
Particle Swarm Optimization Method for

Constrained Optimization Problems

Konstantinos E. Parsopoulos and Michael N. Vrahatis

Department of Mathematics, University of Patras Arti�cial Intelligence

Research Center (UPAIRC), GR{26110 Patras, Greece

fkostasp, vrahatisg@math.upatras.gr

Abstract. The performance of the Particle Swarm Optimization method

in coping with Constrained Optimization problems is investigated in this

contribution. In the adopted approach a non{stationary multi{stage as-

signment penalty function is incorporated, and several experiments are

performed on well{known and widely used benchmark problems. The ob-

tained results are reported and compared with those obtained through

di�erent evolutionary algorithms, such as Evolution Strategies and Ge-

netic Algorithms. Conclusions are derived and directions of future re-

search are exposed.

1 Introduction

Constrained Optimization (CO) problems are encountered in numerous appli-

cations. Structural optimization, engineering design, VLSI design, economics,

allocation and location problems are just a few of the scienti�c �elds in which

CO problems are frequently met [2], [4], [22]. The CO problem can be represented

as the following nonlinear programming problem:

min
x

f(x); x 2 S � R
n ; (1)

subject to the linear or nonlinear constraints

gi(x) 6 0; i = 1; : : : ;m : (2)

The formulation of the constraints in Eq. (2) is not restrictive, since an inequality

constraint of the form gi(x) > 0, can also be represented as �gi(x) 6 0, and an

equality constraint, gi(x) = 0, can be represented by two inequality constraints

gi(x) 6 0 and �gi(x) 6 0.

The CO problem can be addressed using either deterministic or stochastic

methods. However, deterministic methods such as Feasible Direction and Gen-

eralized Gradient Descent, make strong assumptions on the continuity and dif-

ferentiability of the objective function f(x) [2], [4], [5]. Thus, there is an ongoing

interest for stochastic algorithms that can tackle the CO problem e�ectively.

Although Evolutionary Algorithms (EA) have been developed primarily as un-

constrained optimization methods, they are considered as a good alternative for



2 K.E. Parsopoulos and M.N. Vrahatis

solving CO problems. Promising results have been reported during the past few

years and several variants of Genetic Algorithms (GA) [6], Evolutionary Pro-

gramming [3], and Evolution Strategies (ES) [20], have been proposed to cope

with the CO problem [7], [8], [12], [22].

The most common approach for solving CO problems is the use of a penalty

function. The constrained problem is transformed to an unconstrained one, by

penalizing the constraints and building a single objective function, which in

turn is minimized using an unconstrained optimization algorithm [2], [4], [19].

This is most probably the reason behind the popularity of the Penalty Function

approach when EAs are used to address the CO problem [8], [22].

In this paper, the performance of the Particle Swarm Optimization method

(PSO) [1], [11], in solving CO problems is investigated. The CO problem is

tackled through the minimization of a non{stationary multi{stage assignment

penalty function. The results of experiments performed on well{known test prob-

lems are reported and discussed in comparison with results obtained by other

EAs. In the next section, the Penalty Function approach is brie
y described. In

Section 3, the Particle Swarm Optimization method is presented, and, in Section

4, the test problems as well as the experimental results are reported. The paper

ends with conclusions and ideas for future research, reported in Section 5.

2 The Penalty Function Approach

The search space in CO problems consists of two kinds of points: feasible and

unfeasible. Feasible points satisfy all the constraints, while unfeasible points

violate at least one of them. The Penalty Function technique, solves the CO

problem through a sequence of unconstrained optimization problems [8]. Up to

date, no other method for de�ning pertinent penalty functions, than trial{and{

error, exists [22]. If the penalty values are high, the minimization algorithms

usually get trapped in local minima. On the other hand, if penalty values are

low, they can hardly detect feasible optimal solutions.

Penalty functions are distinguished into two main categories: stationary and

non{stationary. Stationary penalty functions, use �xed penalty values through-

out the minimization, while in contrast, in non{stationary penalty functions, the

penalty values are dynamically modi�ed. In the literature, results obtained using

non{stationary penalty functions are almost always superior to those obtained

through stationary functions.

A penalty function is, generally, de�ned as [22]

F (x) = f(x) + h(k)H(x); x 2 S � R
n ; (3)

where f(x) is the original objective function of the CO problem in Eq. (1);

h(k) is a dynamically modi�ed penalty value, where k is the algorithm's current

iteration number; and H(x) is a penalty factor, de�ned as

H(x) =

mX

i=1

�(qi(x)) qi(x)

(qi(x)); (4)



PSO for Constrained Optimization Problems 3

where qi(x) = maxf0; gi(x)g, i = 1; : : : ;m. The function qi(x) is a relative

violated function of the constraints; �(qi(x)) is a multi{stage assignment func-

tion [7]; 
(qi(x)) is the power of the penalty function; and gi(x) are the con-

straints described in Eq. (2).

The functions h(:), �(:) and 
(:), are problem dependent. In our experiments,

a non{stationary multi{stage assignment penalty function was used. Details con-

cerning the penalty function used in the experiments, are given in Section 4. In

the next section, the PSO algorithm is described.

3 The Particle Swarm Optimization Method

PSO is a stochastic global optimization method which is based on simulation of

social behavior. As in GA and ES, PSO exploits a population of potential solu-

tions to probe the search space. In contrast to the aforementioned methods in

PSO no operators inspired by natural evolution are applied to extract a new gen-

eration of candidate solutions. Instead of mutation PSO relies on the exchange

of information between individuals, called particles, of the population, called

swarm. In e�ect, each particle adjusts its trajectory towards its own previous

best position, and towards the best previous position attained by any member

of its neighborhood [9]. In the global variant of PSO, the whole swarm is consid-

ered as the neighborhood. Thus, global sharing of information takes place and

particles pro�t from the discoveries and previous experience of all other compan-

ions during the search for promising regions of the landscape. To visualize the

operation of the method consider the case of the single{objective minimization

case; promising regions in this case possess lower function values compared to

others, visited previously.

Several variants of PSO have been proposed up to date, following Eberhart

and Kennedy who were the �rst to introduce this method [1], [10], [11]. The

variants which were applied in our experiments are exposed in the following

paragraphs.

Initially, let us de�ne the notation adopted in this paper: assuming that the

search space is D{dimensional, the i-th particle of the swarm is represented by

a D{dimensional vector Xi = (xi1; xi2; : : : ; xiD) and the best particle of the

swarm, i.e. the particle with the lowest function value, is denoted by index g.

The best previous position (i.e. the position corresponding to the best function

value) of the i-th particle is recorded and represented as Pi = (pi1; pi2; : : : ; piD),
and the position change (velocity) of the i-th particle is Vi = (vi1; vi2; : : : ; viD).

The particles are manipulated according to the following equations (the su-

perscripts denote the iteration):

V k+1

i
= �

�
wV k

i
+ c1r

k

i1
(P k

i
�Xk

i
) + c2r

k

i2
(P k

g
�Xk

i
)
�
; (5)

Xk+1

i
= Xk

i
+ V k+1

i
; (6)

where i = 1; 2; : : : ; N , and N is the size of the population; � is a constriction

factor which is used to control and constrict velocities; w is the inertia weight;



4 K.E. Parsopoulos and M.N. Vrahatis

c1 and c2 are two positive constants, called the cognitive and social parameter

respectively; ri1 and ri2 are random numbers uniformly distributed within the

range [0; 1]. Eq. (5) is used to determine the i-th particle's new velocity, at each

iteration, while Eq. (6) provides the new position of the i-th particle, adding its

new velocity, to its current position. The performance of each particle is measured

according to a �tness function, which is problem{dependent. In optimization

problems, the �tness function is usually identical with the objective function

under consideration.

The role of the inertia weight w is considered important for the PSO's con-

vergence behavior. The inertia weight is employed to control the impact of the

previous history of velocities on the current velocity. Thus, the parameter w reg-

ulates the trade{o� between the global (wide{ranging) and the local (nearby)

exploration abilities of the swarm. A large inertia weight facilitates exploration

(searching new areas), while a small one tends to facilitate exploitation, i.e. �ne{

tuning the current search area. A proper value for the inertia weight w provides

balance between the global and local exploration ability of the swarm, and, thus

results in better solutions. Experimental results imply that it is preferable to

initially set the inertia to a large value, to promote global exploration of the

search space, and gradually decrease it to obtain re�ned solutions [21]. The ini-

tial population can be generated either randomly or by using a Sobol sequence

generator [18], which ensures that the D-dimensional vectors will be uniformly

distributed within the search space.

The PSO technique has proven to be very e�cient for solving real valued

global unconstrained optimization problems [13]{[17]. In the next section exper-

imental results of the performance of PSO in CO problems are reported.

4 Experimental Results

The performance of three variants of PSO was investigated on well{known and

widely used test problems. One variant utilizes only inertia weight (denoted as

PSO-In), a second variant utilizes only constriction factor (denoted as PSO-Co),

and the last one utilizes both inertia weight and constriction factor (denoted

as PSO-Bo). For all variants, �xed values, considered as default, for the PSO's

parameters were used: c1 = c2 = 2; w was gradually decreased from 1.2 towards

0.1; � = 0:73. Some variants of PSO, impose a maximum value on the velocity,

Vmax, to prevent the swarm from explosion. In our experiments Vmax was always

�xed, to the value of Vmax = 4. The size of the swarm was set equal to 100, 10

runs were performed for each test problem, and the PSO algorithm ran for 1000

iterations, in each case. A violation tolerance was used for the constraints. Thus,

a constraint gi(x) was assumed to be violated, only if gi(x) > 10�5.

Regarding the penalty parameters, the same values as the values reported

in [22] were used, to obtain results comparable to the results obtained using

di�erent EA, in [22]. Speci�cally, if qi(x) < 1, then 
(qi(x)) = 1, otherwise


(qi(x)) = 2. Moreover, if qi(x) < 0:001 then �(qi(x)) = 10, else, if qi(x) 6 0:1
then �(qi(x)) = 20, else, if qi(x) 6 1 then �(qi(x)) = 100, otherwise �(qi(x)) =



PSO for Constrained Optimization Problems 5

300. Regarding the function h(:), it was set to h(k) =
p
k for Test Problem 1,

and h(k) = k
p
k for the rest problems.

The test problems are de�ned immediately below:

Test Problem 1, [4]:

f(x) = (x1 � 2)2 + (x2 � 1)2;

subject to x1 = 2x2 � 1; x2
1
=4 + x2

2
� 1 6 0. The best known solution is f� =

1:3934651.

Test Problem 2, [2]:

f(x) = (x1 � 10)3 + (x2 � 20)3;

subject to 100� (x1�5)2� (x2�5)2 6 0; (x1�6)2+(x2�5)2�82:81 6 0; 13 6
x1 6 100; 0 6 x2 6 100. The best known solution is f� = �6961:81381.

Test Problem 3, [5]:

f(x) = (x1 � 10)2 + 5(x2 � 12)2 + x4
3
+ 3(x4 � 11)2 +

+10x6
5
+ 7x2

6
+ x4

7
� 4x6x7 � 10x6 � 8x7;

subject to�127+2x2
1
+3x4

2
+x3+4x

2

4
+5x5 6 0; �282+7x1+3x2+10x23+x4�x5 6

0; �196 + 23x1 + x2
2
+ 6x2

6
� 8x7 6 0; 4x2

1
+ x2

2
� 3x1x2 + 2x2

3
+ 5x6 � 11x7 6

0; �10 6 xi 6 10; i = 1; : : : ; 7. The best known solution is f� = 680:630057.

Test Problems 4 and 5 , [5]:

f(x) = 5:3578547x2
3
+ 0:8356891x1x5 + 37:293239x1� 40792:141;

subject to 0 6 85:334407+ 0:0056858T1 + T2x1x4 � 0:0022053x3x5 6 92; 90 6
80:51249+0:0071317x2x5+0:0029955x1x2+0:0021813x2

3
6 110; 20 6 9:300961+

0:0047026x3x5 + 0:0012547x1x3 + 0:0019085x3x4 6 25; 78 6 x1 6 102; 33 6

x2 6 45; 27 6 xi 6 45; i = 3; 4; 5, where T1 = x2x5 and T2 = 0:0006262 for Test
Problem 4, and T1 = x2x3, T2 = 0:00026 for Test Problem 5. The best known

solution for Test Problem 4 is f� = �30665:538, while for Test Problem 5 it is

unknown.

Test Problem 6, [12]:

f(x; y) = �10:5x1 � 7:5x2 � 3:5x3 � 2:5x4 � 1:5x5 � 10y � 0:5

5X

i=1

x2
i
;

subject to 6x1+3x2+3x3+2x4+x5�6:5 6 0, 10x1+10x3+y 6 20, 0 6 xi 6 1,

i = 1; : : : ; 5, 0 6 y. The best known solution is f� = �213:0.
For each test problem, the mean and the best solution obtained in all 10

runs, as well as the corresponding sum of violated constraints, were recorded. The



6 K.E. Parsopoulos and M.N. Vrahatis

Table 1. The mean and the best solution found in all 10 runs, for each method and

problem. The standard deviation of the optimal values for the 10 runs is reported. In

the parentheses the corresponding sums of violated constraints are reported

Problem Method Mean Solution (Sum V.C.) St.D. Best Solution (Sum V.C.)

PSO-In 1.394006 (0.000014) 0.0015 1.393431 (0.000020)

1 PSO-Co 1.393431 (0.000020) 0.0 1.393431 (0.000020)

PSO-Bo 1.393431 (0.000020) 0.0 1.393431 (0.000020)

PSO-In -6960.866 (0.0000037) 0.608 -6961.798 (0.0000087)

2 PSO-Co -6961.836 (0.000019) 0.0011 -6961.837 (0.000019)

PSO-Bo -6961.774 (0.000013) 0.14 -6961.837 (0.000019)

PSO-In 680.671 (0.000008) 0.034 680.639 (0.000019)

3 PSO-Co 680.663 (0.00034) 0.050 680.635 (0.00130)

PSO-Bo 680.683 (0.000015) 0.041 680.636 (0.0)

PSO-In -31526.304 (1.297) 18.037 -31543.484 (1.311)

4 PSO-Co -31528.289 (1.326) 12.147 -31542.578 (1.311)

PSO-Bo -31493.190 (1.331) 131.67 -31544.459 (1.311)

PSO-In -31523.859 (0.958) 17.531 -31544.036 (0.997)

5 PSO-Co -31526.308 (0.965) 19.153 -31543.312 (0.996)

PSO-Bo -31525.492 (0.968) 23.392 -31545.054 (0.999)

PSO-In -213.0 (0.0) 0.0 -213.0 (0.0)

6 PSO-Co -213.0 (0.0) 0.0 -213.0 (0.0)

PSO-Bo -213.0 (0.0) 0.0 -213.0 (0.0)

results for all test problems are reported in Table 1. In all test problems, the three

variants of PSO exhibited similar results. In most cases PSO outperformed the

results reported in [22] for other EA. Proper �ne{tuning of the PSO's parameters

may result in better solutions.

5 Conclusions and Further Work

The capability of the PSO method to address CO problems was investigated

through the performance of numerous experiments on well{known and widely

used test problems. Preliminary results, obtained through the use of a non{

stationary multi{stage penalty function, imply that PSO is a good alternative

for tackling CO problems. In most cases PSO detected superior solutions than

those obtained through other EAs, as reported in [22]. It should be mentioned

that the results were competitive in all cases, despite the fact that only the

default parameters of PSO were considered. The performance of the three PSO's

variants was similar for all test problems.

Future work will include investigation of the PSO's performance in other

benchmark and real{life problems, as well as the development of specialized

operators that will indirectly enforce feasibility of the particles and guide the

swarm towards the optimum solution, as well as �ne{tuning of the parameters

that may result in better solutions.



PSO for Constrained Optimization Problems 7

References

1. Eberhart, R.C., Simpson, P.K., Dobbins, R.W.: Computational Intelligence PC

Tools. Academic Press Professional, Boston (1996)
2. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained Global

Optimization Algorithms. Lecture Notes in Computer Science, Vol. 455. Springer-

Verlag, Berlin Heidelberg New York (1987)
3. Fogel, D.B.: An Introduction to Simulated Evolutionary Optimization. IEEE Trans.

Neural Networks 5(1) (1994) 3{14
4. Himmelblau, D.M.: Applied Nonlinear Programming. McGraw{Hill (1972)
5. Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Lec-

ture Notes in Economics and Mathematical Systems, Vol. 187. Springer-Verlag,

Berlin Heidelberg New York (1981)
6. Holland, J.H.: Adaptation in Natural and Arti�cial Systems. MIT Press (1992)
7. Homaifar, A., Lai, A.H.{Y., Qi, X.: Constrained Optimization via Genetic Algo-

rithms. Simulation 2(4) (1994) 242{254
8. Joines, J.A., Houck, C.R.: On the Use of Non{Stationary Penalty Functions to Solve

Nonlinear Constrained Optimization Problems with GA's. Proc. IEEE Int. Conf.

Evol. Comp. (1994) 579{585
9. Kennedy, J.: The Behavior of Particles. Evol. Progr. VII (1998) 581{587
10. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. Proc. IEEE Int. Conf.

Neural Networks. Piscataway, NJ (1995) 1942{1948
11. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann (2001)
12. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.

Springer{Verlag, New York (1992)
13. Parsopoulos, K.E., Plagianakos, V.P., Magoulas, G.D., Vrahatis, M.N.: Objective

Function \Stretching" to Alleviate Convergence to Local Minima. Nonlinear Anal-

ysis TMA 47(5) (2001) 3419{3424
14. Parsopoulos, K.E., Plagianakos, V.P., Magoulas, G.D., Vrahatis, M.N.: Stretching

Technique for Obtaining Global Minimizers Through Particle Swarm Optimization.

Proc. Particle Swarm Optimization Workshop. Indianapolis (IN), USA (2001) 22{29
15. Parsopoulos, K.E., Vrahatis, M.N.: Modi�cation of the Particle Swarm Optimizer

for Locating All the Global Minima. V. Kurkova, N. Steele, R. Neruda, M. Karny

(eds.), Arti�cial Neural Networks and Genetic Algorithms. Springer, Wien (Com-

puter Science Series) (2001) 324{327
16. Parsopoulos, K.E., Laskari, E.C., Vrahatis, M.N.: Solving `1 Norm Errors-In-

Variables Problems Using Particle Swarm Optimizer. M.H. Hamza (ed.), Arti�cial

Intelligence and Applications. IASTED/ACTA Press (2001) 185{190
17. Parsopoulos, K.E., Vrahatis, M.N.: Initializing the Particle Swarm Optimizer Us-

ing the Nonlinear Simplex Method. A. Grmela, N.E. Mastorakis (eds.), Advances

in Intelligent Systems, Fuzzy Systems, Evolutionary Computation. WSEAS Press

(2002) 216{221
18. Press, W.H., Vetterling, W.T., Teukolsky, S.A., Flannery, B.P.: Numerical Recipes

in Fortran 77. Cambridge University Press, Cambridge (1992)
19. Rao, S.S.: Optimization: Theory and Applications. Wiley Eastern Limited (1977)
20. Schwefel, H.{P.: Evolution and Optimum Seeking. Wiley (1995)
21. Shi, Y., Eberhart, R.C.: Parameter Selection in Particle Swarm Optimization. Evo-

lutionary Programming VII (1998) 591{600
22. Yang, J.{M., Chen, Y.{P., Horng, J.{T., Kao, C.{Y.: Applying Family Competition

to Evolution Strategies for Constrained Optimization. Lecture Notes in Computer

Science, Vol. 1213. Springer-Verlag, Berlin Heidelberg New York (1997) 201{211


