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Neural Techniques for Combinatorial
Optimization with Applications
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Abstract—After more than a decade of research, there now the feasibility issue of Hopfield networks has been essentially
exist several neural-network techniques for solving NP-hard com-  eliminated, the question of solution quality still raises some
binatorial optimization problems. Hopfield networks and self- doubts as to the suitability of the technique.

organizing maps are the two main categories into which most of . - .
the approaches can be divided. Criticism of these approaches in- Of concern here is the possibility that Hopfield networks

cludes the tendency of the Hopfield network to produce infeasible are not being used to solve practical optimization problems
solutions, and the lack of generalizability of the self-organizing which have arisen from industrial situations, simply because

approaches (being only applicable to Euclidean problems). This the Jiterature appears to be focused on the deficiencies of the

paper proposes two new techniques which have overcome thes : :
pitfalls: a Hopfield network which enables feasibility of the solu- etechnlque for solving the TSP. In recent work [33] we have

tions to be ensured and improved solution quality through escape &rgued that the TSP may not be an appropriate benchmark
from local minima, and a self-organizing neural network which problem anyway, due to the existence of an alternative linear
generalizes to solve a broad class of combinatorial optimization formulation which makes comparisons unfair and biases the
E\mbtbfl‘_“s- _T‘é"o tsampktah pracncglt otptlrtntlﬁatlonfproblems f]rcot’r? findings against neural and other techniques using a nonlinear
ustralian industry are then used 1o tes € perrormances o e . . . _
neural techniques against more traditional heuristic solutions. fqrmulathn. We do not advpcattf,' thg appllcqtlon of a tech
_ _ ) S nique which is known to yield inferior solutions. We are,
; 'Igdex Ter&ns;AS?emb_ly||n|\?|,3ck?mg|nat|(f)nal optimization, Hop-  powever, observing that the performance of neural networks
ield networks, hub location, NP-hard, self-organization, sequenc- . . . .
ing, traveling salesman problem. for solving practical optlm!zat|on problems has been relatlvgly
untested. For many practical NP-complete problems, heuristic
approaches are employed due to the need for rapid solutions.
l. INTRODUCTION Obtaining the globally optimal solution is not as imperative

HE idea of using neural networks to provide solutionds arriving at a near-optimal solution quickly. Certainly, one
to difficult NP-complete optimization problems has beefif the principal advantages of neural techniques is the rapid
pursued for over a decade. Hopfield and Tank’s seminal pag@mputation power and speed which can be obtained through
[18] in 1985 demonstrated that the traveling salesman probl&ardware implementation, and this consideration is even more
(TSP) could be solved using a Hopfield neural network. Yet ti@luable in industrial situations. The relative scarcity of lit-
technique, which requires minimization of an energy functiograture comparing the performances of neural techniques to
containing several terms and parameters, was shown to offe@re traditional methods for practical optimization problems
yield infeasible solutions to the TSP [38]. For the remaind&tiggests that this advantage is not being realized.
of the decade, researchers tried to either modify the energyA similar focus on the TSP is found in the literature relating
function [3], [37] or optimally tune the numerous parameteit9 the use of self-organizing approaches to optimization [2],
involved [19], [23] so that the network would converge t¢10], [12]. In this case, the reason is not simply because of
a feasible TSP solution. Subsequent efforts to confine tiee benchmark status of the TSP, but more because the vast
Hopfield network to the feasible constraint plane have resultgthjority of these approaches are based uponethstic net
in a method which can now ensure the final solution is feasibiethod[8]. Kohonen's principles of self-organization [21] are
[6], [13]. combined with the concept of an “elastic band” containing a
Despite this success, however, the reputation of the Hopfielidcular ring of neurons which move in the Euclidean plane
network for solving combinatorial optimization problems doesf the TSP cities, so that the “elastic band” eventually passes
not appear to have been resurrected. Recent results have shibwough all of the cities and represents the final TSP tour. Such
that, unless the TSP is Euclidean, the quality of the solutioapproaches rely upon the fact that the “elastic band” can move
found using a Hopfield network is unlikely to be comparablgn Euclidean space, and that physical distances between the
to those obtained using traditional techniques [14]. So whifeeurons and the cities can be measured in the same space. Any
self-organizing approach which uses the elastic net method as
'&”agﬁﬁﬁpits“ﬁgv‘fﬁ;gg;‘% %flgggi;nfeesvsisgz sig%esl?\hgﬁsfh Universit}i/ts basis will thus be greatly limited in its generalizability.
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within the Euclidean plane. It is ideally suited to 0-1 seand Q(%, j, ¢, {) is the cost associated with havidg,, ; and

guencing, assignment, and transportation problems, andXg; “on” simultaneously.D; is an integer representing the

thus applicable to a wide range of practical optimizatiototal demand for theth column, so that

problems. New theoretical results are provided in this paper

to demonstrate the convergence properties of our SONN. M

In this paper, we are principally concerned, however, with Z Dj=N.

providing an evaluation of the comparative performances =1

of an improved Hopfield network and the SONN againi
I

traditional techniques for practical optimization problems. lement “on” in each row (assignment constraints), and exactly
”e““'?" techn_iql_Jes_are to be employed by i_ndust_ry to SOIY% elements “on” in thejth column (transporta,tion con-
prgctlcal optimization problems{ .(where their rapid CompLEtraints). These constraints are commonly encountered in many
tational power can .besF.be utilized), we must b? able timization problems including assignment, sequencing, and
demonstrate _the|r sunabmFy as a technique which f'”‘?'s N€qEsource allocation problems. Clearly, the TSP constraints are
optimal solutions of practical problems, rather than just ”}%presented itD; = 1,Vj = 1,---, M, and the problem

TSP.In Segtion I”.’ we describe the Hopﬁeld energy functio ecomes a quadratic assignment problem. As will be shown
representation which can ensure a feas_|t_)le solution [13], iﬁssubsequent sections of this paper, the proposed techniques
well as a method of escaping local minima of the ener

f o d . \uti litv. Details of h%’eneralize to solve problems with other types of linear con-
unction in order to improve solution quality. Detalls of thegyoinig gych as inequalities. For the sake of clarity, however,

SONN approach are providpd in Section Iy along .With "®¥he techniques will be explained using the general form of
convergence results. The first of the practical applications eOPl)

considered in Section V. Here, the car sequencing problem,
(CSP), which involves the optlma_l seq.uencmg.of dlfferertfy replacing the solution matriX with a solution vector
car merIs along an assembly _Ilne, IS descn_bed. Res\| SThe general form of the 0—1 combinatorial optimization
comparing thg performance of.the improved Hopfield neftworagroblem then becomes (COP2)

the SONN, simulated annealing, and an exact solution are

prese_znted a_nd disc_ussed. A second practica_l application is minimize f(x) = ¢’x + x7Qx )
considered in Section VI. Here a postal delivery network _

is described, in which a set of postal districts need to be subjectto Ax=b 6)
allocated to mail sorting centers, and the location of the sorting and z; €{0,1} Vi=1--,n (7)
centers needs to be determined in order that the total freight

costs of the network are minimized. Comparative results amheren = NM is the length of the solution vectarobtained
again presented and discussed. The two practical applicatiBiisconcatenating the rows of the solution mafxc, Q, A,
from Australian industry have been chosen as sample Ngndb are readily derived by converting the objective function
hard practical problems. In previous work [34], [35], we havand constraints of (COP1) into vector form.

solved other applications with similar results. Conclusions as!n the following sections of this paper, we will propose

to the suitability of neural techniques for solving practica®n improved Hopfield network, a new self-organizing neural-
optimization problems are drawn in Section VII. network approach, and simulated annealing heuristics to solve

particular applications which can be formulated in the general
forms of (COP1) and (COP2).

he linear constraints specify that there be exactly one matrix

n alternative representation of this problem can be derived

Il. A CLASS OF PROBLEMS
Consider a 0-1 combinatorial optimization problem with

the general form (COP1) [ll. A HOPFIELD NETWORK APPROACH
N M N N The Hopfield network [16], [17] comprises a fully intercon-
minimize F(X) = Z Z Xk j Z Z Ak, j,i,1)X; ;  nected system of neurons. Neurow has internal state; and
k=1 j=1 i=1 1=1 output levelz; (bounded by zero and one). The internal state
N M u,; incorporates a bias current (or negative threshold) denoted
+ Z Z Clk, HXk ; (1) by<,, and the weighted sums of outputs from all other neurons.
k=1 j=1 The weights, which determine the strength of the connections
subject to Z X, =1 Vk=1,---,N (2) from neurony to ¢, are given byWij._The relationshi_p betwee_n
F the mterngl st.ate ofa neuron and |Fs ogtput level is determined
by an activation functiory;(w;), which is bounded below by
Y Xij=Dj VYj=1,---,M (3 gzero and above by one. Commonly, this activation function
k is given by
Xk,j € {07 1} (4)
1 Uy
where X, ; is the element in théth row and;jth column of i = gi(w) = 5 (1 + tanh(f))

the (IV x M)-dimensional 0-1 matriX, the objective function
F(X) is a quadratic cost function of the solution mat® whereT is a parameter used to control the gain (or slope) of
C(k, j) is the linear cost associated with haviag, ; “on,” the activation function.
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Hopfield [17] showed that the system for hardware impléd. An Improved Hopfield Network Approach
mentation is determined by the resistance-capacitance equa oplems of infeasibility and poor solution quality can
tions be essentially eliminated by an appropriate form of energy

du; w; function and modification of the internal dynamics of the
at Z Wijwj = P (8) Hopfield network. By expressing all constraints of the problem
’ in a single term, the overall number of terms and parameters
ui =g; (i) ©) in the energy function can be reduced. Consider the general

wherer = RC, R is the resistance, and is the capacitance. energy function

For high-gain activation functions/{~ 0), the output values E(x) = f(x)+ % |x — (Proj.x +s)||? (11)
approach either zero or one, and the state space of the netwohlé

. . ; Wwhere
outputs is the set of corners of thedimensional hypercube ) - oy
{0, 1}™. The final state of the network is, therefore, one of Proj=I-A"(AA")"A (12)
these corners. s=AT(AAT) b, (13)

Hopfield networks can be used as an approximate methpg firot term of the energy function is the objective function,

for_solving 0-1 optimjzation problems because, provided tIWnile the second term measures the deviation of the vector
weights are symmetrici{;; = W;), the network converges go the constraint plane given hix — b. The advantage

to a minimum of the energy function of this energy function is that only one penalty parameter,
__1 . i v, needs to be selected. 1f is large enough, then validity
£ =2 Z Z Wigeizj = D i (19 of the solution is ensured, since the constraint term will be
LY forced to vanish. Hence, the solution will necessarily lie on
The proof of stability of such continuous Hopfield networkshe constraint plane. Energy functions of this nature have been
relies upon the fact thaf(x) is a Lyapunov function (see suggested by Aiyer [1] and Gee [13].

[17]), provided that the inverse function gf(w;) (the first We now propose to modify the internal dynamics of the
derivative of the activation function) exists. Hopfield network to permit temporary increases in this energy
Furthermore, if there are no self-connectiofi,{ = 0 for function in order to allow escape from local minima. The
all < andy, although this condition is often relaxed in practicamotivation for this is that the Hopfield network cannot be
situations), in the high-gain limit of the activation functiorexpected to compete with other hill-climbing heuristics such
these minima will be at or near a vertex b, 1}™. It is as simulated annealing while it remains a strict Lyapunov
noted that negativéV;; do not interfere with the Lyapunov descent algorithm. This improved hill-climbing Hopfield net-
descent, but may force the network to converge to an interiwork (which we refer to as HCHN) provides a mechanism for
local minimum. In this case, annealing techniques are usuadlgcaping local minima by varying the direction of motion of
employed to drive the solution trace toward the vertices. the neurons in such a way that, while descent of the energy

Hopfield and Tank [18] showed that if a combinatoriafunction is always permitted, ascent of the energy function
optimization problem can be expressed in terms of a quadraticpermitted often initially and is less likely as the algorithm
energy function of the general form given by (10), a Hopfieldroceeds. Clearly, this is similar to the concept of simulated
network can be used to find locally optimal solutions cnnealing. The modified differential equation is given by
the energy function, which may translate to local minimum

%

solutions of the optimization problem. Typically, the network du;

energy function is made equivalent to the objective function prlallO) > Wijzj +1i; (14)
which is to be minimized, while each of the constraints of J

the optimization problem are included in the energy function u; =g (). (15)

as penalty terms. Clearly, a constrained minimum of the
optimization problem will also optimize the energy functionHere, the decay termi—u;/7) from (8) has been dropped,
since the objective function term will be minimized andince it has been shown to inhibit convergence of the network
constraint satisfaction implies that the penalty terms will b@6]. Furthermore, the sigmoidal activation function has been
zero. Unfortunately, a minimum of the energy function doagplaced by the piecewise linear function

not necessarily correspond to a constrained minimum of the
objective function due to the fact that there are likely to
be several terms in the energy function which contribute to
many local minima. Thus, a tradeoff exists between which

terms will be minimized completely, and feasibility of thesg thatw, = z; within the unit hypercube. The modified
network is unlikely unless the penalty parameters are chos@ifferential equation means that the direction of the change in

carefully. Furthermore, even if the network does manage 4@y neuron is now controlled by a new parametéf), where
converge to a feasible solution, its quality is likely to be poor

compared to other techniques, since the Hopfield network is  «(t) = randonjk(t), 1] and k(t)=1— 2¢ /7,
a descent technique and converges to the first local minimum
it encounters. Fig. 1 shows how the value é&fchanges with time for = 40.

zi = g(ui) = {m 0<u <1 (16)
1 U,iZl
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——t—t——t——————t function f(x) while x is confined to the constraint plane.
Variations of this approach utilizing a strict descent dynamic

1h —t have been considered independently by Chu [6] and Gee [13].

It should also be noted here that an annealing technique

k(t) 0 may be necessary in order to drive the convergence trace
/ to a vertex of the hypercube. This will be necessary if the

matrix of weightsW is neither positive definite nor positive
semidefinite. Since annealing of the standard Hopfield network

1 1 i ! 1 1

0 20 40 60 8.0 100 120 140 is usually created by slowly cooling the value of the activation
t function parametefl’, we propose a further modification to
Fig. 1. Graph ofk(t) = 1 — 2¢~%/7 with 7 = 40. the piecewise linear activation function to create an annealing
effect. The activation functiog(w,) in (16) is replaced by
Now, 0 u; < L
y oE(x)  d m= g ) = U TE row<u (A7)
g . X Xy P = i) = U;
= Oé(t) Z Wiz, +1; | = —Oé(t) = U-=rL
dt - A dt 1 w; > U.
for x within the unit hypercube, and Initially L=0and¥f = 1. so thatg®"™ = g. The annealing
08(x)  9f(x) effect is created by allowmg the_ values Bfandif to slowly
= approach one another by iterating
a]}i 8352 3
for x confined to the constraint plane by a large valueyof L=L+e, U=U—e¢, e=10""
Thus, steepest descent and ascent of the objective funct(ji% I :
' . . r each pass through the clipping functigti™.
on the constraint plane are achieved whett) = +1, P g PPINg v

- We now present an algorithm for the efficient simulation of

respectively. Initially,k(0) = —1, and soa(0) is randomly the modified Hopfield network HCHN for solving problems
selected from the range-fl, 1]. Consequently, the energyot the form (COP2)

value (which is equivalent to the objective cost providelikes
on the constraint plane) will often increase initially. As» % = The Algorithm
however, k(t) — 1, and so«(t) will also approach unity o

which is needed for strict Lyapunov descent. The length of theStep 1) Initialize the parameters of the network as
Marl_<o_v chai_n (or the number of ra_ndqm _Walks permitted in W = — 2Q + y(Proj — I)
multidimensional space) at each point in time is held constant

at a value which depends upon the size of the problem. 1=98—¢
Thus, the modified Hopfield network HCHN allows random obtained by expanding out (11) and comparing the
increases in energy initially, with such increases becoming coefficients to the standard energy function (10),
less likely as time proceeds, until finally the network tends z; 205 At=10"% =10 L=0,U =1,
toward a steepest descent algorithm. Provided the value of the + = 40.
parametery is large enough, the convergence trace will be Step 2) Updatek(t) = 1 — 277 and generatax(t)
forced to lie on the constraint plane, resulting in a feasible randomly from the rang@k(t), 1].
solution. Step 3) Update neurons according to
B. Simulation Issues 2 — 2 — (AY) <a(t) 5f)

It has been observed [13] that while this treatment of the i
energy function is very suitable and promising for an electronic This will most likely takex off the constraint plane.
circuit representation of the Hopfield network, simulation Step 4) Projeck back onto the constraint plane, and within
of this system on a digital computer is highly impractical. the unit hypercube, according to the iterative pro-
The large value ofy, which is necessary to confine the cedure shown in Fig. 2. This is the projection and
trace to the constraint plane, results in correspondingly large clipping algorithm suggested by Gee [13].
values fordu;/dt in (8) whenuw; strays marginally from the Step 5) £ «— £ +¢, U — U —e. Repeat from Step 3) for
constraint plane. Therefore, a large time-step for the discrete one Markov chain length.
time simulation of (8) is bound to lead to unstable oscillations Step 6) Increase and repeat from Step 2, unti(t) = 1
around the constraint plane. The extremely small size of the and dz;/dt = 0 for all <.

time-step which is necessary to avoid such oscillations make<Clearly, this procedure is very similar to the dynamics of the
this approach highly impractical to simulate on any digitahodified Hopfield network HCHN if implemented in hardware
machine. with a large value ofy. The network updates itself in a

The approach can be efficiently simulated, however, if we/stematic way which performs simulated annealing on the
consider that the Lyapunov descent of the energy function (ldnergy function, while the neurons are forced to assume a
for large~, is analogous to steepest descent of the objectifeasible configuration, just as they would be for largen
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(START Output layer: calculate cost potential of each output node

—_

Project onto Ax=b

x = Projx+1

Clip into unit hypercube

ann
;= £ (1,')

X FEASIBLE
|
L U
X, X, XM
Input layer: present a row of permutation matrix
Fig. 2. Flowchart representation of Step 4) of the HCHN algorithm. Fig. 3. Architecture of SONN.

the Hopfield network. Thus, the algorithm can be seen as tansuch a vertex from within the unit hypercube, starting from
efficient and convenient simulation approach to the modifiedpoint on the constraint plane and inside the unit hypercube (a
Hopfield network with largey. The feasibility of the final feasible, noninteger solution), and gradually moving along the
solution can be guaranteed, since the solution trace is confirmamstraint plane to approach a feasible vertex. Let us denote the
to the constraint plane, and 0-1 solutions can be encouragettinuous variable (matrix element) in the interior of the unit
using the annealing functiop®*" without excessive com- hypercube byi¥; ;, so thatF (W) = F(X) at the vertices.
putation. Furthermore, the network is still implementable iBssentially W; ; represents thprobability that the variable in
hardware, making the potential for rapid execution speedtfe ith row andjth column of the matrixX is “on.” It is the
further advantage. matrix of probabilities (weights)W, to which we will apply
Kohonen's principles of self-organization, modifying existing
IV. A SELF-ORGANIZING NEURAL-NETWORK APPROACH definitions to enable the process to solve 0-1 optimization
gﬁoblems. The SONN drivesV to the cheapest vertex, while

In this section we propose a new SONN based up employing Hopfield descent on an energy function to ensure

Kohonen's self-organizing feature map [21], and modified %ﬂat W also lies on the feasible constraint plane. As such

that the network is able to solve 0-1 optimization problenlﬁiS self-oraanizing neural approach can be seen astarior
of the general form (COP1) presented in Section Il. We first 9 9 PP

discuss the ideas behind the technique, and present the netV\Pc?r'I'<1t method

and the algorithm. We then present some new theoretical

results which address the issues of convergence and stabffityThe Network

of the network. The architecture of the SONN (shown in Fig. 3) consists of

Consider the general form of the problem (COP1). Ansn input layer of A/ nodes, and a linear array df output
matrix X which satisfies the constraints of (COP1) will hav@iodes. The output nodes represent the row indexes of the
as its rows a permutation of the set/if-dimensional vectors solution matrix, and the input layer represents Adecolumns
for the given problem. The weight connecting input ngde
nodek of the output layer is given byVy ;.

Unlike other (elastic net based) self-organizing approaches,
the nodes do not move in Euclidean space. Rather, they are
) fixed in this configuration, and the weights of the network are
(0,0,0,---,1) represented),, times adapted. Rows of the permutation matrix are presented to the

Such a feasible solution matrix we callpermutation matrix network through the input layer, and the nodes of the output
All feasible solutions to (COP1) (and hence all permutatiddyer compete with each other to determine which row of the
matrices) lie at vertices of the-dimensional unit hypercube solution matrix can facilitate the input vector with least cost.
(Wheren = NM) which also intersect the constraint pIaneThe weights are then adapted to reflect this decision using the
SinceD; is integer valued for alf, the constraint set forms anneighborhood topology.

integral polytope. Suppose we allow a continuous approach Suppose we present a row of the permutation matrix (with

1 . o o a “1” in columnj;*) to the network, and for each nodeof the
The proof of this involves rewriting the constraints in terms of vector | lcul hich i l bi .
variablesx so that the constraints can be expressedas= b, and showing output layer, we calculat®, ;. which is a linear combination

that the matrixA is totally unimodular. of the cost to the objective function of assigning the input

(1,0,0,---,0) represented; times
(0,1,0,---,0) represented), times
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vector the rowk, and the cost (to convergence) of potentiallyfransforming the weight matri® into a vectorw (which

unsettling the current values of the weight matrix. represents the states of the continuous Hopfield network), we
Definition 1: The cost potential V%, ;+, of node k for a perform random and asynchronous updatesvofexcluding
particular input vectox (x; =0, Vj # j*, «;» = 1) is the weights within the winning neighborhood) to minimize
the energy function
N M
Vi, j» =C(k, j*) + Z Z Qi I, ky 7 )Wy &= % lw — (Pw + s)||2 (19)
=1 =1
+ 74 Z W 4 (18) where (Pw + s) represents the projection o&# onto the
P, €W constraint planeAw = b. The Hopfield network here does

where 3 is a parameter to be selected, andis a subset of not need_ to emplqy the hll!-chmblng d_ynam|c introduced in
the previous section of this paper, since we only need to

the indices whose weight adaptation at that time could aﬁea(l:rtrive at a point on the constraint plane. Once the ener
the convergence and stability of the network. This subset IS P P : ay
dependent upon the structure of the problem, and the naug

fur]ctlon has reached its minimum (so thatlies on Aw =
tendencies of the network for a given type of problem. In?’ we return to the Kohonen updating stage, presenting
: Sl ; another randomly selected row of the permutation matrix to
Sections V and VI, we will utilize two different subsets for o o . .
. . the SONN, determining the winning node and its neighbors,
W which make use of the underlying structures of the two Iy . : . .
applications and modifying their weights. The entire process is repeated

N ) I . until the network weights stabilize to a feasible 0-1 solution
Definition 2: The winning nodemy, of the output layer is L - S
. . . . . hich is a local minimum of the optimization problem.
the node with minimum cost potential for a particular inpu . . X
vector. That is During convergence, the magnitude of the weight adapta-
' tions, and the size of the neighborhoods is gradually decreased.

Voo, i+ < Vie jo for all other nodes: and fixed;*. Initially, the size of the neighborhood for each columnWsf
(given byn = (m, n2, -+, mar)) is large, but is decreased
The last term of (18) is needed so that the winning node lisearly until ; = D, (the demand for colump) for all ;.
not just the cheapest row in which to assign the veatat It is worth noting that this self-organizing neural approach is

a particular instance in time (which may cause oscillationsiiiherently stochastic in nature, since the weight modifications
certain rows are too popular), but also considers the currenade in the SONN are completely dependent upon the order
weight matrix and attempts to optimize around its curreith which the rows of the permutation matrix are presented.

values. Taking into account thastory of the weight matrix Consequently, the network can be run several times to arrive

in this manner has been found to aid convergence. at different local minima.
Definition 3: The neighborhoodof the winning nodeny,
is the set of nodesni, mz, ---, my,, (closest neighbor to B. The Algorithm

farthest neighbor) such that Step 1) Initialize weights of the network as

Vrng,j* Svrnl,j* Svrnz,j* S "'Svrnn_*,j* D
J Wk,j _ WJ
wheren;- is the size of the neighborhood for colunjih
Thus, the neighborhood of the winning node is not defined thus giving an initial feasible (noninteger) solution.

spatially, according to the physical architecture of the network, Step 2) Randomly select a row from a permutation matrix.
but is only defined once the cost potential of each node in the Call this vectorx (input vector). Find the column
output layer has been calculated and ranked for a particular J* which is “on,” i.e.,z;» = 1.
input vector. Therefore, winning nodes and the neighborhoodStep 3) Calculate thpotentialV;, ;+ for each node: in the
are determined by competition according to the objective output layer according to (18).
function, and the weights are modified according to Kohonen’s Step 4) Choose winning nodes,, (by competition) such
weight adaptation rule within the winning neighborhood. The that

size of the winning neighborhood is dependent upon which

row of the permutation matrix is currently under consideration. Vimg, j+ =min Ve je, Yk

At_the end of the Ko_honen_ Weight ad:?\ptations, the vyeight and identify its neighboring nodes
matrix W has moved in a direction which has most likely
taken W off the constraint plane and so the solution is My, M2, ey My,
infeasible. The next stage of the SONN involves the weights ] ] ]
of the other nodes then organizing themselves around the Wher*enj* > Dj. is the size of the neighborhood
modified weights so that the matrix of network weighté for j*. _ _ _ o
remains a feasible solution to the problem at all times. This SteéP 5) Update weights in neighborhood of winning node
can be achieved in hardwdreia a Hopfield neural network. according to

2Efficient simulation of the network on a digital computer can be achieved AWy, jr =aln, 1)[1 — Wy ;]
by replacing the Hopfield network with the algorithm described in Section IV- Vi V. 0 <V .
B with no hill-climbing. kg Mg sd
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where Remark 2: If W (t) approaches a feasible vertex{®, 1}"
ast — oo, then AW, ;(t) — 0, and hence, the algorithm
a(t)p ;e Vi, j+ = Vi o converges.
aln, t) = D;- exp <_T> W(t) is likely to approach a vertex since,df0) is chosen

to be large (at or near its maximum value of min; by

- ) Remark 1), then many updated weights will quickly approach
(a modified version of Kohonen’s SOFM updaty ang the others will be forced to approach zero in Stage
ing rule). & and o are monotonically decreasingy to maintain feasibility of the weight matrix. Furthermore,
and positive functions of timep is a normal- once a weight is dominant, it is likely to be selected again
ized weighting vector used to help the network, \veight adaptation (it is generally cheaper than increasing
decide how to break ties for a node. All othethe vajue of surrounding weights), which will result in the
weights (not included in neighborhood updatingyongest weights getting stronger, and the weakest weights

have AW, ; = 0. The modified weights are dying off. Thus, W(t) is able to approach a vertex of the
hypercube{0, 1}™, and will converge to a stable solution by
Wi, j — Wi j + AWy ;. Remarks 1 and 2.

The last remark assumes that the weigtgiproacha vertex
in a continuous sense, without any oscillations or jumps. The
Step 6) The weights will no longer lie on the constraingonvergence of the network can be controlled to this effect by
plane, so we employ a Hopfield neural network tguitable choice of (the larger the value of the less likely are
enforce feasibility. With a large parameter w  oscillations), and also by a small step sizg) in the updating
is modified around the weight adaptations of thgyle. If o(t) is small enough, then Stage 1 will create only a
SONN so thatAw = b. very slight change in the weight matrix. Consequently, the
Step 7) Repeat from Step 2) until alV rows of the ejghts will not have moved very far off the constraint plane,
permutation matrix have been selected as inpdhd Stage 2 will not need to perturb the weights too far from
vectors. This is one epoch. Repeat forepochs. their previous values in order to restore feasibility. In this way,
Decreasex and o geometrically. it can be seen that a small value @ft) generates a limiting
Step 8) Repeat from Step 2) for another permutation mattehavior of the SONN which is only a slight perturbation from
until [AW,, ;| ~ 0, Vk, j. This represents a stablethe behavior of Stage 1 alone. It is under this assumption that
convergence of the weights for a given neighye present the following mathematical resdits.
borhood size. Decrease the neighborhood siges  Suppose that an input vectas has probability of occur-

linearly for all 5. rence given byp;, so that
Step 9) Repeat entire process unti} = D;, Vj =
1,---, M. M
P(x) = pib(x —xy) (20)
=1

C. Convergence Properties

Convergence of Kohonen's SOFM has been proven kyhere§() is the Dirac delta function.
several researchers [7], [28], and since the weight adaptation®efinition 3: For a given node: of the output layer, the
in Stage 1 of the algorithm are an exact implementation ®bronoi setV, comprises the set of all input vectoxs for
the SOFM (with modification to the criteria for winning nodewhich nodek is selected in the winning neighborhood.
and neighborhood selection), it too converges under similarDefinition 4: The three-dimensional neighborhood function
conditions. Stage 2 of the algorithm (the Hopfield network[(V;, ; — V,,,,.;), 7*] is defined to be
with no hill-climbing) also converges to a stable solution since
the energy function can be shown to be a Lyapunov function e ViV, /M) i = jx
which never increases and is minimized when the states of %5 = Vima, ), 51 = { 0 otherwise.
Hopfield network are stable [17]. Unfortunately, when these

two neural networks are joined together, as in our SONfthe nature of this neighborhood function is shown in Fig. 4.
approach, the convergence of each is potentially disruptedremark 3: Provided the learning step size(t) is small,
Consequently, exposition of a formal proof of convergence gfere exists a functiotF given explicitly by
the SONN is unlikely. Instead, we put forth some observations
which are the foundations of an intuitive explanation of the _1 o N ax
apparent convergence of the algorithm. Proof of the following FIW) =2 Z Z Z MViess = Vo, 5): 57}
remarks and theorems can be found in Appendix A. ’ )

Remark 1: If W, ;« initially lies in or on the unit hypercube : Z pullpely — W sl (21)
{0, 1}, thenW;_,+ is bounded above by one and below by xiCVi
zero, and will stay within the hypercube provided

mo k

3Similar results have been derived for the SOFM [25], [29] which have been
. ) adapted here to include the optimization process, and the two-stage nature of
0 < a(t) <min D; and0 < p; < 1, Yj=1,---, M.  the SONN.
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Fig. 4. Three-dimensional neighborhood function for SONNV}, ; — Ving, ;). 7]

whose expected change given a change in the stabé ahder It can be seen from this last remark that selecting the

a single learning step is given by winning node by locating the minimunVy, ; is akin to
) selecting the nodé which will minimize the (temporary)
EAF)=—a() > Y [IVw, , FI* (22) increase inF(W) when W), ; is increased.
koo

Thus the SONN has been shown to converge provided the

This result tells us that, on averagg, decreases and the!®@Ming step sizex(?) is small, in which case the two-stage
learning process tries to find states which minimZeAny Process can be viewed as a single stage (Stage 1) under a slight
individual learning step can lead to an increaseFinbut the Perturbation. Stage 1 attempts to move in the direction which
overall trend is for the network to decreage Clearly, this will minimize the temporary increase in the objectn_/e functlor_1.
is very similar to the concept of simulated annealing, whefgscillations can be controlled or prevented by a suitable choice
the learning step size(t) plays the role of temperaturé is of /3.
continuous, but only piecewise differentiable. Furthermore, all W& have now presented two types of neural approaches
local extrema (wheré is differentiable) are local minima, and'© S0IVing combinatorial optimization problems: a Hopfield
the nature of the updating provides an opportunity to esca gural netW(_)rI_< which guarantees fe_:a_5|blllty, and allows escape
from local minima. rom local minima; and a self-organizing neural network which

Thus, for a small learning step sizgt), the SONN can generalizes tp solve a broad class of aSS|gnme.nt—type problems.
be seen to converge approximately like the functibrsince | "€Se techniques are now demonstrated using two practical
a small step off the constraint plane during Stage 1 of t}ﬁ>é)t|m|zat|on problems which have arisen from Australian
SONN requires only a small step during Stage 2 in ordpdustry.
that feasibility be restored. Under this premise, Stage 2 of
the SONN can be seen to have a negligible effect on the
convergence trace of the network df(¢) is small enough.
Remark 3 demonstrates that this system will then converge to ] ) )
the minimum of the function¥. We consider the problem of sequencifig different car

Addressing the issue now of whether or not this convergengtodels along an assembly line. The demands for each of
minimizes the objective function, we have the following"® models, and someontiguity constraintsare assumed
remarks. 0 be known ahead of the scheduled manufacturing time.

Remark 4: Since AW}, ; > 0 then any weight modifica- T_he qontiguity _cc_JnstrainFs take th_e forrr_l of separation rules,
tions in Stage 1 of the SONN will increase the objectivg'Ctat'”g the minimum distance with which cars of the same
function. model should ideally follow each other. These separation rules

This is only a temporary increase in the objective functio®® & form oflload balancing constraint. They are required_
since during Stage 2 of the SONN, other weights will bggcause the times taken to assemble each of the models is
decreased in order to restore feasibility, and this will caugéfferent, and like-modeled cars must be spaced accordingly,

V. APPLICATION 1: THE CAR SEQUENCING PROBLEM

a decrease in the objective function. in order that t_he workload be evenly spread. These distaqces

Remark 5: Since are chosen with the current Wor_kfor(_:e and the average time
N taken to assemble each model in m|r.1d. _

F(W) = Z Z W Vi The goal of the CSP is then to identify an optimal sequence

EAY of N cars on the assembly line such that the demands for each

k=Lt of the M models are met (hard constraints), and the separation

assuming that the network is in a state of convergence, thétes are satisfied as closely as possible (soft constraints). A

the partial derivative is such that similar problem has been studied by Parrettal. [27] using
automated reasoning, and many assembly line balancing prob-
IF (W) =2V, ; — C(k, j) vk andj. lems have been solved using various approximate algorithms
W, ; ! . ) [15], [24]. To the best of our knowledge, there is no literature



SMITH et al: NEURAL TECHNIQUES FOR COMBINATORIAL OPTIMIZATION 1309

relating to the use of nonlinear optimization or neural-netwoiikdicated by the row number), provides a means of measuring

techniques to solve such a problem. the severity of separation rule violations.
Further details of the problem and its formulation can be
A. Mathematical Formulation found in [31]. It is worth noting that several other practical

optimization problems have been expressed in a similar form,
including the airline-gate assignment [30] and intermodal
X, . — { 1 if the kth car in the sequence is of tyge trailer assignment problems [11].

T

We define a set of binary variables

0 otherwise Expressing (23) in standard quadratic programming form
for k=1 --- Nandj =1, -, M. Also, let D; be the xTQx, and examining the eigenvalues of sam@ematrices
required (;iemZand ane‘,» be éhe ivdea.l mini'mum Jseparationbased onP as in (27), reveals that the objective function
distance for cars of mé)dg1 1 - M is an indefinite quadratic form. Consequently, any optimiza-

The CSP can be formulated as the following 0—1 quadra@'gn technique which requires at least a positive semidefinite

rogramming problem: orm will be unable to locate the global minimum of CSP.
prog gp ' Such techniques include the commercial optimization package

(CSP) GAMS using the nonlinear solver MINOS-5 [4]. In Section V-
N M N C, GAMS/MINOS-5 is used as a local optimization technique
minimize Z Z X, Z P i ;X5 (23) when comparing its performance on various instances of the
kel el Py CSP with the improved Hopfield network, the SONN, and a
M simulated annealing heuristic.
subjectto > X ;=1, Vk=1,---, N, (24)
j=1 B. Heuristic and Neural-Network Approaches to the CSP

In this section, we briefly describe the simulated annealing
heuristic, and the choice of parameters used for the neural
techniques.

1) Simulated AnnealingThe form of simulated annealing

Constraint (24) ensures that no more than one car is assigl(%é) which we empl(_)y for th_e cspP |_nvolves_ |nterchang|_n_g
rows of feasible solution matrices, which retains the feasibil-

o the same posmo_n n t_he_ sequence. Constraint (25) CNSUIYSof the matrix. We start with a random initial (feasible)
that the demand is satisfied (the sum of each column

X equals the demand for the car model represented ojution matrixX, and walk through feasible solution space

q S ; P é&/ randomly selecting a row of X to interchange with a
the column). The objective function (23) enables the so : . .

; . d . . : .aadomly chosen row under consideration. We then calculate
constraints relating to ideal separation distances to be satis e
. . the energy of the system as follows.

as closely as possible. The cost matfxassigns a penalty . ) e
to the objective function which depends upon the distance® L€t d= be the partial cost due to cars in positianand
between like-modeled cars. Sequences of cars are not only 7 Of the sequence given bX. _ ,
penalised for violating separation rules, but the importance of* SWap rows: and; of X to give a new (feasible) solution
each of the rules, and the severity of the violations are also Matrix Y. , _ "
taken into account when assigning a penalty. This is achieved L€t dy be the partial cost due to cars in positianand

N
SN Xu;=Dj, Vi=1---, M, (25)
k=1

X € {0, 1}. (26)

through the choice of the cost mati#k The particular matrix j of the sequence given by _
P which we use in this paper is » Let F(X) be the total cost of solution matriX. Clearly
49 2 7 F(Y) = F(X) = (dz — dy).
3 g fg ; Let AF = dx — dy. By the theory of simulated annealinyj,
0 4 16 0 becomes the new feasible solution matrix if either
P= 27
0 3 14 0 @ AF <0 or exp(—AF/kT) > randono, 1]
0 0 12 O
0 0 10 0 where k£ = Boltzmann’s constant” = temperature, and
00 8 0 randoni0, 1] returns a uniformly distributed random number

. between zero and one. Using this analogy, it is clear thAt
Null rows are then added t& to produceN rows. Fy ; is represents the change in energy of the system.

defined to be zero for alj. Clearly, the relative weightings A cooling schedulds completely specified by the initial

of each column inP indicate that (in this example) it iS 5 final temperaturegg and 7;,), a temperature decrement
considered most |mporFant to attempt to satisfy separation rylge (usually geometric), and the length of the Markov chain,
3, followed by separation rules 2, 4, and 1. The number %fm (the number of random walks to be allowed at each

nonzero elements in each columrof P is exactly equal 10 emperature stage). For the car sequencing problem Mith
the ideal separation distan€g. Separating like-modeled cars 45 andis models, we adopt the following cooling scheme:
by a distance greater th@p incurs no penalty. Decreasing the

cost of violations as two like-modeled cars get further apart (as7;,+1 = 0.951,, 1o =64, 1,=05, L,=2MN.
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The values forZ, and 1;, have been selected using the&he row. If the final term of (18) is large, we are permitting
acceptance ratio technique. This involves calculating valuas oscillation if we select nodk as a winning node. If this

of x (the probability that an uphill move is accepted) by theerm is negligible, then the only strong weight in rdwis
method proposed by Kirkpatrickt al. [20] for a selection of W, ;. and we are not disrupting convergence. The magnitude
problems (i.e., varying/ and N). Tj, is then the smallest of the parametefs is chosen in such a way that oscillations
temperature which gives a value @f greater than 0.8, for are only permitted if they will significantly improve the cost
all selected problems. Similarl{f;, is the largest temperatureof the solution. For the cost matri® as specified by (27),
which gives a value of less than 0.2 for all selected problems3 = 9 + 2(D, — 1) is found to achieve the desired balance
We have selected four different sized problems on which obetween avoiding unnecessary oscillations, and permitting
cooling scheme results are based: the number of modelslimnges to the current weight matrix. This value is derived
fixed at M = 4, but the length of the sequence is varied foanalytically in Appendix B.

N = 20, 40, 60, and 80. Another way of avoiding oscillations is to use the normal-

2) Hopfield Network Parameters for the CSFor the ef- ized weighting vectop to help the network decide which of
ficient simulation technique of the Hopfield network, théhe input vectors competing for a certain node is the ultimate
solution matrixX of the CSP is first replaced with a solutionwinner. These relative weightings reflect the cost and difficulty
vectorx (obtained by concatenating the rows of the matrixassociated with assigning the specified demand of cars within
The corresponding objective function and linear constraintise sequence according to the separation rules. One measure
can be readily derived using this representation [31]. The this difficulty is
value of the time-step for the steepest descent is selected €D,
to be At = 0.0001. The neurons are initialized to small pj = ]N]'
random perturbations around the center of the hypercube.

The use of annealing to drive the solution toward a vertdk p; < 1, then the required number of cars of model

is found to be unnecessary, since it can be shown that @3;) could be assigned to positions in the sequence without
constrained interior point of the CSP objective function caviolating the separation rule given &y (if the assignments
ever be a local minimum. Results are presented for both timethe other columns permit it). Ip; > 1 however, sepa-
hill-climbing dynamic, and the same network with no hillvation rule violations are inevitable. The vectpracts as an
climbing (a(t) = 1 always. While the former network is encouragement factagince the SONN is unlikely to choose
referred to as HCHN, the latter will be denoted by HN. Fosuch assignments often. Each elemgpts then normalized
the hill climbing network HCHN the length of the Markovbefore the algorithm is run, so thaf < 1 for all j which is
chain is given by20(M N), which varies with the size of the a necessary condition for stability of the network as discussed
problem. The value of is set to 40. in Section IV-C.

3) SONN Parameters for the CSAthe SONN algorithm  For each particular instance of the CSP considered in
as applied to the CSP can best be understood in terms of &eetion V-C we select the following values for the SONN
N output layer nodes of the SONN (representing rowXof parameters:
and positions in the sequence) each competing for possession

(28)

of the car model presented through the input vectoBy (0) = min D, aft +1) = 0.95a(?)
comparing the objective function of the CSP, (23), with the o(0) =9, o(t+1) = 0.950(t)
objective function of (COP1), we see that n;(0) =D; + N/10, n(t+1)=mn;(t) -1

Qk, 5%, 4, 1) = Plr—sy, j+ 2 = 5 andp is defined according to (28). It is the vector

which appears to affect the results most significantly. Most
if I = j*, and is zero otherwise, ané(k, j) = 0 for all k notably, p as defined by (28) produces considerably better
and j. Without the final term of the cost potential functionresults than those obtained using a unifgsmector of “1’s”.
(18), the natural tendency of the SONN for the CSP is farhe values ofr and(2 were determined experimentally, while
each car model to try to be positioned either first or last in thRe initial value ofa was chosen so that the weights are always
sequence, since the potential for violations of the separatigpbunded above by one.
rules is then reduced. Oscillations will therefore occur since For the Hopfield network section of the SONN, we use the
only one car model can occupy a position in the sequenesficient simulation technique described in Section IV-B with
The final term of the cost potential function (18) can help tao hill-climbing (« = 1). Since there is no objective function
avoid such oscillations by detering a node from dominatirfgr this section of the SONN (only constraint satisfaction
and “overwriting” an existing decision unless it is very muckerms), the Hopfield network simply consists of the “projection
cheaper to allow it. For the CSP, the subset of indikss and clipping” algorithm respresented by Fig. 2.
chosen so that the final term sums over the weight elements
in the row &, except for the elemenit’;, ;.. Thus C. Results for the CSP

W={(p q:p=k qge{l,---, M}, g #j*}. The results which follow are based on five problem classes
for four model types(M = 4) as described in Table |. The
In this way, the suitability of each row as the winner is nalemands are expressed as a proportion of the sequence length
just determined by its cost, but also by the current state 8f. The cost matrixP is that of (27). In practical situations,
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TABLE | more traditional techniques in the same category. The SONN,
ProBLEM CLASS DESCRIPTIONS FOR THECSP although falling into neither a hill-climbing or strict descent

Problem Class £ D,/N category, could be further improved by embedding the ability
1 (2,5,8,3) | (0.2,0.3,0.2,0.3) for foresight into the algorithm. Currently, the algorithm is

2 (4,4,4,4) | (0.1,0.3,0.2,0.4) greedyin the sense that the winning node is the one with least

3 (2,2,6,3) | (0.4,0.1,0.1,0.4) cost potential. If the algorithm sometimes permitted nodes to

4 (1,7,5,2) | (0.3,0.2,0.1,0.4) win which were not necessarily the cheapest at that point in

5 (2:3,34) | (0.3,0.1,0.50.1) time, much like simulated annealing, then the SONN may be

able to escape local minima too. Permutations of the winning

demands will often fluctuate, and the number of workeReighborhood might be another way to achieve this effect.
on the assembly line may not remain constant. Since therther work on the choice of appropriatevalues is also
number of workers at different stations along the assempigeded to ensure that these parameters are optimized.

line determines the ideal separation distances (and;}o

it is necessary to ensure that the methods used can handleVi. ApPPLICATION 2: A POSTAL DELIVERY NETWORK
variations inD; and ¢;.

Results for each problem class are presented in Table Iln this section we describe a practical optimization prob-
for N = 20,40,60, and 80 cars in the sequence. For alllem which has arisen from the postal services industry. The
heuristics, the algorithms are run from ten different randoproblem considered here is an instance of gkreub location-
starting points. In Table II, “AvMin” represents the averagallocation problem and is formulated using the quadratic
value of those ten final solutions, while “BestMin” is thanteger model of O'Kelly [26].
cheapest cost found during the ten runs. The PDN consists ofV postal districts, each of which has

The first result to note from Table Il is that the hill-a certain volume of mail which needs to be delivered to the
climbing techniques (SA and HCHN) considerably outperformther districts. Each postal district is represented by a single
the techniques which only permit descent (GAMS/MINOS-Bode in the plane. In this paper, for the purposes of simplicity,
and HN), and the SONN which falls into neither of theseve refer to this representative node agsastoffice The (x, y)
categories. This is to be expected since the CSP objectomordinates of each postoffice are known. Mail can only be
function is known to be highly convoluted, and plagued biransfered from one postoffice to another via sorting centers.
an extremely large number of local minima [31]. On th&here arep such sorting centers which need to be located
particular instances of the CSP represented in Table II, HCHlll existing postoffices, acting as hubs in the PDN at which
marginally outperforms the SA heuristic, as evidenced bgcoming mail is processed and transfered to other sorting
better average values of the local minima as the problem siznters for distribution to the destination postoffices. Consider
increases. A comparison of these two hill-climbing approachasy two postofficeg and¢, and two sorting centers located at
is shown in Fig. 5, where the best minimum results for bothostofficesk and!, in the planar domain. If is allocated to
SA and HCHN are plotted as a percentage deviation from thesorting center at postoffice and: is allocated to a sorting
best found solution. It is noted that for all problem classes oénter at postoffick then all mail originating from postofficg
all problems sizes, either SA or HCHN finds this best solutioand intended for delivery to postoffiegamust first be collected

The pure descent version of the improved Hopfield networkpm postofficej and sent to the sorting centeriattransfered
HN also outperforms both the SONN and GAMS/MINOS-5to the sorting center at, and then delivered to postoffice
while the SONN consistently locates better local minima than The freight costs involved in such a route are due to the
GAMS/MINOS-5. This relationship can be seen in Fig. Gndividual costs of collection, transfer, and delivery per unit
Of interest in this graph, is the fact that as the probledistance per unit of volume of mail, multiplied by the volume
size increases, the performance of the three nonhill climbiogmail from j to ¢« and the distance travelled in delivering this
technigues becomes more even. This is in keeping with threail.
asymptotic properties of quadratic assignment problems (ofThe problem is then to determine which of tivepostoffices
which the CSP is a generalized form), which state that the ratbould be designated as thesorting centers, and to which
between the worst and best solutions of quadratic assignmsotting center each of the postoffices should be allocated,
problems approaches unity as the problem size increases. &bethat the total freight costs of the postal delivery network
refer the reader to [5] for a detailed exposition and proof gPDN) are minimized. This practical optimization problem
this property. is a particular instance of thbub location problemstudied

A final observation from the graphs in Figs. 5 and 6 is théty O’Kelly [26]. A few simplifying assumptions have been
the scale of the percentage deviation axis is considerably largeade so that we can use the same model for the PDN: we
in Fig. 6 than in Fig. 5. While the majority of the deviationsassume that the distances between postoffices is Euclidean
of the hill-climbing techniques are within 3% of the best foun@although road-map distances could just as easily be used
solution, the deviations from the nonhill climbing techniqueas input data); there are no existing sorting centers and no
are mostly within 20%. capacity restrictions on thg sorting centers; and finally, the

While it is unfair to compare hill-climbing techniques withmajor cost contributor to the PDN is assumed to be freight
those utilizing strict descent, it is clear from each of theost, so that other fixed costs are not taken into consideration.
graphs that the neural techniques perform well compared to #e do not assume that the matrix of costs is symmetric, since
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TABLE I
ResuLTs oF CSP TEsT ProBLEMS FOR GAMS/MINOS-5, SA, HN, HCHN,aAnD SONN
GAMS/MINOS-5 SA HN HCHN SONN
N | Class BestMin AvMin BestMin | AvMin  BestMin | AvMin  BestMin | AvMin  BestMin
20 1 63 60.55 58 61.4 60 60.6 59 62.5 60
2 49 41.45 40 49.6 48 43.1 42 50.0 46
3 34 30.56 30 33.9 31 30.3 29 33.0 32
4 21 10.6 10 19.0 14 13.6 11 194 16
b} 150 150 150 150 150 150 150 156.6 152
40 1 168 150.25 146 162.4 155 151.3 146 164.6 158
2 123 100.2 94 125.3 122 100.4 95 126.0 121
3 73 70.25 67 73.2 70 69.4 66 75.4 74
4 43 35.3 33 39.9 36 35.0 34 45.0 41
5 376 360.2 354 363.4 361 359.0 352 369.2 363
60 1 260 243.55 238 256.1 248 239.6 235 258.3 250
2 172 168.2 155 189.7 175 165.5 152 185.6 173
3 115 111.65 108 1134 109 108.2 105 117.2 110
4 65 63 60 65.2 59 60.8 58 65.1 61
5 610 570.8 566 571.1 564 565.2 562 608.3 575
80 1 349 342.05 331 341.3 336 336.6 330 340.4 341
2 248 230.6 215 253.4 245 233.2 220 256.1 245
3 151 154.15 150 152.8 148 149.6 146 154.6 147
4 89 88.9 86 88.9 83 85.4 82 90.3 85
5 795 781.4 772 788.5 77 777.8 774 799.4 780

% deviation from best found solution

Problem Size/Problem Class

Fig. 5. Comparison of hill-climbing techniques for the CSP test problems.
the three components to the freight costs—collection, transfprogramming problem:
and distribution—could be unequal. (PDN)

minimize (’}/CO]' =+ ’yddj) Z Xjijk
7 %

A. Mathematical Formulation
We define a set of binary variables

. . . . . t Vii XiwXuDu| (29
1 if postoffice j is assigned to a sorting T Zz} J zk:zl: XD | (29)
Xix = center located at postoffide _ !

0 otherwise subjectto > X =1  forall j (30)

and _ _ _ _ k
Xup = { 1 if postqfﬂcek is a sorting center Z X =p (31)

0 otherwise. k
Xin £ X for all j and % (32)

Let D, be the distance between postofficesind &, Vj; is
the mail volume fromy to ¢, and~¢, ¢, and~* are the unit
costs of collection, distribution, and transfer, respectively. Thehe first term of the objective function (29) represents the
PDN can then be formulated as the following 0—1 quadratiimear costs of collection and delivery, while the second term is

X,r €40, 1} for all 7 andk. (33)
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Fig. 6. Comparison of non-hill-climbing techniques for the CSP test problems.

the quadratic cost of transfering mail between sorting centectimbing Hopfield network (HCHN) was not found necessary
Constraint (30) ensures each postoffice is allocated to exadtly the PDN, due to the fact that there are relatively fewer
one sorting center, while constraint (31) makes sure exactbcal minima in the PDN as compared to the CSP.
p sorting centers are located. Constraint (32) ensures that a
postoffice is only allocated to a sorting center, and not ®. Heuristic and Neural-Network Approaches to the PDN
another postoffice which is not a sorting center.
Converting the objective function (29) into the standar
guadratic formeTx + x7' Qx revealsQ = CT ® V, where®
denotes the Kronecker product of the two matriegs,is the
vector obtained by concatenating the rows.gf= (0;+d;)Cj;
and

In this section, we briefly outline the form of simulated
gnnealing used for the results in Section VI-C. We also specify
the parameters which were chosen for the neural techniques.

1) Simulated AnnealingThe simulated annealing heuristic
which we apply to solve the PDN solves the location-allocation
problem by using centroids to determine the location of
the sorting centers and a simple exchange approach for the
allocation of the postoffices to those sorting centers. An initial

. ) _ feasible solution is obtained by locating the first two sorting
for postoffices; ands, allocated to sorting centefsandl, ré-  centers at the postoffices which are the furthest apart in

_spectively. The constraints (30)—(32) can readily be convertgd s of distance weighted by the mail volumes. The next
into the vector formAx < b, and can further be transformedsqting center is located at the postoffice which is furthest
into A*x* = b* by employing slack variables. While thefom the first two sorting centers in the same fashion. The
vectorx is of dimensionV?, the inequality constraints (32) process is continued ungil sorting centers have been located.
result in a furtherV? slack variables, and so the length of thenitial allocations are then made which minimize the distance
augmented vectact is 2N?. This augmented vector form hasyeighted by volume from each postoffice to a sorting center.
no effect of the objective function other than to add null rowghe injtial feasible solution is completed by relocating the
and columns to correspond to the slack variables (which dgrting centers to lie at the postoffice which is closest in
not effect the cost). Although the linear constraints are slightljistance to the centroid of each cluster.
different from those represented in (COP1), it will be shown The simulated annealing algorithm then proceeds by select-
that the neural techniques can still be applied. ing postoffices at random and reallocating them to another
The PDN can now be expressed in the standard quadrafigiting center if the cost of doing so decreases, or if the
integer form with linear constraints which is the required forrsoltzmann probability factor satisfies the requirements of
for the neural networks. In the following sections, we drop thée simulated annealing algorithm [20] allowing a temporary
augmented notation for simplicity and assume the vexttw increase in cost (this enables escape from local minima). The
already contain slack variables. The nature of the quadragientroids of each cluster are recalculated after each transition,
form is indefinite due to the fact that the mat€ contains and the sorting centers are relocated to the postoffices nearest
zero diagonals, since it is related to the distance matrixach centroid.
Consequently, in Section VI-C, the use of the commercial 2) Hopfield Network Parameters for the PDNFor the
optimization package GAMS/MINOS-5 cannot be expected #fficient Hopfield network simulation technique, HN [with
obtain the globally optimal solution, since it requires a positive(+) = 1 always], the value of the time-step for the steepest
definite form to guarantee globally optimal solutions. We usgescent is selected to ket = 0.0001. The neurons are again
the package merely as another local optimization technigimndtialized to small random perturbations around the center of
with which to compare the results of simulated annealinthe hypercube. Unlike the CSP, the PDN requires the use of
the Hopfield network, and the SONN. The use of the hilennealing to drive the solution toward a vertex, and the value

Cjr =7°Djr, Chj =7*Dy;, and Cr =~'Dy



1314 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 6, NOVEMBER 1998

e used to generate the parametérsaand ¢/ in the clipping The size of the neighborhood is identical for all postoffices,
function (17) is1075. and is decreased untjl= 1. 2 is selected to be equal .

The HCHN is not used for the PDN, since the HN yields For the Hopfield network section of the SONN, the “pro-
good quality solutions without the need for a continued searjgttion and clipping” algorithm utilizes the annealing function
for better quality local minima. (17) with a value ofe = 107°.

3) SONN Parameters for the PDNWhen mapping the
PDN onto the self-organizing framework described ig Results for the PDN
Section 1V, we first observe that the objective function and

constraints of the PDN are not in exactly the same form SA;hpal’tICUEll’ mitancte f(f)_f the_ Pt?N IS .C(;‘rfnpltitely spgcged
specified by the general problem class identified in Section y the humber of postofices in he regio X’ € require
mber of sorting centerg), the (x, ) coordinates of each

The form of the demand constraint has changed from a st L . . .
down the columns in the general form, to a sum down t stoffice in the Euclidean plane (from which the distances

diagonals in the PDN. These modifications can be eas tween postoffices can be calculated), the volume of malil

incorporated into the algorithm. For the SONN as applied ptween each O.f thaf_po_stof_flces V), and finally, the_unlt

the PDN, a postoffice is presented to the network, and tﬁgsts of collection, distribution, and transfer of mail. The
other poétoﬁices compete to determine which of them Wﬁ?sults presented in Table Il consider variations in all of these
be the hub for this postoffice. The first two terms of the Cogtarameters d(except the utnit costs which are held constant at
potential function (18) are simply the cost of assigning & — 52 7° = 0-5, andy’ = 0.4).

postoffice j* to a hub atk. This is the first derivative of the For V.= 10, wo different c_onflguratlon_s of ten postoffices
PDN objective function (29) were randomly generated in the Euclidean plane (named

configurationd 04 and10B). For each of these configurations,
two types of volume matrices are considered: a uniform
. (34) matrix (named10U—all elements are equal to unity), and

(v05+ + ;) Djes + ' <Z Z Viei Wi Dy
a nonuniform volume matrix whose elements were randomly

D i
generated (hametloN /). Results are presented for each of

Thus S
these combinations of parameters for= 2 andp = 3.
C(j*, k) = (v¢0;0 +7%dje)Djey Similarly, for N = 15, an extra five postoffices were added to
QU™ ky iy 1) =+'Vjui Dy the configurationd0.A and10.5 to generate the configurations

154 and 158, while five extra rows and columns (randomly
and M = N. Clearly, the natural tendency of the networlgenerated in the nonuniform case) were added to the volume
without the final term of the cost potential function will bematrices. The procedure was repeated Mr= 20 where
for all postoffices to try to assign themselves to their owanother five postoffices and corresponding mail volumes were
hub, since the first term of (34) will vanish. Since onlyof added to the combinations fd¥ = 15. Again, for N = 15
the postoffices can be hubs, however, oscillations will occuand N = 20 each of the instances of the PDN were solved for
For the PDN, the form of the final term of the cost potentiad = 2 and p = 3. The results for each of these instances
function needs to take into account the hubs which hawee presented in Table Ill for GAMS/MINOS-5, simulated
already formed, and permit a new hub to be formed only if it @nnealing (SA), HN, and the SONN. The column labeled
very much cheaper to allow it. The subset of inde}éss only  “Optimal” provides the exact global minimum found using an
nonempty ifs = j*, and then consists of the diagonal indexealternative mixed integer linear programming formulatifgj,
of the weight matrixW, except for the elemerit;. 4, i.e., while the remaining columns indicate the percentage deviation
W ={(p, q):p=aq, (p,q # (G~ j*)} For the case where from this optimal solution.
the mail volumes are uniform, and the problem becomes ondt is clear from Table Il that the modified Hopfield neural
of minimum distance only, the value gfis chosen according network is particularly well suited to this type of problem,
to the formula outperforming all of the other techniques consistently. In fact,

. d HN locates the optimal solution in all but two instances
(0o, +77d;) (35) (N =20, p =2, and configuratior3). It should be noted here

that the simulated annealing heuristic has not been optimized,

for all k andj, which is derived in Appendix B. For nonuni-and has been run using the same cooling schedule as the
form mail volumes, a value off = 0 does not inhibit a@uthors of the code originally specified for this problem [22].
convergence to a feasible solution, and is the value used. The simulated annealing results could no doubt be improved

For the PDN, the vectop is chosen to be uniform sinceif the cooling schedule was optimized. The SONN appears
it should be no more difficult to assign one postoffice tha® Perform competitively with SA and the GAMS/MINOS-
another. The remaining SONN parameters are selected®a§0Iver, but seems more suited to solving the PDN with
follows:

3 ~ min Dy,

4While the quadratic formulation us€§? binary variables and1 + N +

a(0) =0.9, alt+1) = 0.95a(t) NZ2) linear constraints, this linear formulation use¥? + N?) variables
of which N2 are binary, and1 + N + 2N?) linear constraints. For small
a(0) = 3.0, o(t+1) =0.950(%) sized problems this difference has little effect on computation time, but as

the problem size is increased, the linear formulation will quickly become
n;(0) =p+N/5  mt+1) =n;(t) - 1L intractable.
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TABLE I
ResuLTs oF PDN TesT ProBLEMS FOR GAMS/MINOS-5, SA, HN,AnD SONN

N | p| V | configuration | Optimal | GAMS SA HN | SONN
10} 2 U A 981.92 0.0% 6.4% | 0.0% 0.1%
B 1542.99 5.1% 0.0% | 0.0% 1.2%
NU A 53300.0 5.5% 3.3% [ 0.0% 3.3%
B 66519.19 0.0% 0.0% | 0.0% 0.0%
3 U A 769.49 0.0% 201% | 0.0% | 0.0%
B 1255.16 0.2% 0.0% | 0.0% 0.0%
NU A 40857.80 0.0% 18.8% | 0.0% | 14.5%
B 49408.13 0.0% 13.8% | 0.0% | 12.2%
1512 U A 2244.08 0.9% 0.0% | 0.0% 0.0%
B 4560.90 0.1% 0.0% | 0.0% 0.1%
NU A 130514.62 0.0% 2.3% | 0.0% 1.6%
B 226894.42 0.0% 0.0% | 0.0% 0.7%
3 U A 1820.01 0.0% 0.0% [ 0.0% 5.6%
B 3822.23 0.2% 7.7% | 0.0% 0.0%
NU A 107587.85 0.1% 0.6% | 0.0% 5.3%
B 177406.10 0.0% 0.0% | 0.0% 0.5%
20 1 2 U A 3958.67 1.8% 0.0% | 0.0% 0.0%
B 9170.87 04% | 0.0% | 0.1% | 0.1%
NU A 222029.80 3.4% 1.4% 10.0% 1.4%
B 467362.41 0.1% 49% | 0.1% 0.1%
3 U A 3331.02 1.6% 5.9% | 0.0% 1.6%
B 7156.63 0.01% | 14.8% | 0.0% 0.0%
NU A 184236.23 1.5% 3.3% | 0.0% 0.0%
B 355666.89 | 0.01% 0.1% | 0.0% 0.1%
a uniform volume matrix, rather than the nonuniform case. VIl. CONCLUSIONS

The difference that the nature of the volume matrix makes 914 this paper, we have demonstrated that neural-network

the complexity of the problem is equivalent to the diﬁerencfechniquescan compete effectively with more traditional
in complexity between a TSP whose distances are eithgt risiic solutions to practical combinatorial optimization
Euclidean or random. An explanation for the slightly poorggqpiems. We have seen how the Hopfield network has evolved
performance of the SONN in the nonuniform problems migh{, the stage where is can now be guaranteed to find a feasible
be that the choice of3 needs improvement. Whilg was gq|ution to the problem, and we have extended the theory to
chosen according to (35) for the problems with uniforapapie the quality of those solutions to be improved via a hill-
volume, a value off = 0 was used for the nonuniform ¢jimping modification to the internal dynamics. We have also
problems, since convergence problems do not seem to agggsented an SONN which, unlike existing self-organizing
when the volume matrix is nonuniform. Nevertheless, t"&pproaches to optimization, is able to generalize to solve a
performance of the SONN is still very competitive with theyroad class of 0-1 optimization problems, rather than just the
SA heuristic and GAMS/MINOS-5. TSP or related Euclidean problems. A new set of theoretical
For each of the techniques GAMS/MINOS-5, SA, HN angemarks has been proposed to address the convergence of the
SONN, the average percentage deviation from the optimal sSs&NN.
lution over all the test problems is 0.87, 4.3, 0.008, and 2.02%,\while it is important to test techniques on theoretical
respectively. While most of the results presented in Table Broblems such as the TSP, it is equally important not to let the
are within 5% of the optimal solution, the difference in theesults of such tests dominate the future direction of a field of
nature of the solution is quite subtle. Typically a large variatioiesearch, or inhibit the application of a potentially powerful
in the percentage deviation from the best found solution onfgchnique to solve real-world problems. To date, the accepted
corresponds to a difference of a single location or allocatiowisdom on the suitability of neural networks for solving
Suboptimally assigning just one postoffice to a sorting centeésmbinatorial optimization problems has been fairly mixed.
can account for a significantly poorer solution (as in the caggrthermore, there is a relative scarcity of literature which uses
whereN = 10, p = 3 and the volume matrix is nonuniform). practical optimization problems as the benchmarks by which to
The results also confirm the expectation that network costsst a neural approach. This paper has attempted to address this
can be considerably reduced by allowing more sorting cent¢ssue by solving two sample practical optimization problems
(although the initial setup costs of constructing additionathich have arisen from industry. In previous work [34], [35],
sorting centers is not included in the objective function). Bywe have solved other practical optimization problems and
including such set-up costs, it should be possible to determieached the same conclusions. Comparative results between
the critical value ofp at which a minimum cost for the PDN the Hopfield and SONN approaches against simulated anneal-
can be attained. ing and the commercial optimization package GAMS/MINOS-
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5 have been presented and discussed. These results show quitéting the higher order terms which vanish for limitingt),

clearly that the neural approaches can match the performamee arrive at an expression fak* as

of simulated annealing, and can even outperform it in many
instances. Combining this knowledge with the fact that neural
networks have the potential for rapid computational power

AF = —aft ZZZthJa

mo

and speed through hardware implementation, it is clear that . Z pi([xt); — kaj) .
neural-network techniques are immensely useful for solving X CVy,

optimization problems of practical significance.

APPENDIX A
PROOFS

Proof of Remark 1:
Wi, o (t+1) = Wy e (8) + AWy e (1)
= Wi, j» (L — alns, 1) + alnys, 1),
Therefore, if

then
alnge, £) S Wi (t+1) < 1
Since
a(t)p« Vi — Vi
oty 1) = B2 et
then0 < Wy, ;+(¢+1) < 1 provided0 < «(¢) < min D; and
0<p; <1 O

So the expected value @kF is

E(AF)= Y m(AF)

X EVy

RGP IO IPILTEES

mo

- Y il - W)

X €Vy

— a(®)|Vw, , FII%.

APPENDIX B
DERIVATION OF 3 VALUES FOR SONN

For the CSP: /3 needs to be chosen so that ;. or Vy_;«
are not always going to be the least expensive cost potentials.

Since
> Wi, <1
qFj*

Proof of Remark 2:If 3 is large enough, oscillations will (the weight matrix is feasible each time the cost potential is

be dampened ag — oo, so that(W], — x if & is in
the winning neighborhood. Thu¥} ;» — ;. = 1 and
WkJ — T = 0 (fOI’ J 75 J*)
Near a vertex then,
(1= Wi () =0
o)
AWy (t) — 0 ast — oo

if W(¢) approaches a vertex as— oc. O
Proof of Theorem 3:Let A[(Vi,; — Vi, ;). J*] be de-
noted byh(k, j, j*). Using

Wi, j — Wi j + a(t)h(k, j, 7)(z; — Wi, ;)
the change in* due to an update of the weight, ; is

AF =422 2 Wk 3 7)

mo

> pz{—2a( g — W, )il

X €V

+ 2ah(k, ]7 ]*)(.TJ - WkJ)WkJ
+a®(Oh?(k, 4. i) (@ '—Wk,j)Q}

=—zzzh

mo

Y () (@ — W) (Bl — Wi, )

X CVy

+ o(a?(t)}.

calculated), then as a worst case, the first or last rows will
always win provided

‘/Lj* +/3 < Vk,j* or Vn,j* +/3 < Vk,j*

for k # 1 or N. We need to find wher@ > (min V;, ;) —
V1,4« for k # 1 and then the first row will not always win,
and the oscillations caused by all car models trying to win the
first row can be controlled. Now

/3 >Vk,j* — ‘/i,j*

N N
=Y Paci) o Wi o = > Py« Wi o
=1 =1

Suppose the next cheapest position to sequence car rjiodel
(after the first and last positions) is row= 2. Then
/3 > Pl,j* (lej* — W27j* =+ ngw)
+ PQJ*(WLLJ* — WgJ*) +P37j*(W57j* — W47j*)
+---+ P]\T,QJ'* (W]\r,j* — W]\T,Lj*)
- P]\f_17j* W]\Zj* B
Due to the special structure of the matix i.e., Piy1 j+» =
P; ;+ — 2, this condition can be further simplified to
[3 > P, j*(Wl gt = W, j*) +2(W37j* + 4 WN,j*)
> P e +2(Dje —1).
If 7~ = 3itwill be cheapest if the first row (and/or the last row)

is the winner, since it is relatively expensive for any separation
rule violations. But if j* = 2 (the next most expensive car
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model), it would be preferable if the first row did not alwayss]
win, to enable a model 3 car to occupy the first position in the
sequence. We therefore selgtt>- P o + 2(D; — 1). 6

For the PDN: For the PDN, we need to find the critical
value of g at which all N diagonal element of the weight 7]
matrix no longer share the sorting centers evenly (as is
the natural tendency of the network with = 0). When [8]
a postoffice j* is presented to the network, it is cheapest
to allocate it to a sorting center also at postoffice since [
there is no linear contribution to the cost. However, if all the
postoffices are selected as sorting centers, the network VH_B]
converge to a stable nonintegral solution with valueg AV
along the diagonal elements of the weight matk

For &k = 5~ to be the winning node when presented witht
postoffice ;*, we require

[12]
Vi o +8 > Wii < Vi js

el [13]

for all nodesk # j*. Substituting into (34), this condition [14]
becomes

o Z Z Vis,iWiaDje 1 | + 8 Z Wi, (15]

@ l i
[16]
< (’YCO]'* +’Yddj*)Dj*7k —i—’yt ZZV}*JWZ‘?ID;CJ .
i [17]

If the matrix of volumes is uniform, and the problem becomes
one of minimum distance only, then we can make the simplits]
fying assumption that* is neark in Euclidean space, singé
should only be considering sorting centers which are nearélsgt]
in distance. From this assumptiod);. ; ~ D ; and the

inequality reduces to [20]
c 21
BN Wis < (v°0j +~%d;)Dje [21]
ikt [22]
for all £ # j*. The condition fork = j* not to necessarily
be the winner is therefore [23]
/3 Z Wi,i 2 (’YCO]'* +’7de* )Dj*,k [24]
i#j*
for somek # 5*. Sincep—1 < Ei#* Wi i < p, thenk = j* |25
will not always be the winner provided
gon 000+ v'd;+) [26]
b
for somek # j*. 27]
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