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Abstract. We define a general methodology to deal with a large family of scheduling problems.
We consider the case where some of the constraints are expressed through the minimization of a loss
function. We study in detail a benchmark example consisting of some jigsaw puzzle problem with
additional constraints. We discuss some algorithmic issues typical of scheduling problems, such as
the apparition of small unused gaps or the representation of proportionality constraints. We also
carry on an experimental comparison between the Metropolis algorithm, simulated annealing, and
the iterated energy transformation method to see whether asymptotical theoretical results are a good
guide towards practically efficient algorithms.
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Introduction. The aim of this paper is to describe a general strategy to deal
with scheduling problems and to illustrate its use on the resolution of jigsaw puzzles.
We will assume that we can put our scheduling problem in the form of a task assign-
ment problem, and we will turn it into the minimization of a cost function defined on
a suitable search space. This cost function will be minimized by a Monte Carlo algo-
rithm of the Metropolis kind: either simulated annealing or our recently introduced
iterated energy transformation (IET) method. We have already studied some of the
theoretical aspects of these two methods in previous papers (see [6], [7]).

We have chosen to experiment on a jigsaw puzzle problem with rectangular pieces
because this is a typical instance of the kind of difficulties encountered when building
time tables, and because it is in itself a difficult problem (it is NP-complete) which
deserves special attention. In the course of this experimentation, we will compare
four algorithms: a randomized descent algorithm (the Metropolis dynamic at temper-
ature zero), the Metropolis algorithm, simulated annealing, and the iterated energy
transformation algorithm.

1. An abstract task assignment framework. Let B be a finite set of tasks.
Let E be a set of resources needed to perform these tasks. The set E may be any
kind of set, a finite set, a domain in R

n, etc. In applications it can represent various
things, such as a set of people who are to perform the tasks, in which case it is natural
to see it as a finite set, or it can also represent space and time needed for the tasks,
in which case it is sometimes natural to see it as a domain in R

n. More often it is
a product space of both kinds. Anyhow, we will only consider a finite collection of
subsets of E; therefore it will always be possible to consider that E is a finite set
from the theoretical point of view. This is reasonable, because a computer can only
handle a finite number of possible ways to allocate resources and also because, in many
problems of the time-table type, continuous quantities, such as time, are discretized
(for instance when one tries to schedule lectures, they are usually constrained to start
at full hours). Anyhow, the reader should think of E as a large set and our methods,
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inherited from statistical mechanics, are precisely meant to cope with a large state
space.

The abstract scheduling problem we will consider is to allocate to each task in B
a set of resources in a way which satisfies a set of constraints.

At this level of generality, we will not represent the constraints by equations or
logical relations; we will merely view them as a subset S of P(B × E) (where P(A)
is the set of subsets of the set A). We will call S the “solution space.” A solution x
in S is a subset of the product space B × E. We will use the notations πB and πE
for projections on B and E. The fact that (b, e) ∈ x means that the task b uses the
resource e. The set of resources used by b is πE(π−1

B (b)∩x), for which we will use the
functional notation x(b).

We will assume that each solution x ∈ S is a complete assignment, in the sense
that all the tasks are scheduled:

πB(x) = B for any x ∈ S.

Our scheduling problem is to construct a solution x belonging to the solution space
S.

The idea of considering scheduling problems as putting objects in boxes in a multi-
dimensional space is not new and can be found, for instance, in Abramson [1], where a
specialized simulated annealing hardware is described for handling some generic types
of cost functions.

2. The jigsaw puzzle example. This example is meant to be a benchmark,
where the main algorithmic issues of scheduling problems are present.

The set of resources E will be a discretized rectangular frame

E = {0, . . . ,M − 1} × {0, . . . , N − 1} ⊂ Z
2.

The set of tasks B will be the set of pieces of the jigsaw puzzle. Each piece r has
a rectangular shape defined by its width wr ∈ N

∗ and by its height hr ∈ N
∗. The

constraint is that pieces should not overlap. Thus the solution space is

S = {x ⊂ B × E : x(r) = [ar, ar + wr[×[br, br + hr[, (ar, br) ∈ E, r ∈ B,

and x(r) ∩ x(r′) = ∅, r 6= r′ ∈ B}.

The problem is to build the jigsaw puzzle; that is, to construct x ∈ S. Although
the shape of pieces is very simple, this problem can be seen to be very complex. In
fact, it is easy to see that it is NP complete, because it contains the partition problem
among its instances (see [14]). Indeed, the partition of given integers {c1, . . . , cN}
into two sets I and J such that ∑

i∈I
ci =

∑
j∈J

cj

can be viewed as a jigsaw puzzle with N pieces, respectively, of width ci and height
1, and a frame of width (1/2)

∑N
i=1 ci and height 2 (see Fig. 2.1).

3. A method of resolution based on the Metropolis dynamic. In this
section we will sketch a methodology to solve the abstract problem of section 1. The
general idea is to perform a random search for a solution in a state space larger than
the solution space. This search space should be easy to describe and easy to search
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Fig. 2.1.

by a Markov chain performing a succession of elementary moves. Of course, we will
not use a Markov chain which uniformly samples the search space because, usually,
the search space we will be able to build will be very large when compared to the
solution space, and drawing points at random in the search space would seldom lead
to discovering a solution.

Instead we will use a Markov chain with rare transitions, whose invariant measure
is concentrated in a neighborhood of the solution space. This optimization technique
is well known, but its improvement is still a subject of active research. The prototype
algorithm we will start from is the Metropolis dynamic at low temperature. The
Metropolis dynamic has been designed to simulate statistical mechanics systems, and
not for optimization purposes. In order to improve its performance as an optimization
algorithm, some speed-up techniques have been proposed. The most famous one is
simulated annealing [15], [18]. We have also proposed recently another technique,
which we called the iterated energy transformation method (IET) [7]. We will describe
and use both of these.

3.1. Choice of a search space. The first step of the method is to choose a
search space S̃ containing the solution space S. The most popular way to construct S̃

is to relax some constraints about the solution and to measure, instead, how much the
constraints have been violated by a score function one has afterwards to minimize.
For instance, in circuits placement applications (one of the earliest applications of
simulated annealing) the constraint that circuits should not overlap is often relaxed,
and the overlapping of circuits is instead merely discouraged by some score function
of the surface of the overlap. Our strategy will be somewhat of the same kind, with
the difference that we will not relax a constraint which is specific to the problem.
Instead, we will allow partial solutions, where only some proportion of the tasks have
been scheduled. Defining partial solutions is usually very easy and very natural.
Most of the time, this is how the problem is posed from the beginning. Indeed the
constraints come usually from incompatibilities between tasks, such as sharing the
same resource or needing to be performed in a given order, and can be expressed
without assuming that all the tasks are already scheduled.

From the technical point of view, we will assume that the search space (the space
of partial solutions) satisfies the following properties:

• The empty solution is in the search space: ∅ ∈ S̃.
• There is a path from the empty solution leading to any partial solution x ∈ S̃

along which tasks are scheduled one after the other. This can be expressed
in the following way:

For any x ∈ S̃, x 6= ∅, there is b ∈ πB(x) such that x \ π−1
B (b) ∈ S̃.

• All complete solutions in the search space satisfy the constraints. In other
words, the solution space is exactly made of the complete solutions of the



1542 OLIVIER CATONI

search space. This is expressed by the following equation:

S = {x ∈ S̃ : πB(x) = B}.

Let us notice that the “best” choice for S̃ would be {x∩π−1
B (C) : x ∈ S, C ⊂ B},

the set of all partial solutions contained in global solutions. Anyhow, this set is,
in practical situations, never defined by simple relations, because when you have
scheduled some of the tasks, it is never possible (except for trivial problems) to foretell
whether there will remain suitable resources to schedule the remaining ones. Therefore
the search space S̃ is, most of the time, much broader than S and contains many dead
ends.

3.2. Building the dynamic: Constructions and destructions. The next
idea is to define on S̃ two kinds of dynamics, a constructive dynamic and a destructive
dynamic. These two random dynamics are characterized by two Markov matrices qC
and qD,

qC : S̃× S̃ −→ [0, 1],

qD : S̃× S̃ −→ [0, 1].

We will assume that the transitions allowed by qC consist of either keeping the
current partial solution or scheduling one more task. In a similar way the transitions
allowed by qD consist of unscheduling a given number of tasks. We allow unscheduling
of more than one task at a time, because it is in some situations more sensible to do
so. For instance, if many tasks have to share the same resource, it may sometimes
speed up the allocation process to unschedule all of them at the same time (think of
students sharing the same teacher).

This conception of constructions and destructions can be expressed by the follow-
ing equations, where |A| is the number of elements in the finite set A:



• {(x, y) : qC(x, y) > 0, x 6= y}

= {(x, y) : y ∩ π−1
B (πB(x)) = x, |πB(y)| = |πB(x)|+ 1},

• {(x, y) : qC(y, x) > 0, x 6= y}

⊂ {(x, y) : qD(x, y) > 0}

⊂
+∞⋃
n=1

{(x, y) : qnC(y, x) > 0} .

(1)

Let us remark that, usually, constructions will decompose into two steps, one
being to choose an unscheduled task b ∈ B \ πB(x) and the second one being to try
to allocate a set of resources to it. This second step is sometimes unsuccessful (either
because it is impossible or the proper allocation has not been discovered); therefore
as a rule, we have qC(x, x) > 0 for a substantial number of partial solutions. On the
contrary, destructions are simple moves, where you have only to choose a scheduled
task b in πB(x) and to remove it. Therefore as a rule, we will have qD(x, x) = 0,
except when x = ∅, for which qD(∅, ∅) = 1.

When the two above assumptions are satisfied, the whole search space S̃ can be
constructed by qC starting from the empty solution ∅, and reversely, any solution can



SOLVING SCHEDULING PROBLEMS BY SIMULATED ANNEALING 1543

be shrunk to the empty solution by successive applications of qD. More precisely, the
following proposition holds.

Proposition 3.1.

S̃ =

+∞⋃
n=0

{y : qnC(∅, y) > 0}

=

+∞⋃
n=0

{x : qnD(x, ∅) > 0}.

3.3. Building the cost function. Now we will build a cost, or energy, function
defined on the search space, which penalizes partial solutions: we will call it U : S̃ −→
R. Namely, we will require the following properties to hold:



• arg min
x∈S̃

U(x) = S.

• There is a positive con-
stant γ such that U(y) ≥
U(x)+γ when x 6= y and
qD(x, y) > 0.

(2)

A typical example for U is

U(x) = µ(B \ πB(x)),

where µ is a positive measure on B. In this case the assumptions on U are satisfied
and the largest choice of γ is

γ = min
b∈B

µ(b).

3.4. Building a Metropolis dynamic. From Proposition 3.1, we see that any
Markov matrix of the form λqC + (1− λ)qD with λ ∈]0, 1[ is irreducible. Therefore a
straightforward way to build a Metropolis dynamic would be to consider the Markov
matrix

pT (x, y) =




(λ qC(x, y) + (1− λ) qD(x, y))e−(U(y)−U(x))+/T , x 6= y

1−
∑
z 6=x

pT (x, z), x = y.

In fact, we can do better because we know in advance that, during a construction,
the energy will decrease, and that during a destruction, the energy will increase by
a quantity at least equal to γ. This avoids applying uselessly the kernel qD at low
temperatures in situations where we know that it will, most of the time, generate a
move to be rejected.

More precisely, we will use the following Markov matrix:

pT (x, y) = λ e−γ/T qD(x, y)e−(U(y)−U(x)−γ)+/T

+ qC(x, y)


1− λ

∑
z∈S̃

qD(x, z)e−(U(z)−U(x)−γ)+/T−γ/T


 ,(3)
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where λ is again a positive parameter in the interval 0 < λ ≤ 1. A choice of λ < 1
avoids that destructions should always be chosen at high temperatures. Usually we
will take λ = 1/2 or λ = 1. The positive part in (U(y) − U(x) − γ)+ is needed only
to cover the case where x = y.

The computer implementation of this Metropolis dynamic is the following: start-
ing from the state x,

• first flip a coin with odds λe−γ/T and 1 − λe−γ/T to decide whether or not
to try a destruction.

• in case a destruction is tried,
– choose a transition (x, y), drawing y according to the probability distri-

bution qD(x, y).
– then flip a second coin with odds exp−((U(y) − U(x) − γ)+/T ) and

1− exp−((U(y)−U(x)−γ)+/T ) to decide whether or not to apply this
move.

• if the answer to one of the two previous tosses was no, then choose a transition
(x, y), where y is chosen according to the distribution qC(x, y), and apply it.

The hypotheses we made about qC , qD, and U are what are needed to prove the
following proposition.

Proposition 3.2. For any temperature T > 0, the matrix pT is an irreducible
Markov matrix.

Considering the rate function V : S̃× S̃ → R+ ∪ {+∞} defined by

V (x, y) =

{
(U(y)− U(x))

+
if qD(x, y) + qC(x, y) > 0 and x 6= y,

+∞ otherwise,

we see that there is a positive constant κ such that, whenever x, y ∈ S̃, x 6= y,

κ e−V (x,y)/T ≤ pT (x, y) ≤ 1

κ
e−V (x,y)/T .

Moreover V satisfies the weak reversibility condition of Hajek–Trouvé with respect
to U . More precisely, if Γx,y is the set of paths from x to y, we put for any γ = (γ1 =
x, . . . , γr = y) ∈ Γx,y

H(γ) = max
i=1,...,r−1

U(γi) + V (γi, γi+1)

and

H(x, y) = min
γ∈Γx,y

H(γ).

The weak reversibility condition of Hajek–Trouvé states that for any x, y ∈ S̃

H(x, y) = H(y, x).

Due to this reversibility property, U is a quasi-potential for pT . We mean by this
statement that the (unique) invariant probability measure µT of pT satisfies for some
positive constant α (independent of T ) and for any x ∈ S̃

α ≤ µT (x)e(U(x)−minU)/T ≤ 1/α.
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Corollary 3.1. We can build optimization algorithms based on pT following
the results of Catoni [7] and Trouvé [22]. More precisely, for any fixed value of the
temperature T , the homogeneous Markov chain with transition matrix pT is a gen-
eralized Metropolis algorithm with quasi-potential function U . In the same way, for
any decreasing sequence of temperatures (Tn)n∈N, the nonhomogeneous Markov chain
(Xn)n∈N on S̃ with transitions

P (Xn = y : Xn−1 = x) = pTn(x, y)

is a generalized simulated annealing algorithm. Its behavior has been studied in [22]
and [24] and is very similar to the behavior of classical simulated annealing as studied
in [6].

We can also apply the iterated energy transformation method to pT , which will be
described in a further section of this paper and is studied in [7].

Proof. The only nonstraightforward point to check is the Hajek–Trouvé weak
reversibility condition. Let us consider x, y ∈ S̃, and γ ∈ Γx,y. We build a path
from y to x in the following way. Replace any edge (z, t) ∈ γ by the edge (t, z)
if qC(z, t) > 0 or pT (z, t) = 0. If neither of the above two conditions is true, this
means that qD(z, t) > 0; then there is a path ϕ ∈ Γt,z such that qC(u, v) > 0 for
any edge (u, v) ∈ ϕ, and we replace (z, t) by ϕ. The path ϕ is such that H(ϕ) =
U(z) + V (z, t) = U(t) because for any (u, v) ∈ ϕ, U(v) < U(u) and V (u, v) = 0.
Therefore by concatenating all these reversed edges and paths in reverse order we get
a path ψ ∈ Γy,x such that H(ψ) = H(ϕ). Therefore H(y, x) = H(x, y).

Remarks.

• In the search space we consider, there is a natural starting point for optimiza-
tion algorithms, which is the empty schedule ∅.

• In many scheduling problems, it is not known in advance whether a complete
solution exists or whether one can possibly be found within the available
computer time. Our method has the advantage of finding at least a partial
solution, where some proportion of the tasks are scheduled in a coherent way.
This is not the case if other constraints are relaxed, as is usually done. For
instance, if the aim is to schedule the lectures at a university, a solution where
some lectures share the same room at the same time has no practical interest,
whereas a solution where some proportion of the lectures are scheduled in a
coherent way can be applied.

• A slight variant of the present setup is the case where the search space sat-
isfies condition (1), but one does not know whether it is possible to schedule
all the tasks, and wants instead to schedule as many tasks as possible. In
this situation the energy can weigh (through a positive measure) the relative
importance of tasks.

In the three following sections, we are going to recall briefly some theoretical
results about the speed of convergence of three optimization algorithms.

3.5. Rate of convergence of the Metropolis algorithm. In this section we
consider the canonical process (Xn)n∈N on the canonical space (S̃N,B), where B is
the sigma field generated by the events depending on a finite number of coordinates.

For any temperature T ∈ R+, PT will be the probability distribution on (S̃N,B) of
a Markov chain with transition matrix pT (where pT is as in Proposition 3.2). Under
this distribution, (Xn)n∈N is a Metropolis algorithm and has the following convergence
speed.
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Proposition 3.3. There exists a positive constant d, depending only on the
choice of the search space S̃, of the constructive and destructive dynamics qC and qD
and of the parameter λ, 0 < λ < 1, such that for any energy function U satisfying the
hypothesis (2) of section 3.3, for any positive constant η,

max
x∈S̃

PT (U(XN ) ≥ Umin + η |X0 = x)

≤ d

(
exp−

(
N

d
e−H1/T

)
+ e−η/T

)
,

where H1(V ) is the first critical depth of the rate function V defined in Proposition 3.2.
The exponent H1(V )/T is optimal when η is small and when T tends to 0 and N tends
to +∞. With the notations of Proposition 3.2,

H1(V ) = max
x6∈S

min
y∈S

H(x, y)− U(x).

As a consequence, considering 1/T = (1/H1) log(N H1/d η logN), we see that there
is a constant d (independent of U and η), such that

inf
T∈R+

max
x∈S̃

PT (U(XN ) ≥ Umin + η |X0 = x)

≤ d

(
d η

H1(V )

logN

N

)η/H1(V )

.

Moreover the exponent η/H1(V ) is optimal for small enough values of η ∈ (U(E) −
Umin).

For a proof see, for instance, Cot and Catoni [9].
This proposition does not give a quantitative upper bound for the probability of

failure for N iterations, since it does not give an estimate for constant d; nevertheless,
the fact that this constant is independent of U allows us to compare the probability
of failure for different energy functions U for a large finite number of iterations N
and not only when N tends to infinity. More precisely, it shows that the convergence
speed of the Metropolis algorithm is slow when there are states with energies close to
Umin. Indeed if one wants to study the convergence to S, one has to choose

η = min{U(x)− Umin , x ∈ S̃ \ S}.

If η is small, then it will reflect on the exponent η/H1(V ).
This is a theoretical justification for the introduction of simulated annealing,

which will not suffer from this drawback, when proper robust cooling schedules are
used.

3.6. Rate of convergence of simulated annealing. We consider now a non-
increasing triangular sequence TN

1 ≥ TN
2 ≥ · · · ≥ TN

N of temperatures and the measure

P(TN1 ,...,TN
N

) on S̃N of the nonhomogeneous Markov chain with transitions

P(TN1 ,···,TN
N

)(Xn = y |Xn−1 = x) = pTNn (x, y).

The rate of convergence of such an algorithm has been studied in [6], [8], and [22]
(see also [24] in English, translated from [22]). We give here a simple result; for more
precise estimates, we refer to the original papers.
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Proposition 3.4 ([6], [22], [24]). There is a positive constant K such that

K−1N−D−1 ≤ inf
TN1 ≥···≥TN

N

max
x∈S̃

P(TN1 ,...,TN
N

)(U(XN ) > Umin |X0 = x) ≤ KN−D−1

,

where the constant D = D(V ) is the difficulty of the rate function V . With the
notations of Proposition 3.2, the definition of D(V ) is

D(V ) = max
x∈S̃\S

min
y∈S

H(x, y)− U(x)

U(x)−minU
.

For any A > 0, there is a positive constant K such that the triangular exponential
schedule

TN
n =

1

A

(
A

(logN)2

)n/N

gives a convergence speed of

max
x∈S̃

PTN. (U(XN ) > Umin |X0 = x) ≤ K

(
logN log logN

N

)D(V )−1

,

for N large enough.
In the case of simulated annealing, we have a probability of failure for N iterations

of order ε �log (1/N)1/D (meaning that the logarithms on both sides of this equation
are equivalent when N tends to infinity). The important feature of this theoretical
result is that the exponent 1/D is independent of the precision with which we want
to reach Umin but depends, on the contrary, only on the structure of the local minima
of U .

One other interesting point is that the exponential triangular cooling schedule
TN
n = A−1(A/(logN)2)n/N is robust: it gives a convergence rate with the optimal

exponent 1/D(V ) for any energy function U .

3.7. Rate of convergence of the energy transformation method. We
introduced in [7] the iterated energy transformation method as another mean to dis-
courage uphill moves from low energy states more than from high energy states. In
simulated annealing this effect is produced by an exogenous control of the tempera-
ture parameter: in “typical” successful runs of simulated annealing, the energy of the
current state is moving downwards on the average, and at the same time uphill moves
are more and more discouraged. In the iterated energy transformation method, a
temporary hypothesis is made about the value of Umin, and a concave transformation
is applied to U on the basis of this hypothesis. Then the algorithm is run at con-
stant temperature using the transformed energy. This produces the desired effect of
discouraging more uphill moves from low energy states. Of course, in the beginning,
the hypothesis about Umin is necessarily grossly underestimated, so that the energy
transform is not very efficient, but after some iterations, it can be improved (this will
work with a probability close to one) depending on the values of the energies of the
explored states.

The convergence of the lower bound estimate for Umin towards the true value of
Umin is exponentially fast (with a probability close to one), and therefore the energy
transformation is quickly tuned to an efficient value.
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The iterated energy transformation method applied to our problem is described
as follows. For any strictly concave, strictly increasing energy transformation F :
R −→ R ∪ {−∞}, we consider the Markov matrix

pF (x, y) = 1(F (x)>−∞)

{
λe(F (U(x))−F (U(x)+γ))qD(x, y)e(F (U(x)+γ)−F (U(y)))−

+ qC(x, y)

(
1− λ

∑
z

qD(x, z)eF (U(x))−F (U(x)+γ)+(F (U(x)+γ)−F (U(z)))−
)}

+ 1(F (x)=−∞)1(x=y).

Consider for any positive constant α, any real shift τ , and any positive tempera-
ture T , the transformation

Fα,T,τ (U) =

{
αU +

1

T
log(U + τ) if U + τ > 0,

−∞ otherwise .

Let us introduce the simplified notation pα,T,τ = pFα,T,τ .
Given parameters M ∈ N (number of iterations performed with each energy trans-

form), two real numbers ρ > 0 and η0 ≥ 0 (two parameters for the update of the shift
τ), and an initial lower bound δ < Umin, we consider the canonical process (Xn)n∈N

on S̃N with probability distribution Pα,T,M,ρ,η0
defined by the following conditional

distributions:

Pα,T,M,ρ,η0
(Xn = y | (X0, . . . , Xn−1) = (x0, . . . , xn−1))

= pα,T,τn(x0,...,xn−1)(xn−1, y),

with


τr = η0 − δ, 0 < r ≤M,

τkM+r = τkM − 1

1 + ρ

(
min

n,n≤kM
U(Xn) + τkM

)
+ η0, 0 < k, 0 < r ≤M.

We have proved in [7] the following theorem.
Theorem 3.1 (Catoni). For any fixed α > 0, the family of processes described

above satisfies for some positive constants B and K, for any choice of r ∈ N, η0 ≥ 0,
ρ > 0,

max
x∈S̃

Pθ(U(XrM ) ≥ η |X0 = x) ≤ ε

where θ = (α, T,M, ρ, η0),

T =
log(1 + ρ)

log(Kr/ε)

M = B
( ε

K r

)− log(1+D̃η0 )/ log(1+ρ)

log
K r

ε
,

=
B

T
log(1 + ρ)

(
1 + D̃η0

)1/T

,

η = Umin + ρ

(
ρ

1 + ρ

)r−1

(Umin − δ + η0) + η0ρ(1 + ρ),
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and where the constant D̃η0
(V ) is given by

D̃η0
(V ) = max

x∈S̃\S
min
y∈S

H(x, y)− U(x)

U(x)− Umin + η0

< D(V ).

Corollary 3.2.

lim sup
N→+∞

(logN)
−2

log inf
T,M,η0,ρ

P (U(XN ) > Umin | X0 = x) ≤ − 1

4 log(1 +D)
.

The interest of this theorem lies mainly in its corollary, which shows that a proper
tuning of the parameters leads to a faster scale of convergence speed than the one
achieved by simulated annealing (see [7]). This remark of course deals with the
comparison of two long runs of both algorithms. For repeated trials of bounded
length, which we will consider in section 6.3, the question of knowing which algorithm
is faster is open.

We will discuss practical means of choosing the parameters in connection with
the jigsaw puzzle benchmark.

4. Solving jigsaw puzzles. We will illustrate on jigsaw puzzles the different
steps of the general method of resolution.

First of all, we have to choose a search space. This will be the set of partial
solutions where only some of the pieces are put in the frame.

S̃ = {x ⊂ B × E : x(r) = [ar, ar + wr[×[br, br + hr[ ,

r ∈ πB(x), x(r) ∩ x(r′) = ∅, r 6= r′ ∈ πB(x)}.
Let us define now qC(x, .), the constructive dynamic starting from state x:
• First choose r ∈ B \ πB(x) according to the uniform distribution on this set.
• Then choose (z, t) ∈ E \ πE(x) according to the uniform distribution.
• Then try to expend this germ to a rectangle [ar, ar +wr[×[br, br + hr[ of the

desired size by adding alternatively a column to the left (or else to the right)
and a line to the top (or else to the bottom). If it is not possible to grow the
germ to its final size, just abandon the construction.

• Then draw a number k at random in the interval [0,max drift[ and move the
location of [ar, br[ k steps along the direction (−1,−1) (that is, to the upper
left corner, according to usual image indexing) if there is enough room to do
so, or else move it as far as possible in this direction (until it bumps into
other pieces).

The last two actions are better described by the following self-explanatory pseudo-C
code, where [a, c [×[b, d [ is the current germ:

int expend() {

a=z; c=z+1; b=t; d=t+1;

while((test1=(c-a<w))||(test2=(d-b<h))) {

if (test1&&grow_left()&&grow_right()) return 1;

if (test2&&grow_up()&&grow_down()) return 1;

}

for (k=rand(0,max_drift);k;k--) {

if (move_left()&move_up()) break;

} return 0;

}
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where the functions expend(), grow_left(), grow_right(), grow_up(), grow_

down(), move_left(), and move_up() return 0 on success and 1 on failure.
The destructive dynamic qD is simpler:
• Draw r ∈ πB(x) at random,
• Form y = x ∩ π−1

B (B \ {r}), the partial solution where the piece labeled “r”
has been removed from the frame.

The mechanism that was chosen for the constructions is meant to discourage the
formation of small gaps between pieces. If nothing were done, when the discretization
step of the grid is fine, small gaps would be left between the pieces with a large
probability, and a complete solution to the puzzle, where pieces necessarily stick
together, would never be discovered.

We have now to choose an energy function. Here again we will discourage the
formation of gaps between pieces by introducing a term proportional to the contact
length. By contact length we mean the sum of the contact lengths between pieces
and between pieces and the edge of the frame.

Let µ be the counting measure on E. We take

U(x) = −µ(πE(x))− α× contact-length.

For this choice of U , we can take the constant γ in equation (2) to be equal to
the size of the smallest piece:

γ = min
r∈B

wr hr.

5. Minimizing a loss function.

5.1. Statement of the problem. We will discuss in the next two sections the
case where some loss function V : S −→ R has to be minimized on the state space S

of global solutions of a task assignment problem. We consider the same framework
as in the first section, with the difference that the problem is now to find a solution
x belonging to arg miny∈SV (y).

5.2. A general method of resolution. We will extend the method of section 3
to deal with a loss function.

The two first steps, building the search space and the constructive and destructive
dynamics, will be the same as in section 3.

The change comes from the choice of the energy function. First we need to extend
the loss function V to the search space S̃ of partial solutions. Ideally, we would like
to use the extension V : S̃ −→ R defined by

V (x) = min{V (y) : y ∈ S, x ⊂ y}.
Usually this is not an easily computable function, but in many situations there is a
natural way to define a loss function for partial solutions. A simple way to do so, if
there is nothing else at hand, is to set V (y) = c for y ∈ S̃ \ S, where c is a constant
and c ≥ maxx∈SV (x). Then we build a compound energy function

W (x) = αU(x) + V (x), x ∈ S̃,

where the real positive coefficient α is chosen such that, for some positive constant γ,{
arg min

x∈S̃
W (x) ⊂ S,

W (y)−W (x) ≤ −γ < 0, x ⊂ y, x 6= y ∈ S̃.
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These conditions are always satisfied for α large enough. However, the difficulty D
of the energy landscape, related to the performance of simulated annealing, tends to
+∞ when α tends to +∞. Therefore it is better to keep α as small as possible. In
the next section, we will give an example for which we can take α arbitrarily small,
and even α = 0 if we are satisfied with γ = 0.

Equipped with this new energy function, we can proceed just as in the simpler
case of section 3.

5.3. Some example of useful loss function. Often in task assignment prob-
lems, we would like some resources to be distributed according to some prescribed
distribution. For instance, in a time-table problem we may want to schedule an equal
number of hours in each week of the year.

This can be formalized in the following way. We consider first some function
Φ : B × E −→ F, where F is a finite set (which may be the discretization of a
domain in R

n). Typically, Φ will be the projection on the time axis in a time-table
problem. Then we consider a target distribution ρ defined on F . Let us consider
some reference measure µ on B ×E (such as the counting measure). To each partial
solution x ⊂ B × E, we may associate the restriction µx of µ to x, defined by

µx(A) = µ(x ∩A).

This induces a measure µx ◦Φ−1 on F . The constraint we would like to represent by a
loss function is that µx ◦Φ−1 is approximately proportional to the reference measure
ρ. This can be reflected in a loss function of the type

V (x) =

∫
h

(
µx ◦ Φ−1

ρ

)
dρ,

where h(x) = (1−x)2 or h(x) = 1−x+x log x. The function h is in both cases strictly
convex, satisfies h(1) = h′(1) = 0, and h′ is strictly increasing; therefore µx ◦Φ−1 = ρ
if and only if V (x) = 0 and the minimum of V (x) on the set µx(B × E) = constant
is attained when µx ◦ Φ−1 is proportional to ρ, when this is feasible.

The following proposition holds.
Proposition 5.1. Assume that the total weight µx(B × E) of any solution is a

function of the tasks to be scheduled only. This means that there is a measure µ̃ on
B such that

µx(B × E) = µ(x) = µ̃(πB(x)), x ∈ S̃.

Then for all global solutions x ∈ S, µx(B × E) = µ(x) = µ̃(B) is a constant.
Assume moreover that the measure ρ defining the constraint is such that ρ(F ) ≥

µ̃(B), and assume also that{
x ∈ S :

µx ◦ Φ−1

ρ
≡ constant

}
6= ∅.

Then

arg min
s∈S̃

V (x) =

{
s ∈ S :

µx ◦ Φ−1

ρ
≡ constant

}
,

meaning that the partial solutions minimizing V are exactly the global solutions x for
which µx ◦ Φ−1 is proportional to the constraint ρ.
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The assumptions of the proposition will be satisfied when µx(B×E) measures the
amount of assigned resources, and the amount of resources to be allocated to a task
depends only on the task and not on the way it is scheduled. Typically, for instance,
the number of hours of a course of teaching will be prescribed in advance and will not
depend on the choice of a schedule for the lectures.

Now let us make the supplementary assumption that (µx ◦ Φ−1/ρ) ≤ 1 for any
x ∈ S̃. We can always make this assumption true by increasing ρ by a suitable
multiplicative factor (at least when ρ is strictly positive on F ). In some cases we may,
on the contrary, want to restrict S̃ by adding the new constraint (µx ◦ Φ−1/ρ) ≤ 1.
This will be done when the constraint has a practical meaning for the problem. For
instance, if µx◦Φ−1 measures the number of lectures taking place in each hour of time
in the week, we may want to fix ρ to a constant equal to the total number of available
lecture rooms, add the constraint (µx ◦ Φ−1/ρ) ≤ 1 to indicate that there is to be
enough rooms to schedule all the lectures, and use the loss function

∫
h(µx ◦Φ−1/ρ)dρ

to indicate that we would like the rooms to be evenly occupied during the week (in a
weekly time-table problem).

If the assumption (µx ◦ Φ−1/ρ) ≤ 1, x ∈ S̃ holds, then only the decreasing part
of h is used, and the loss function V is always increasing during a destruction and
decreasing during a construction. Therefore if γ is the constant corresponding to U
in Eq. (2), we will have

W (y) ≥W (x) + αγ, x, y ∈ S̃, x 6= y, qD(x, y) > 0.

6. The practical issue of the choice of parameters. In practical situations,
the critical constants of the energy landscape are usually unknown. Therefore it is not
possible to rely on the theoretical results we recalled in preceding sections to choose
the parameters of algorithms. In the following subsections, we explain how we set the
parameters in the experiments about jigsaw puzzles.

6.1. Simulated annealing. The cooling schedule can be written as

1

TN
n

= βmin

(
βmax

βmin

)n/N
.

We choose βmin and βmax by looking at the repartition function of the energies of the
explored states in simulations at constant temperatures. We keep a value of βmin for
which the slope of the repartition function stays large up to the largest values of the
energies, meaning that states with high energies have a significant probability to be
explored. For βmax we require, on the contrary, a repartition function concentrated
on the lowest energy values.

The theory tells us that we can safely underestimate βmin and overestimate βmax,
which makes their choice possible from a qualitative inspection of repartition func-
tions.

Figures 6.1 and 6.2 are two examples of repartition functions, corresponding to
values of βmin and βmax which have been retained during the experiments.

6.2. The iterated energy transformation method. In this case, the choice
of parameters is perhaps less straightforward. The analogy with simulated annealing
can serve as a guideline: the high temperature regime corresponds to the case τ = τ1
(i.e., to the first energy transform used). The low temperature regime corresponds to

τ = (1 + ρ)η0 − Umin.
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In order to test the behavior of the algorithm in these two configurations, we make a
short test using a small value of ρ (ρ << 1). The law of evolution of τk shows that, for
a small value of ρ, the algorithm will quickly switch from the high temperature regime
during the first step to a low temperature regime during the following steps. In fact the
value ρ = 0 may sometimes even be used. However, when this is done the algorithm
sometimes encounters a state with a nondefined energy transform too quickly, and
there are not enough iterations to compute a reliable repartition function for the low
temperature regime. This problem, when encountered, can be circumvented by using
a low but nonzero value of ρ.

We compute the repartition function of energies during the first step of the test
run and during the last. The first function describes the equivalent of the “high tem-
perature regime” and is tuned by the choice of the constant α and of the temperature
parameter T ; the second function corresponds to the “low temperature regime” and
is tuned by a proper choice of η̃0 = η0(1 + ρ).

Once these two choices are made, there remains a free parameter, namely, ρ.
The theory [7] indicates an optimal choice of ρ of order

√
N and an optimal choice

of r = N/M of order
√
N log(N). On the other hand, as soon as log(1 + ρ) > 1, the

convergence rate will be better than for simulated annealing. This indicates that a
large value of ρ may safely be chosen and that r can then be set to make

(Umin − γ + η0)ρ

(
ρ

1 + ρ

)(r−1)

small. This will ensure a small dependence of the final value of the shift τN with
respect to its initial value τ1 = δ − η0.

6.3. Repeated optimizations. In this section, we will consider that N itera-
tions are to be divided into N/M trials of length M , and that we will keep the best
solution found out of these N/M trials. In this context, the probability of failure in
the worst case with respect to the starting point of each trial is ε1(M)N/M , where

ε1(M) = max
x∈S̃

P (U(XN ) > Umin | X0 = x) .

The first remark to be made (see Azencott [2], [3]) is that for all the algorithms we
have considered, limM→+∞(1/M) log ε1(M) = 0. Therefore when N is large enough,
the optimal value for M is independent of N .

We will discuss here the choice of the length M of each run of the algorithm. For
simulated annealing, we can, on the basis of the theoretical bound on the probability
of failure, namely, (A/Mα)N/M for N iterations divided into N/M runs of length
M , conjecture that an overestimation of M will be relatively harmless, whereas an
underestimation would be more penalizing. This can be seen on the derivative

∂

∂M

(
A

Mα

)N/M
=

(
A

Mα

)N/M
N (α(logM − 1)− logA)

M2
,

but is may be more vividly illustrated by a small numerical application. If we take,
for example, A = e4, α = 1, and N = 1000, and if we put ε(M) = (A/Mα)N/M , we
see that

min
M

ε(M) = ε(148) ' 0.0012,
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Fig. 6.3.

and that for this optimal value the probability of failure in each run is ' 0.37.
Here are some values taken by ε(M)

M 74 100 148 300 500 1000
ε(M) 0.016 0.0024 0.0012 0.0034 0.012 0.055

and a graphic of this function is shown in Fig. 6.3.
These figures show that, as far as this rough theoretical bound is a good guideline,

there is a clear benefit in performing multiple runs instead of one long run, but that
an overestimation of a factor two of the length of each run is relatively harmless. We
remark also that a quite low confidence level for each run is favorable in this example
where the difficulty is one.

The same kind of reasoning would also hold for the theoretical bound of order
ε(M) = (A/Mα logM )N/M obtained for the iterated energy transformation method.
In this case the derivative of the confidence level ε(M) is

∂

∂M
ε(M) = ε(M)

N (α((logM)2 − 2 logM)− logA)

M2
.

Figure 6.4 shows a plot of this function for some choice of the parameters α, N , and A:
the tolerance with respect to an overestimation of M is even better than for simulated
annealing.

For a comparison between repeated searches and interacting parallel searches, we
refer to Graffigne [16] and Azencott and Graffigne [4].

6.4. A partial freezing method. In [7] we saw that the simulated annealing
algorithm is not efficient to deal with a state space made of a large number of indepen-
dent components. By “independent components,” we mean the case when the energy
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function is a sum of terms depending on distinct coordinates. Here the different tasks
to be scheduled interact through the constraints and through the contact length term
in the energy; therefore we cannot describe their assignment by independent coordi-
nates. Nevertheless, in the end of the optimization process, we would like to be able
to perform some last small local improvements on the current solution depending on
distinct small subsets of tasks, with the assignment of the other tasks remaining un-
touched. We can write (formally) the energy function in a suitable neighborhood of
the current solution as a sum of such possible local improvements. In the end of the
optimization, we will be working at low temperature; therefore the current solution
will, most of the time, be a local minimum and we will typically not try more than
one local improvement at a time. Therefore (this is only a heuristic reasoning) we can
expect the optimization process to behave approximately the same as in the indepen-
dent component case when it draws to the end (that is, at low temperatures). It is
easy to show (see [7]) that an efficient way to deal with independent components is
to perform a series of local optimizations, resetting after each step the current solu-
tion to the best solution found. This will do much better than the global algorithms
we described so far when the number of components is large. The reason is that
a global algorithm cannot efficiently move one task around without disturbing the
others. These considerations suggest adding a postprocessing to global optimization,
made up of a series of local optimizations. When we put these things and the use
of repeated optimizations together, we end up with a partial freezing method, which
can be symbolically described by the following nested loops:
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repeat

reset the current solution to the empty assignment

for (n taking increasing values from 0 to max)

repeat

choose at random a set of n ‘‘frozen’’ tasks among

the scheduled tasks

repeat

run a stochastic optimization algorithm during

which the frozen tasks stay untouched

endrepeat

reset the current solution to the best solution

encountered in the previous loop

endrepeat

endfor

endrepeat

return the best solution encountered in the outer loop.

The stochastic algorithm used in the inner loop may be one of the three algorithms
we studied here. It is applied to the subset of the state space defined by the current
assignment of the frozen tasks. When the number of currently scheduled tasks is
less than n, we freeze all the scheduled tasks. In the experimental section we will
show results obtained with this partial freezing method applied to the iterated energy
transformation algorithm. One advantage of the partial freezing method is that it is
less demanding on the global optimization step and is therefore tolerant of a looser
choice of the parameters of the algorithm.

7. Experimental results. We tried to solve two kinds of puzzles: a small
“tight” puzzle with nine pieces and no loss function, and a big “loose” 60-piece puzzle
with a loss function. By “tight” we mean that there is just enough room in the frame
to put all the pieces, and by “loose” we mean, on the contrary, that there is some
extra room left in the frame, the difficulty being then to minimize the loss function.

7.1. Small “tight” jigsaw puzzle. Our small jigsaw puzzle is a nine-piece
problem. The algorithm we used to solve it corresponds to the description given in
section 4. The frame is a 40×50 grid. The size of the pieces are (14, 27), (8, 36), (8, 9),
(6, 14), (34, 5), (18, 9), (22, 9), (18, 21), (18, 15). The problem has several solutions,
due to symmetry properties. Figure 7.1 shows one solution: the parameters of the
algorithms were set using the heuristics described in section 6.

We performed 40 runs of the simulated annealing algorithm and the same num-
ber of runs of the IET algorithm. For each algorithm, we computed the repartition
function of the energy of the best solution encountered during each run and computed
the repartition function of the energy of the final state of the algorithm. Of course,
the former repartition function is always above the latter; therefore we can unam-
biguously plot them on the same diagram. In order to perform a “fair” comparison,
we allowed the same number of iterations in both cases, namely, N = 5000 iterations
per run.

The results (Figs. 7.2 and 7.3) are of the same order, with some advantage in
favor of the IET method. This is especially true when the energy of the final state is
considered. An interpretation of this fact is that the IET algorithm is more efficient
in preventing the process from leaving the global minimum once it has reached it.

We were also able to check the influence of the drift towards the upper left corner.
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Fig. 7.1.
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Fig. 7.2. Performance of simulated annealing.
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Fig. 7.3. Performance of the iterated energy transformation method.

In the two previous experiments, the maximum number of steps of the drift (the
constant max_drift in the pseudocode of section 4) is 10. We have also tried a
maximum number of steps of 50, for simulated annealing. We obtained on 40 runs
the improvement in the performance shown in Fig. 7.4.

7.2. A big “loose” jigsaw puzzle. Our big jigsaw puzzle has 60 pieces, cov-
ering an area of 230 unit squares. The frame is a grid of size 30× 10. The sizes of the
pieces are the following:

number of pieces width height

15 3 2

15 2 1

5 5 2

5 2 4

20 1 1

The loss function is of the type described in the previous section. The function
Φ here is the projection on the second axis, Φ((r, a, b)) = b, (r, a, b) ∈ B ×E, so that
the constraint indicates how much of each line the pieces should fill. On the following
diagram, we have plotted the constraint function ρ (see Fig. 7.5).

With this choice of ρ, the constraint is tight, meaning that ρ(F ) is equal to the
area of the pieces. When we use tight constraints, we build problems of the partition
type, which are therefore NP complete. We chose the size of the pieces such that
the set of global solutions is not empty. However, for a 60-piece problem, it is very
difficult to find a (complete) solution.

We have chosen a coarse discretization step to keep the difficulty of the problem



1560 OLIVIER CATONI

0 2 4 6 8 10 12 14 16 18

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
rep of ener and ener_min

Fig. 7.4.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Fig. 7.5.



SOLVING SCHEDULING PROBLEMS BY SIMULATED ANNEALING 1561

10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
comp. of ener_min

Fig. 7.6.

to a reasonable level, since we had to switch off the vertical drift. Indeed keeping a
vertical drift would have decreased the stability of minimizing configurations in an
unfavorable way.

We tried two kinds of energies. In order to have a point of comparison, we tried to
use the simple energy U(x) = −µ(x)+maxy∈S̃µ(y), where µ is the counting measure.

Then we tried a compound energy W (x) = U(x) + αV (x) for a large value of α
and for V (x) =

∫
(1− (µx ◦ Φ/ρ)2dρ.

Eventually, we tried to relax the constraint, changing ρ to ρ̃ = 6/5× ρ.

7.2.1. Experiments with a simple energy function. In order to have a
point of comparison, we recorded first the performance of repeated relaxations. The
relaxation algorithm we used corresponds to a choice of λ = 0, or equivalently to a
choice of β = +∞ in the Metropolis algorithm.

Then we considered the Metropolis algorithm for different values of λ and of
β. We tried λ = 1 and λ = 0.5, two “natural” choices for λ. The former let us
inhibit destructions only according to the energy increment, whereas the latter let
constructions and destructions have equal frequencies at infinite temperature.

The first conclusion we reached was that a significant improvement over the re-
laxation scheme could be obtained using the Metropolis algorithm with a moderate
number of steps. We compared relaxation with 300 steps (for which convergence was
always reached) with Metropolis with λ = 1, β = 1, and N = 4000. In order to
compare methods using the same number of iterations, we repeated Metropolis 20
times and the relaxation algorithm b(4000× 20)/300c = 266 times. On the following
diagram (Fig. 7.6) we plotted the repartition functions of the best solution found for
each of the 20 runs of Metropolis (dashed lines), along with the best 20 results out of
the 266 runs of the relaxation algorithm (solid lines).
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Fig. 7.7.

We obtained very suggestive evolutions for the Metropolis algorithm, such as the
following (Fig. 7.7).

On this plot of un = U(Xn) for n = 300, . . . , 4000, we see the “staircase” shape
of the trajectories of the Metropolis algorithm. The algorithm “falls” into deeper and
deeper maximal cycles [13] of the domain S̃ \ S. We refer to [5] for a theoretical study
of the exit path of the Metropolis algorithm from a domain at low temperature. For
a study of the trajectories of simulated annealing algorithms, we refer to [6] and
[22], which rely on more complex but also more general induction proofs which cover
the time inhomogeneous case. For a semigroup approach of the same question in the
continuous time case, we refer to [10], [11], [12], [17], [19], [20], and [21].

The energy evolution can be decomposed into a decreasing part un = mink≤n uk
and a “wandering” part un = un − un, as in the following diagram (Fig. 7.8).

The repartition function of the wandering part gives information about the depth
of secondary attractors from which the algorithm is able to escape within the time
of the simulation. It is a useful tool to choose the inverse temperature parameter β.
Following is the repartition function corresponding to the preceding plot (Fig. 7.9).

The best results for the Metropolis algorithm of time length N = 4000 were
obtained for β = 1 and λ = 1 or for β = 0.8 and λ = 0.5. This shows that in this
case, the choice of λ is not crucial. In the following, we will use λ = 1, because we
can hope to take better advantage of the discrimination made by the energy function
between small and big pieces when we use this value of λ.

Then we used the Metropolis algorithm and simulated annealing on long time
intervals. Namely, we took N = 20000, βmin = 0.7, βmax = 1.1 for simulated annealing
and β = 1 for the Metropolis algorithm. On 10 runs of each algorithm, we could notice
a clear gain in performance in favor of simulated annealing.
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We tried eventually to get a better improvement using the IET algorithm. Since
the state space is already rather large, we followed the idea introduced in [7] to use
transformations Fα,T,τ with a nonzero value of α.

We took α = 0.3, β = 1/T = 30, 1
1+ρ = 0.5, r = 4, and η0 = 15. We obtained

the following comparative results for the best energy found in each of 10 runs of
each algorithm. The mean values are 16.2 for the Metropolis algorithm (solid lines),
11.6 for simulated annealing (dashed lines), and 10.9 for the IET algorithm (dash-dot
lines). The repartition functions are plotted on the next diagram (Fig. 7.10).

7.2.2. Experiments with a compound energy function. We used the
energy

W (x) = U(x) + αV (x),

with a huge value of α = 10000.
The range of this energy is very large, when compared with the previous one,

since Wmax = 2300230, whereas Wmin = 0 and removing a piece of size 1 × 1 from
a complete solution in a line of weight ρ(y) = 30 costs ∆W ' 334.33. Therefore we
may expect more spectacular improvements from the speed-up techniques.

We tried different temperatures for the Metropolis algorithm with N = 20000.
The best results were obtained when β = 8 × 10−4. On 10 runs, the average best
value was 15853.

Using simulated annealing with βmin = 10−4, βmax = 10−3, we improved the
performance on the average, as shown in the next diagram. On 10 runs, the average
best energy value was 8765.

We obtained some more improvement using the IET algorithm (with γ = 5×10−5,
β = 10, and η0 = 2000). On 10 runs the average best energy value was 6280.
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Figure 7.11 shows a diagram of the repartition functions of the best energy value
for ten runs of the Metropolis algorithm (solid lines), simulated annealing (dashed
lines), and the IET algorithm (dash-dot lines).

7.2.3. Experiments with a relaxed constraint. We explored also an alter-
native in the optimization design, which consists of replacing ρ by ρ̃ = 6

5ρ. We consid-

ered accordingly a larger search space S̃ where the constraint µx◦Φ−1

ρ ≤ 1 is relaxed to
µx◦Φ−1

ρ̃ ≤ 1. We took again a compound energy of the type W (x) = U(x) + αV (x),
with α = 10000. The range of W is between Wmin = 76666.66 and Wmax = 2760230.

In this example, we can perform the same kind of comparison as in the case of tight
constraints. We made 10 runs of length N = 20000 of each algorithm. The average of
the best energy value found in each run is 8731 for the Metropolis algorithm, 8685 for
simulated annealing, and 8567 for the IET algorithm. Figure 7.12 shows a diagram
of the corresponding repartition functions (solid lines for the Metropolis algorithm,
dashed lines for simulated annealing, and dash-dot lines for the IET algorithm).

The best solution was found by the IET algorithm. It has an energy of W (x) =
78750 and is shown in Fig. 7.13.

In this solution, all the pieces are set in the frame. We can judge the quality of the
solution with respect to the proportionality constraint on the following diagram (Fig.
7.14), where we have plotted ρ̃ (dashed lines), the measure expressing the constraint,
and µx ◦ Φ−1 (solid lines), giving the number of unit squares actually filled on each
line by the solution. The optimum would be µx ◦Φ−1 = ρ = 5/6× ρ̃. We are not too
far from that: the two entries µx ◦Φ−1(2) and µx ◦Φ−1(4) are one unit too large, and
µx◦Φ−1(9) is two units short from the optimum. This is the best approximation to an
optimal solution we were able to compute on this example. This seems to show that
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Fig. 7.13.

relaxing the constraint slightly and introducing the loss function V (x) in the energy
eases the optimization process.

This should be compared with the best solution found without relaxing the con-
straint (Fig. 7.15) and its constraint diagram (Fig. 7.16).

For this solution, U(x) = 6. Solutions of energy U(x) = 6 were also found using
the simple energy U to guide the search. Therefore the advantage of introducing the
V component in the energy function is not obvious when the constraint is really tight.

It is also interesting to consider typical energy evolutions of those three algorithms.
On the following diagrams (Figs. 7.17–7.19), we have plotted the sequence

un = U(Xn).

As we have already mentioned, these sequences of energy values can be decomposed
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into a decreasing component

un = min{uk : k ≤ n},

and a wandering component

un = un − un.

The repartition functions of (un, n = 1, . . . , N) can help to properly set the param-
eters. It indicates the depth of the attractors from which the algorithm is able to
escape.

It is interesting to compare the energy evolutions of the three algorithms. The
comparison between the Metropolis algorithm and simulated annealing shows clearly
that the temperature used in Metropolis is too low during the first 4000 iterations
and too high during the last 8000 iterations. As for the IET algorithm, we can see



1568 OLIVIER CATONI

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Fig. 7.16.

that the fluctuations of the wandering part are decreasing with time, as in the case
of simulated annealing, but that the evolution of the energy is more unstable: it can
go up and down faster (in other words, its peaks are sharper). This explains why it
is able to sample more efficiently a state space containing many local minima.

7.2.4. Experiment with the partial freezing method. In this experiment,
we took the IET algorithm, which had proved to be the best when used globally, and
we added a postprocessing stage where we froze all but three of the tasks. At the
same time we decreased the global optimization step from 20000 iterations to 3000
iterations and kept 50 times 300 iterations for postprocessing (we drew 50 different
frozen configurations and made 300 iterations for each; in each frozen configuration,
only three pieces were left unfrozen). Thus we decreased slightly the total number of
iterations from 20000 to 18000 (in answer to a suggestion of one of our referees that a
more complex algorithm should be allowed less iterations). At the same time, we got
an improvement on 10 trials for both the mean value of the energy and its minimum
value over the 10 trials (Fig. 7.20). We also found that it was much easier to tune
the parameters of the IET algorithm.

Figure 7.21 shows an energy evolution typical of the partial freezing method,
where the lower plot shows the evolution of η0 − τn: we see that the partial freezing
allows us to go faster up and down the energy landscape (in other words, it allows us
to work at a higher temperature).

7.2.5. Is the number of iterations a fair measure of complexity? In
the case of the three algorithms in this paper, the inner loop is the same except for
the computation of the rejection probabilities. When one goes from the Metropolis
algorithm to simulated annealing, one has to add the cost of updating the temperature,
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that is, the cost of one multiplication (in fact, it is even possible to use piecewise
constant temperature schedules with the same theoretical properties; see [9], for which
the update of the temperature is not in the inner loop and therefore has little influence
on the computer time). When one goes from the Metropolis algorithm to the IET
algorithm, one has to compute the energy transformation, that is, log U+∆U

U , this
means one addition, one multiplication, and a logarithm. The fact that one uses the
value of U and not only the value of ∆U , the energy increment, does not really make
a difference in practice since one will, anyhow, want to record the value of the energy
U in order to keep the best solution encountered and not systematically keep the last
current solution. Anyhow, computing U from the accumulated energy increments
requires only one addition per iteration.

In fact, in our experiments, these differences in the computing time of the rejection
probability does not seem to be the leading factor in the variations of the cpu time.
The unix function “time” gave us the following figures: 66.3 seconds of user cpu
time for 20000 iterations of the simulated annealing algorithm, 61.1 seconds for 20000
iterations of the IET algorithm, and 35.2 seconds for 18000 iterations of the IET
algorithm combined with the partial freezing method. These figures are somewhat
unexpected. Our interpretation is that all the moves do not have the same complexity.
This is particularly true with the partial freezing method, where during most of the
time (15000 iterations) the state space is restricted; therefore the choice of a task
to schedule or to destroy and the choice of the resources to allocate are made from
smaller sets and therefore are faster. To a minor degree the same happens with the
IET algorithm and Simulated Annealing: the IET algorithm spends more time at low
energy levels where more tasks are scheduled and where scheduling a new task is done
from a smaller set of available tasks and resources.
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In conclusion, the number of iterations is not a perfect measure of complexity but
has the advantage of being machine independent. To get a real cpu time complexity
study, one would need to analyze dynamically the complexity of moves, which depends
on the current configuration, and to gather statistics from profile files, which we have
not done in the framework of this study.

8. Comparison with other energy landscapes. The most common way to
enlarge the space of solutions to create a search space is to allow overlaps. In the task
assignment formulation, this means that the same resource is allowed to be used by
more than one task at the same time. In the jigsaw puzzle formulation, this means
that we allow pieces to sit on top of each other. We will maintain the jigsaw puzzle
terminology in the following discussion.

Let us discuss first the case where the aim is simply to find a complete admissible
solution. We will discuss afterwards the case where a cost function has to be optimized
on the set of complete solutions.

So for the moment, the energy in the overlap case will be made up of the total
area of the overlaps and, in the partial solution case, will be made up of the total area
of unused pieces.

We can expect the overlap approach to generate the same kind of energy barriers
as ours. Indeed if the problem is “tight,” meaning that there is just enough room to
put all the pieces in the frame, it will be necessary, in order to move a task from one
location to another distant location in the frame, to put it in an already occupied
location, creating an overlap of the order of the area of the piece to be moved. In the
partial solution approach, one has to remove two pieces from the frame. This means
that the energy barrier will be from one to two times the energy barrier of the overlap
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approach, depending on whether or not the pieces to be moved around are of equal
bulk. If one has to exchange a large piece with a number of small pieces, the energy
barrier will be the area of the large piece plus the largest area of the small pieces,
because once the large piece is removed, the small ones can be transferred one at a
time. This is what we can say about the “H” term in the difficulty. Now we have
to compare it with the “U” term. For the U term, our approach is better since the
energy is quantized: a local minimum solution has at least one piece out; therefore
the “U” term is larger than the area of the smallest piece. On the contrary, if space
is not discretized, or is finely discretized, the overlap in an imperfect solution of the
overlap approach may be arbitrarily small, leading to an arbitrarily large difficulty.
Thus the overlap energy cannot safely be used alone. Usually, what is done is to
allow pieces to overlap not only between themselves, but also with the outside of
the frame—this last kind of overlap being given a specific weight (increasing with
time). This is very much like allowing partial solutions, leads to a more complicated
algorithm where the balance between two energy terms has to evolve with time, and
does not solve completely the problem posed by almost perfect solutions with small
scattered overlaps which cannot be improved by local moves.

Let us discuss now the case where some other cost function has to be optimized on
the state space of complete solutions. In the partial solution approach, it is usually
quite easy to build a cost function which decreases with the number of scheduled
tasks and therefore can be used alone. It will be the case, for instance, when the cost
function is a sum of negative terms depending on (small) clusters of scheduled tasks.
When a task is removed, some of the scheduled clusters are suppressed, the others
being unchanged, and so the cost function is increased. It is not so easy and natural
to build cost functions which are decreasing with the area of the overlap. Therefore
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in the overlap approach an “artificial” overlap term with a big enough weight has to
be added to the cost function in the definition of the energy function, creating new
energy barriers and increasing the difficulty of the energy landscape.

For all these (qualitative) reasons, we think that the partial solution approach
we propose here has some merits, at least in the case of “tight” problems, when
it is compared with the traditional overlap approach. This would of course require
confirmation by quantitative experimental comparisons.

Conclusion. We touched in this paper on three related topics with various de-
grees of generality. Our first aim was to bring experimental evidences comforting
theoretical results about the behavior of algorithms. We wanted to show that the
theory was not concerned with a “never-reached” asymptotic and led to the same
qualitative ranking of performances to which an experimental benchmark would lead.
Our second aim was to describe a general purpose methodology to deal with schedul-
ing tasks. We insisted on two problems that are likely to be encountered in many
situations: the creation of small gaps in the allocation of resources and the way to
handle “proportionality constraints.”

The third aspect of the paper was to account for experiments on a benchmark
of the “jigsaw puzzle” type. Here we were confronted with the practical problem of
the choice of parameters and of optimization design options (such as relaxing some
of the constraints). Our conclusion on this third point is that we have acquired some
know-how about the choice of parameters, which we tried to reflect in section 6, but
that we have presently no systematic rule to choose them. We worked very much in
a trial and error way, looking at the repartition functions we mentioned, to guide our
intuition. A trial and error procedure is somehow justified by the theoretical result
that many trials of moderate length are preferable to a long one. This gives us the
opportunity to tune the parameters trial after trial.

Anyhow, we have to admit that the choice of parameters requires some skill,
especially for the simulated annealing and IET algorithms, where there are more than
one parameter to tune. What we did not find too hard to do was, starting from a given
Metropolis algorithm at inverse temperature βMet, to find βmin < βMet < βmax for
which simulated annealing performs better than Metropolis. Then we could get some
more improvement using the IET algorithm, where again we chose the parameters in
relation with those used for simulated annealing. We are not sure at all that this is
the best way to tune simulated annealing or the IET algorithm, but it shows at least
that the theoretical gains of one algorithm upon the previous one could be obtained
in practice. Finally, in the partial freezing method the choice of parameters is easier
because the algorithm runs, most of the time, on a restricted state space for which
the tuning of parameters is less crucial.

Another positive result of these experiments is that it is possible to get good, if
not optimal, solutions even in the case where very nonmonotonous evolutions of the
energy are needed, as it is the case here, since the only way to move a piece of the
puzzle is to remove it and put it somewhere else afterwards, a succession of two moves
the first of which implies an energy increase.

Of course we have touched in this paper on only a limited number of questions.
For instance, we leave open the practical question of the best choice of parameters
for simulated annealing and for the IET algorithm, since we used only a robust “all
purpose” set of parameters, namely, exponential temperature sequences in the case
of simulated annealing and logarithmic energy transforms for the IET algorithm.
Another question we left purposely in the dark is the choice of elementary moves.
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Although it is clear that a benefit can be obtained from the use of more complex
compound moves, we felt such an investigation would have been too dependent on
the precise examples we chose to study. Rather we tried to lay the stress on general
ideas and tools, with the hope that they could be useful in a variety of situations.
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