed to continually inject randomness, or chaos, 

into the swarm. These types of methods are called the Multi-start (or restart) 

Particle Swarm Optimizer (MSPSO). The Multi-start method is a global search 

algorithm and has as the main objective to increase diversity, so that larger parts of 

the search space are explored [4] [11]. It is important to remember that continual 

injection of random positions will cause the swarm never to reach an equilibrium 

state that is why, in this algorithm, the amount of chaos reduces over time. 

Kennedy and Eberhart first introduced the advantages of randomly reinitializing 

particles and referred to as craziness. Now the important questions are when to 

reinitialize, and how are particles reinitialized? These aspects are discussed below 

[4]: 

 

Randomly initializing position vectors or velocity vectors of particles can increase 

the diversity of the swarm. Particles are physically relocated to a different random 

position in the solution space by randomly initializing positions. When position 

vectors are kept constant and velocity vectors are randomized, particles preserve 

their memory of current and previous best solutions, but are forced to search in 

different random directions. When randomly initialized particle’s velocity cannot 

found a better solution, then the particle will again be attracted towards its 

personal best position. When the positions of particles are reinitialized, then the 

particles’ velocities are typically set to zero and to have a zero momentum at the 

first iteration after reinitialization. On the other hands, particle velocities can be 

initialized to small values. To ensure a momentum back towards the personal best 

position, G. Venter and J. Sobieszczanski-Sobieski initialize particle velocities to 

the cognitive component before reinitialization. Therefore the question is when to 

consider the reinitialization of particles. Because, when reinitialization occurs too 

soon, then the affected particles may have too short time to explore their current 

regions before being relocated. If the reinitialization time is too long, however it 

may happen that all particles have already converged [4].  
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A probabilistic technique has been discussed to decide when to reinitialize 

particles. X. Xiao, W. Zhang, and Z. Yang reinitialize velocities and positions of 

particles based on chaos factors which act as probabilities of introducing chaos in 

the system. Let            denote the chaos factors for velocity and location. If 

                 then the particle velocity component is reinitialized to    
    

              where     is random number for each particle    and each 

dimension  . Again, if                  then the particle position component is 

initialized to    
                     .  In this technique, start with large chaos 

factors that decrease over time to ensure that an equilibrium stat can be reached. 

Therefore the initial large chaos factors increase diversity in the first stages of the 

solution space, and allow particles to converge in the final steps [4]. 

 

A convergence criterion is another technique to decide when to reinitialize 

particles, where particles are allowed to first exploit their local regions before 

being reinitialized [4]. All particles are to initiate reinitialization when particles do 

not improve over time. In this technique, a variation is to evaluate in particle 

fitness of the current swarm, and if the variation is small, then particles are close to 

the global best position. Otherwise, particles that are at least two standard 

deviations away from the swarm center are reinitialized. 

  

M. Løvberg and T. Krink have developed reinitialization of particles by using self-

organized criticality (SOC) which can help control the PSO and add diversity [21].  

In SOC, each particle maintains an additional variable,  , where    is the 

criticality of the particle  . If two particles are closer than a threshold distance  , 

from one another, then both particles have their criticality increased by one. The 

particles have no neighborhood restrictions and this neighborhood is full 

connected network (i.e. star type) so that each particle can affect all other particles 

[21].  

 

In SOCPSO model the velocity of each particle is updated by 

              

                        
          

             
      

                
               (5.1) 

 

where χ is known as the constriction factor, ω is the inertia-weight,    and     are 

random values different for each particle and for each dimension [21].  

 

In each iteration, each    is decreased by a fraction to prevent criticality from 

building up [21]. When      ,   is the global criticality limit, then the criticality 

of the particle   is distributed to its immediate neighbors and is reinitialized. The 

authors also consider the inertia weight value of each particle   to        

     , this forces the particle to explore more when it is too similar to other 

particles [4]. 

 

 

 

 

 



  38 

 

Flowchart 3 shows criticality measures for SOCPSO. 
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5.2 Multi-phase PSO (MPPSO) 
 

Multi-phase PSO (MPPSO) method partitions the main swarm of particles into 

sub-swarms or subgroups, where each sub-swarm performs a different task, 

exhibits a different behavior and so on. This task or behavior performed by a sub-

swarm usually changes over time and information are passed among sub-swarms 

in this process. 

 

In 2002, B. Al-Kazemi and C. Mohan described the MPPSO method and they 

divided the main swarm into two sub-swarms with the equal size. In this 

algorithm, particles are randomly assigned, and each sub-swarm may be in one of 

two phases [4]. These phases are discussed below: 

 

● Attraction phase: in this phase, the particles of the corresponding sub-swarm 

are influenced to move towards the global best position. 

 

● Repulsion phase: in this phase, the particles of the corresponding sub-swarm go 

away from the global best position [4].  

 

In MPPSO algorithm, the particle velocity updating equation is presented as 

follows: 
                                             

                                           
        

       
                                           (5.2) 

 

where ω is the inertia-weight,   and    are acceleration coefficients respectively. 

 

In this method, the personal best position is eliminated from the main velocity 

equation (4.3), since a particle’s position is only updated when the new position 

improves the performance in the solution space [4] [23]. 

 

Another MPPSO algorithm is based on the groups PSO and multi-start PSO 

algorithm, and it was introduced by H. Qi et al [23]. The advantage of the MPPSO 

algorithm is that when the fitness of a particle doesn’t changed any more, then the 

particle’s flying speed and direction in the searching space are changed by the 

adaptive velocity strategy. Therefore, MPPSO differ from basic PSO in three 

ways:  

1. Particles divide into multiple groups to increase the diversity of the swarm 

and extensiveness of the exploration space.  

2. Different phases introduce in the algorithm which have different searching 

ways and flying directions. 

3. Searching direction will increase particle’s fitness [23]. 

 

5.3 Perturbed PSO (PPSO) 

 

The basic particle swarm optimization (PSO) has some disadvantages, for 

example, high speed of convergence frequently generates a quick loss of diversity 

during the process of optimization. Then, the process leads to undesirable 

premature convergence. To overcome this disadvantage, Zhao Xinchao described a 
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perturbed particle swarm algorithm which is based upon a new particle updating 

strategy and the concept of perturbed global best (p-gbest) within the swarm. The 

perturbed global best (p-gbest) updating strategy is based on the concept of 

possibility measure to model the lack of information about the true optimality of 

the gbest [24]. In PPSO, the particle velocity is rewritten by 

  

               
        

       
         

      
        

            
             (5.3) 

where                

                                                                                                            (5.4)   

is the   -th dimension of p-gbest in iteration  .   

 

Here,            is the normal distribution, and    represents the degree of 

uncertainty about the optimality of the gbest and is modeled as some non-

increasing function of the number of iterations, defined as 

 

                            
                                    
                                                             

               (5.5) 

where  

                                 and   are manually set parameters. 
 

The Flowchart 4 shows the perturbed PSO algorithm. 
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The p-gbest function encourages the particles to explore a solution space beyond 

that defined by the search trajectory. If   is large, then the p-gbest algorithm 

generates a simple and efficient exploration at the initial stage, while it encourages 

a local fine-tuning at the latter stage when   is small. Moreover, the p-gbest 

function reduces the likelihood of premature convergence and also helps to direct 

the search toward the most promising search area [24]. 

 

5.4 Multi-Objective PSO (MOPSO) 
 

Multi-objective optimization problems have several objective functions that need 

to be optimized simultaneously. In multiple-objectives cases, due to lack of 

common measure and confliction among objective functions, there does not 

necessarily exist a solution that is best with respect to all objectives. There exist a 

set of solutions for the multi-objective problem which cannot normally be 

compared with each other. Such solutions are called non-dominated solutions (or 

Pareto optimal solutions) only when no improvement is possible in any objective 

function without sacrificing at least one of the other objective functions [25]. 

 

Concepts of Multi-Objective Optimization: Consider      is an n-

dimensional search space, and               is  -objective functions defined 

over  . Then, a general multi-objective minimization optimization problem can be 

expressed as: 
 

                                                                                            (5.6) 

                          subject to: 

                                                                                                       (5.7) 

                                                                                                        (5.8) 

where                    is the decision-making vector on the search 

space;      is the goal vector ; and                 are the constraint functions(or 

bound conditions) of the problem. The objective functions       can be conflicting 

with each other so that the detection of a single global minimum cannot possibly 

be at the same point in  . To solve this problem, optimality of a solution in multi-

objective problems needs to be redefined properly. 

 

Let                                   be two vectors of the search 

space  . Therefore,               (denoted by    ) if and only if 

                   (            ) for all          , and        for at least one 

component. This property is called Pareto dominance. Now a solution,  , of the 

multi-objective problem      is said to be Pareto optimal, if and only if there is no 

other solution,  , in   such that      dominates     , that means   is not 

dominated such that    . The set of non-dominated (or all Pareto optimal) 

solutions of a problem       in the solution space is called the Pareto optimal set, 

denoted by   , and the set                                            

                                                                                                      (5.9) 

is called the Pareto front       [26]. 
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In multi-objective optimization algorithms, these cases are considered the most 

difficult. From the definition of Pareto optimality, it is true that the main goal in 

multi-objective optimization problems is the detection of all Pareto optimal 

solutions. Since the Pareto optimal set may be infinite and all the computational 

problems are time and space limited, we are compelled to set more realistic goals 

[26]. 

 

A number of approaches have been proposed to extend the PSO for multiple 

objective problems. Some approaches will be discussed in this section. 

 

5.4.1 Dynamic Neighborhood PSO (DNPSO)  
 

This method for solving multi-objective optimization problems was first proposed 

by Hu and Eberhart. In this algorithm, the multiple objectives are divided into two 

groups:    and   , where    is defined as the neighborhood objective, and    is 

defined as the optimization objective. The choices of   and    are arbitrary. In each 

iteration, each particle dynamically determines a new neighborhood by calculating 

the distance to all other particles and choosing the   nearest neighbors. The 

distance is discribed as the difference between fitness values for the first group of 

objective functions   . When the neighborhood has been determined, the best local 

value is selected among the neighbors in terms of the fitness value of the second 

objective functions   . Finally, the global best updating system considers only the 

solution that dominates the current personal best value [16]. The main drawback is 

that it is useful only for two objectives [27]. 

 

5.4.2 Multi-Objective PSO (MOPSO)  
 

The MOPSO algorithm was developed by Coello-Coello et. al. There are two main 

fundamental approaches in this algorithm [26]. The first approach is that each 

particle is evaluated only by one objective function at a time, and the finding of the 

best positions is performed similarly to the single-objective optimization case. In 

such cases, the main challenge is the proper management of the information 

coming from each objective function so that the particles go toward Pareto optimal 

solutions. For maintaining the identified Pareto optimal solutions, the most trivial 

solution would be to store non-dominated solutions as the particles’ best positions. 

The second approach is that each particle is evaluated by all objective functions 

and based on the concept of Pareto optimality, and they produce non-dominated 

best positions (called leaders). Nevertheless, there can be many non-dominated 

solutions in the neighborhood of a particle, and the determination of leaders is not 

easy. On the other hand, only the one that will be used as the best position of a 

particle is usually selected to participate in the velocity update. Therefore, the 

selection of the best position is an important task in making particles move to the 

Pareto optimal front. To solve this problem, consider an additional set that is called 

external archive for storing the non-dominated solutions discovered during search 

[26].  
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5.4.3 Vector Evaluated PSO (VEPSO)  
 

The vector evaluated particle swarm optimization (VEPSO) algorithm was first 

proposed by Parsopoulos and Vrahatis [26]. In VEPSO algorithm, one swarm is 

evaluated only for one objective function and the information is exchanged among 

other swarms. As a result in the swarm update, the best position of one swarm is 

used for the velocity update of another swarm that corresponds to a different 

objective function. Therefore, in this algorithm   swarms are used for   objective 

functions and the velocity update equation for an  -objective function problem can 

be defined as 

          
   

          
   

                
          

                  
   

    
   

            (5.10)  

where  

                           defines the swarm number(         ); 

                            corresponds to the particle number(         ); 

                      
   

     is the velocity of the  -th particle in the  -th swarm; 

                        
   

  is the best position found for any particle in the  -th swarm  

                              which is evaluated with the  -th objective function. 

 

The VEPSO algorithm is called parallel VEPSO because this algorithm also 

enables the swarms to be implemented in parallel computers that are connected in 

an Ethernet network [16]. 

 

In 2005, Raquel and Naval first introduced Multi-Objective PSO with Crowing 

Distance (MOPSO-CD). This algorithm is based on a crowding distance 

mechanism for the selection of the global best particle and also for the deletion of 

non-dominated solutions from the external archive. The MOPSOCD method has a 

constraint handling technique for solving constrained optimization problems. 

 

5.5 Binary PSO (BPSO) 
 

In the beginning, PSO algorithm was developed for continuous-valued search 

spaces and most of its modified versions worked in the continuous space, which 

could not be used to optimize for a discrete-valued search spaces. In 1997, 

Kennedy and Eberhart firstly extended the basic PSO algorithm to the discrete 

space to solve this problem [4]. They developed the PSO to operate on the binary 

search spaces, because real-valued domains can be transformed into the binary-

valued domains. The proposed algorithm is called binary PSO (BPSO) algorithm 

where the particles represent position in binary space and particle’s position 

vectors can take on the binary value 0 or 1 i.e.           . In this case, it maps 

from the n-dimensional binary space    (i.e. bit strings of the length n) to the real 

numbers         (where          is a fitness function and a real number set 

respectively). That means a particle’s positions must belong to    in order to be 

calculated by   [15]. 
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In BPSO, a particle’s velocity    
  is connected to the possibility that the particle’s 

position    
  takes a value of 0 or 1. The update equation for the velocity does not 

change from that used in the original PSO and the equation (3.7), 
                              

               
       

       
         

      
        

           
   

 

Now, the     bit of the     particle,   
    is updated by  

 

                                            
   

             
     

 

             
     

 
                                     (5.11)  

where,     
  is a random number selected from a uniform distribution in (0, 1), and 

               
  is the sigmoid function , denoted by, 

                                            
   

 

   
    

                                                             (5.12) 

 

The Flowchart 5 shows the Binary PSO algorithm. 
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Now if the bit is not flipped into a 1 at the     iteration, then the velocity increases 

again at the       iteration, along with a greater probability of    
   to flip the bit. 

In continuous valued problems of the PSO, the maximum velocity      can be 

large number for the particles exploration. On the other hand, in binary PSO the 

maximum velocity      will be small numbers for exploration, even if a good 

solution is found [12]. It is suggested that the maximum velocity       , which 

corresponds to a maximum probability of 0.997 that a bit is flipped into 1, whereas 

the minimum velocity         , corresponds to a minimum probability of 0.002 

that the bit remains 0. Since each bit of    
  is always binary-valued in the solution 

space, so no boundary conditions need to be specified in BPSO [10].  

 

The velocity     
  is a probability for the particle position    

  to be 0 or 1. For 

instance, if    
    , then       

            (or 50%). On the other hand, 

if    
   , then       

          , and if     
   , then        

          . 

Besides, it is true that      
             

    . Due to the random number 

  in the above equation (5.11),     can change even if the value of      does not 

change [4]. 

 

The binary PSO algorithm is very important to practical and commercial use in 

discrete problems solving, therefore this algorithm completely needs a lot more 

attention in the future. Finally, in the following section the Lot sizing problem is 

used to illustrate the details of computations for iterations 1 and 2 using the BPSO 

method. 

 

5.5.1 Problem Formulation (Lot Sizing Problem) 

 

The problem is to find order quantities that will minimize total ordering and 

holding costs of an ordering budget. I wish to find the solution of the following 

problem by the Binary PSO method: 

                                                                       
 
                  (1) 

                           

                                                                                                        (2) 

                                                                                                  (3) 

                                                                                                              (4) 

                                                                                                             (5) 

                                                                                                          (6) 

where, 
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The objective function equation (1) is to minimize the total cost with constraints 

that include some limits, no initial inventory is available equation (2),equation (3) 

represents the inventory balance equation in which the order quantity covers all the 

requirements until the next order, equation (4) shows that projected inventory is 

always positive, equation (5) satisfies the condition that no shortages are allowed, 

and finally equation (6) denotes the decision variable that    is either 1 (place an 

order) or 0 (not place an order) [22]. 

 

Solution:  

 

The various steps of the procedure are illustrated using the binary particle swarm 

optimization: 

 

Step1: Consider the number of particles        ; the number of dimensions or   

            periods            ; the ordering cost per period        ; the holding  

           cost per unit per period     ; also the net requirements   , the lot size of  

            the particles    
 , the initial particles positions    

  and corresponding   

            velocities    
 , the inventory balance of particles    

  are given below and   

           finally evaluate each particle in the swarm using the objective function   

              
     in period   at iteration    . 

 

  1 2 3 4 5 

   80 60 40 30 70 

    140 100 70 100 80 

   
  1 0 1 0 0 

   
  3.50 1.50 3.80 -2.20 -1.00 

   
  60  30   

    
        260                        +           230                                   =   490 

    120 80 50 40 90 

   
  1 1 0 0 0 

   
  2.80 3.00 -1.20 -3.00 2.5 

   
  40 20    

  
              240     +      220                                                        =   460 

    100 70 30 25 95 

   
  1 0 0 1 1 

   
  3.40 -2.50 -1.00 1.50 3.00 

   
  20   15 25 

  
           220                                                       + 215 +          225 =660 
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           Find the personal best for each particle in the swarm: 

 

  1 2 3 4 5        
     

   
     

  1 0 1 0 0 490 

   
     

  1 1 0 0 0 460 

   
     

  1 0 0 1 1 660 

 

          Find the global best in the entire swarm: 

 

  1 2 3 4 5      
  

     
     

  1 1 0 0 0 460 

 

Step 2:  Set the iteration number as         and go to step 3. 

 

Step 3:  By considering            and the random numbers in the range (0, 1)   

             as    
     

       find the update velocities of the particles by 

 

   
       

       
         

      
        

           
   

  

So 
 

     
     

                                           

     
     

                                   

     
                ,    

       ,    
        

     
     

                                          

     
      ,    

       ,    
       ,    

       

     
                ,    

       ,    
       ,  

     
                ,    

                 

 

Step 4: Find the values of    
  by the following equation 

   
   

 

       
    

 

So 

   
   

 

       
      ,    

       ,    
      ,    

      ,    
      . 

   
      ,    

      ,    
      ,    

      ,    
        

   
      ,    

      ,    
      ,    

      ,    
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Step 5:  Update the particle’s position    
  by using the sigmoid function, 

 

   
   

             
     

 

             
     

 
  

 Where,    
  is a random number selected from a uniform distribution in (0, 1). 

 

The following table is given the particles update position after completing the first 

iteration: 

 

  1 2 3 4 5 

   
  1 1 0 0 0 

   
  3.50 1.50 3.55 -2.20 -1.00 

   
  0.96 0.82 0.98 0.10 0.27 

    
  0.60 0.10 0.99 0.35 0.53 

   
  120 40    

   
  0 1 0 0 1 

   
  2.80 3.00 -1.20 -3.00 2.5 

   
  0.94 0.95 0.24 0.04 0.92 

    
  0.96 0.70 0.99 0.05 0.30 

   
   40   20 

   
  1 0 0 0 1 

   
  3.15 -2.50 -1.00 1.25 2.75 

   
  0.96 0.08 0.27 0.78 0.94 

    
  0.56 0.70 0.80 0.85 0.35 

   
  40    50 

  

Step 6: Evaluate   
     using    

  in the swarm: 

 

  
                 

  
                 

  
                 

 

Step 7: Update the personal best for each particle in the swarm: 
 

Since  

  
                

          then         
         with    

 . 

  
            

          then        
         with    

 .  

  
                

          then         
         with    

 . 
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The new positions of particles are 

 

  1 2 3 4 5        
     

   
     

  1 0 1 0 0 490 

   
     

  0 1 0 0 1 460 

   
     

  1 0 0 0 1 490 

 

Step 8: Update the global best in the entire swarm: 
 

                          
          

  

Since       
       

       then      
      with    

   

 

  1 2 3 4 5      
  

     
     

  0 1 0 0 1 460 

 

Step 9: Stopping criterion: 
 

If the terminal rule is satisfied, go to step 2,  

Otherwise stop the iteration and output the results. 
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CHAPTER 6 
 

Applications of PSO 

 

This chapter discusses the various application areas of PSO method.  

 

Kennedy and Eberhart established the first practical application of Particle Swarm 

Optimization in 1995. It was in the field of neural network training and was 

reported together with the algorithm itself. PSO have been successfully used 

across a wide range of applications, for instance, telecommunications, system 

control, data mining, power systems, design, combinatorial optimization, signal 

processing, network training, and many other areas. Nowadays, PSO algorithms 

have also been developed to solve constrained problems, multi-objective 

optimization problems, problems with dynamically changing landscapes, and to 

find multiple solutions, while the original PSO algorithm was used mainly to solve 

unconstrained, single-objective optimization problems [29].Various areas where 

PSO is applied are listed in Table1 [5]:  

 

Table 1. Application areas of Particle Swarm Optimization 

 

 

 

Antennas 

Design 

 

The optimal control and design of phased arrays, broadband 

antenna design and modeling, reflector antennas, design of 

Yagi-Uda arrays, array failure correction, optimization of a 

reflect array antenna, far-field radiation pattern 

reconstruction, antenna modeling, design of planar 

antennas, conformal antenna array design, design of patch 

antennas, design of a periodic antenna arrays, near-field 

antenna measurements, optimization of profiled corrugated 

horn antennas, synthesis of antenna arrays, adaptive array 

antennas, design of implantable antennas. 

 

Signal 

Processing 

 

Pattern recognition of flatness signal, design of IIR filters, 

2D IIR filters, speech coding, analogue filter tuning, 

particle filter optimization, nonlinear adaptive filters, Costas 

arrays, wavelets, blind detection, blind source separation, 

localization of acoustic sources, distributed odour source 

localization, and so on. 

 

 

 

 

 

 

Networking 

 

Radar networks, bluetooth networks, auto tuning for 

universal mobile telecommunication system networks, 

optimal equipment placement in mobile communication, 

TCP network control, routing, wavelength division-

multiplexed network, peer-to-peer networks, bandwidth and 

channel allocation, WDM telecommunication networks, 

wireless networks, grouped and delayed broadcasting, 

bandwidth reservation, transmission network planning, 

voltage regulation, network reconfiguration and expansion, 

economic dispatch problem, distributed generation, 
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microgrids, congestion management, cellular neural 

networks, design of radial basis function networks, feed 

forward neural network training, product unit networks, 

neural gas networks, design of recurrent neural networks, 

wavelet neural networks, neuron controllers, wireless sensor 

network design, estimation of target position in wireless 

sensor networks, wireless video sensor networks 

optimization. 

 

 

 

 

Biomedical 

 

Human tremor analysis for the diagnosis of Parkinson’s 

disease, inference of gene regulatory networks, human 

movement biomechanics optimization, RNA secondary 

structure determination, phylogenetic tree reconstruction, 

cancer classification, and survival prediction, DNA motif 

detection, biomarker selection, protein structure prediction 

and docking, drug design, radiotherapy planning, analysis 

of brain magneto encephalography data, 

electroencephalogram analysis, biometrics and so on. 

 

 

 

Electronics and 

electromagnetic 

 

On-chip inductors, configuration of FPGAs and parallel 

processor arrays, fuel cells, circuit synthesis, FPGA-based 

temperature control, AC transmission system control, 

electromagnetic shape design, microwave filters, generic 

electromagnetic design and optimization applications, 

CMOS RF wideband amplifier design, linear array antenna 

synthesis, conductors, RF IC design and optimization, 

semiconductor optimization, high-speed CMOS, frequency 

selective surface and absorber design, voltage flicker 

measurement, shielding, digital circuit design. 

 

 

Robotics 

Control of robotic manipulators and arms, motion planning 

and control, odour source localization, soccer playing, robot 

running, robot vision, collective robotic search, transport 

robots, unsupervised robotic learning, path planning, 

obstacle avoidance, swarm robotics, unmanned vehicle 

navigation, environment mapping, voice control of robots, 

and so forth. 

 

 

 

 

Design and 

Modelling 

Conceptual design, electromagnetics case, induction heating 

cooker design, VLSI design, power systems, RF circuit 

synthesis, worst case electronic design, motor design, filter 

design, antenna design, CMOS wideband amplifier design, 

logic circuits design, transmission lines, mechanical design, 

library search, inversion of underwater acoustic models, 

modeling MIDI music, customer satisfaction models, 

thermal process system identification, friction models, 

model selection, ultrawideband channel modeling, 

identifying ARMAX models, power plants and systems, 

chaotic time series modeling, model order reduction. 

 

 

Image segmentation, autocropping for digital photographs, 

synthetic aperture radar imaging, locating treatment 
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Image and 

Graphics 

planning landmarks in orthodontic x-ray images, image 

classification, inversion of ocean color reflectance 

measurements, image fusion, photo time-stamp recognition, 

traffic stop-sign detection, defect detection, image 

registration, microwave imaging, pixel classification, 

detection of objects, pedestrian detection and tracking, 

texture synthesis, scene matching, contrast enhancement, 

3D recovery with structured beam matrix, character 

recognition, image noise cancellation. 

 

Power 

generation and 

Controlling 

Automatic generation control, power transformer 

protection, power loss minimization, load forecasting, 

STATCOM power system, fault-tolerant control of 

compensators, hybrid power generation systems, optimal 

power dispatch, power system performance optimization, 

secondary voltage control, power control and optimization, 

design of power system stabilizers, operational planning for 

cogeneration systems, control of photovoltaic systems, 

large-scale power plant control, analysis of power quality 

signals, generation planning and restructuring, optimal 

strategies for electricity production, production costing, 

operations planning. 

 

 

 

Fuzzy systems, 

Clustering, data 

mining 

Design of neurofuzzy networks, fuzzy rule extraction, fuzzy 

control, membership functions optimization, fuzzy 

modeling, fuzzy classification, design of hierarchical fuzzy 

systems, fuzzy queue management, clustering, clustering in 

large spatial databases, document and information 

clustering, dynamic clustering, cascading classifiers, 

classification of hierarchical biological data, dimensionality 

reduction, genetic-programming-based classification, fuzzy 

clustering, classification threshold optimization, electrical 

wader sort classification, data mining, feature selection. 

 

 

 

Optimization 

Electrical motors optimization, optimization of internal 

combustion engines, optimization of nuclear electric 

propulsion systems, floor planning, travelling-sales man 

problems, n-queens problem, packing and knapsack, 

minimum spanning trees, satisfiability, knights cover 

problem, layout optimization, path optimization, urban 

planning, FPGA placement and routing. 

 

 

Prediction and 

forecasting 

Water quality prediction and classification, prediction of 

chaotic systems, streamflow forecast, ecological models, 

meteorological predictions, prediction of the floe stress in 

steel, time series prediction, electric load forecasting, 

battery pack state of charge estimation, predictions of 

elephant migrations, prediction of surface roughness in end 

milling, urban traffic flow forecasting, and so on. 
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CHAPTER 7 
 

Conclusion 

 

 

This thesis discussed the basic Particle Swarm Optimization algorithm, 

geometrical and mathematical explanation of PSO, particles’ movement and the 

velocity update in the search space, the acceleration coefficients and particles’ 

neighborhood topologies in Chapter 3.   

 

In Chapter 4, a set of convergence techniques, i.e. velocity clamping, inertia 

weight and constriction coefficient techniques which can be used to improve speed 

of convergences and control the exploration and exploitation abilities of the entire 

swarm, was illustrated. The Guaranteed Convergence PSO (GCPSO) algorithm 

was analyzed. This algorithm is very important to solve a problem when all 

particles face premature convergence or stagnation in the search process. 

Boundary conditions were presented which are very useful in the PSO algorithm.   

 

Chapter 5 presented five different types of PSO algorithms which solve different 

types of optimization problems. The Multi-Start PSO (MSPSO) algorithm attempts 

to detect when the PSO has found lack of diversity. Once lack of diversity is 

found, the algorithm re-starts the algorithm with new randomly chosen initial 

positions for the particles. The Multi-phase PSO (MPPSO) algorithm partitions the 

main swarm into sub-swarms or subgroups, where each sub-swarm performs a 

different task, exhibits a different behavior and so on. Then the swarms cooperate 

to solve the problem by sharing the best solutions they have discovered in their 

respective sub-swarms. During the optimization process, high speed of 

convergence sometimes generates a quick loss of diversity which lead to 

undesirable premature convergence. To solve this problem, the perturbed particle 

swarm algorithm (PPSO) illustrated in this chapter. The Multi-Objective PSO 

(MOPSO) algorithm is very important when an optimization problem has several 

objective functions. One discrete optimization problem was solved by the Binary 

PSO (BPSO) algorithm. 

 

The PSO algorithm has some problems that ought to be resolved. Therefore, the 

future works on the PSO algorithm will probably concentrate on the following:  

 

1. Find a particular PSO algorithm which can be expected to provide good 

performance. 

 

2. Combine the PSO algorithm with other optimization methods to improve the 

accuracy. 

 

3. Use this algorithm to solve the non-convex optimization problems. 
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Appendix A 
 

Glossary terms of this thesis: 

 

 

ABC: Absorbing boundary condition.  

BPSO: Binary Particle Swarm Optimization. 

CSS-MOPSO: Cross-Searching Strategy Multi-Objective  

DBC: Damping boundary condition. 

DNPSO: Dynamic Neighborhood Particle Swarm Optimization. 

gbest PSO: Global Best Particle Swarm Optimization. 

GCPSO: Guaranteed Convergence Particle Swarm Optimization. 

IBC: Invisible boundary condition. 

I/DBC: Invisible/Damping boundary condition. 

I/RBC: Invisible/Reflecting boundary condition.  

lbest PSO: Local Best Particle Swarm Optimization. 

   : Pareto front. 

PPSO: Perturbed Particle Swarm Optimization. 

PSO: Particle Swarm Optimization. 

RBC: Reflecting boundary condition. 

MOPSO: Multi-Objective Particle Swarm Optimization. 

MPPSO: Multi-phase Particle Swarm Optimization. 

MSPSO: Multi-Start Particle Swarm Optimization. 

VEPSO: Vector Evaluated Particle Swarm Optimization. 
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Appendix B 

 

Commonly-used symbols of this thesis: 

 

 

         The function being minimized or maximized. It takes a vector input    

           and returns a scalar value. 

   
       The velocity vector of particle   in dimension     at time    

   
       The position vector of particle   in dimension     at time    

       
   The personal best position of particle   in dimension     found from     

            initialization through time t. 

        The global best position of particle   in dimension     found from     

            initialization through time t. 

  ,     Positive acceleration constants which are used to level the    

            contribution of the cognitive and social components respectively. 

 

   
 ,    

   Random numbers from uniform distribution        at time t. 

      
        

 : Two chosen        (local guides) for each particle in     

                           iteration  . 

 

           The swarm size or number of particles. 

            Denotes time or time steps. 

D:        The maximum no. of dimensions. 

P:         The maximum no. of particles. 

N:        Total number of iterations. 

         The maximum velocity. 

ω          The inertia weight. 

χ           The constriction coefficient. 

            The parameter controls the diameter of the search space. 

             The criticality of the particle  . 

            The global criticality limit. 

          The   -th dimension of p-gbest in iteration  . 
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            The normal distribution. 

           The degree of uncertainty about the optimality of the gbest and is   

             modeled as some non-increasing function of the number of    

             iterations. 

 

   
   

      The velocity of the  -th particle in the  -th swarm. 

     
   

   The best position found for any particle in the  -th swarm which is   

              evaluated with the  -th objective function. 

    
       The sigmoid function. 
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