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Optimization with Applications
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Abstract—After more than a decade of research, there now
exist several neural-network techniques for solving NP-hard com-
binatorial optimization problems. Hopfield networks and self-
organizing maps are the two main categories into which most of
the approaches can be divided. Criticism of these approaches in-
cludes the tendency of the Hopfield network to produce infeasible
solutions, and the lack of generalizability of the self-organizing
approaches (being only applicable to Euclidean problems). This
paper proposes two new techniques which have overcome these
pitfalls: a Hopfield network which enables feasibility of the solu-
tions to be ensured and improved solution quality through escape
from local minima, and a self-organizing neural network which
generalizes to solve a broad class of combinatorial optimization
problems. Two sample practical optimization problems from
Australian industry are then used to test the performances of the
neural techniques against more traditional heuristic solutions.

Index Terms—Assembly line, combinatorial optimization, Hop-
field networks, hub location, NP-hard, self-organization, sequenc-
ing, traveling salesman problem.

I. INTRODUCTION

T HE idea of using neural networks to provide solutions
to difficult NP-complete optimization problems has been

pursued for over a decade. Hopfield and Tank’s seminal paper
[18] in 1985 demonstrated that the traveling salesman problem
(TSP) could be solved using a Hopfield neural network. Yet the
technique, which requires minimization of an energy function
containing several terms and parameters, was shown to often
yield infeasible solutions to the TSP [38]. For the remainder
of the decade, researchers tried to either modify the energy
function [3], [37] or optimally tune the numerous parameters
involved [19], [23] so that the network would converge to
a feasible TSP solution. Subsequent efforts to confine the
Hopfield network to the feasible constraint plane have resulted
in a method which can now ensure the final solution is feasible
[6], [13].

Despite this success, however, the reputation of the Hopfield
network for solving combinatorial optimization problems does
not appear to have been resurrected. Recent results have shown
that, unless the TSP is Euclidean, the quality of the solutions
found using a Hopfield network is unlikely to be comparable
to those obtained using traditional techniques [14]. So while
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the feasibility issue of Hopfield networks has been essentially
eliminated, the question of solution quality still raises some
doubts as to the suitability of the technique.

Of concern here is the possibility that Hopfield networks
are not being used to solve practical optimization problems
which have arisen from industrial situations, simply because
the literature appears to be focused on the deficiencies of the
technique for solving the TSP. In recent work [33] we have
argued that the TSP may not be an appropriate benchmark
problem anyway, due to the existence of an alternative linear
formulation which makes comparisons unfair and biases the
findings against neural and other techniques using a nonlinear
formulation. We do not advocate the application of a tech-
nique which is known to yield inferior solutions. We are,
however, observing that the performance of neural networks
for solving practical optimization problems has been relatively
untested. For many practical NP-complete problems, heuristic
approaches are employed due to the need for rapid solutions.
Obtaining the globally optimal solution is not as imperative
as arriving at a near-optimal solution quickly. Certainly, one
of the principal advantages of neural techniques is the rapid
computation power and speed which can be obtained through
hardware implementation, and this consideration is even more
valuable in industrial situations. The relative scarcity of lit-
erature comparing the performances of neural techniques to
more traditional methods for practical optimization problems
suggests that this advantage is not being realized.

A similar focus on the TSP is found in the literature relating
to the use of self-organizing approaches to optimization [2],
[10], [12]. In this case, the reason is not simply because of
the benchmark status of the TSP, but more because the vast
majority of these approaches are based upon theelastic net
method[8]. Kohonen’s principles of self-organization [21] are
combined with the concept of an “elastic band” containing a
circular ring of neurons which move in the Euclidean plane
of the TSP cities, so that the “elastic band” eventually passes
through all of the cities and represents the final TSP tour. Such
approaches rely upon the fact that the “elastic band” can move
in Euclidean space, and that physical distances between the
neurons and the cities can be measured in the same space. Any
self-organizing approach which uses the elastic net method as
its basis will thus be greatly limited in its generalizability.

Recently, we have proposed a new self-organizing approach
to combinatorial optimization which generalizes to solve a
broad class of “0–1” optimization problems [32]. This self-
organizing neural network (SONN) is combinatorial in nature,
operating within feasible permutation matrices rather than
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within the Euclidean plane. It is ideally suited to 0–1 se-
quencing, assignment, and transportation problems, and is
thus applicable to a wide range of practical optimization
problems. New theoretical results are provided in this paper
to demonstrate the convergence properties of our SONN.

In this paper, we are principally concerned, however, with
providing an evaluation of the comparative performances
of an improved Hopfield network and the SONN against
traditional techniques for practical optimization problems. If
neural techniques are to be employed by industry to solve
practical optimization problems, (where their rapid compu-
tational power can best be utilized), we must be able to
demonstrate their suitability as a technique which finds near-
optimal solutions of practical problems, rather than just the
TSP. In Section III, we describe the Hopfield energy function
representation which can ensure a feasible solution [13], as
well as a method of escaping local minima of the energy
function in order to improve solution quality. Details of the
SONN approach are provided in Section IV along with new
convergence results. The first of the practical applications is
considered in Section V. Here, the car sequencing problem
(CSP), which involves the optimal sequencing of different
car models along an assembly line, is described. Results
comparing the performance of the improved Hopfield network,
the SONN, simulated annealing, and an exact solution are
presented and discussed. A second practical application is
considered in Section VI. Here a postal delivery network
is described, in which a set of postal districts need to be
allocated to mail sorting centers, and the location of the sorting
centers needs to be determined in order that the total freight
costs of the network are minimized. Comparative results are
again presented and discussed. The two practical applications
from Australian industry have been chosen as sample NP-
hard practical problems. In previous work [34], [35], we have
solved other applications with similar results. Conclusions as
to the suitability of neural techniques for solving practical
optimization problems are drawn in Section VII.

II. A CLASS OF PROBLEMS

Consider a 0–1 combinatorial optimization problem with
the general form (COP1)

minimize

(1)

subject to (2)

(3)

(4)

where is the element in the th row and th column of
the -dimensional 0–1 matrix , the objective function

is a quadratic cost function of the solution matrix,
is the linear cost associated with having “on,”

and is the cost associated with having and
“on” simultaneously. is an integer representing the

total demand for the th column, so that

The linear constraints specify that there be exactly one matrix
element “on” in each row (assignment constraints), and exactly

elements “on” in the th column (transportation con-
straints). These constraints are commonly encountered in many
optimization problems including assignment, sequencing, and
resource allocation problems. Clearly, the TSP constraints are
represented if , , and the problem
becomes a quadratic assignment problem. As will be shown
in subsequent sections of this paper, the proposed techniques
generalize to solve problems with other types of linear con-
straints such as inequalities. For the sake of clarity, however,
the techniques will be explained using the general form of
(COP1).

An alternative representation of this problem can be derived
by replacing the solution matrix with a solution vector

. The general form of the 0–1 combinatorial optimization
problem then becomes (COP2)

minimize (5)

subject to (6)

and (7)

where is the length of the solution vectorobtained
by concatenating the rows of the solution matrix. , , ,
and are readily derived by converting the objective function
and constraints of (COP1) into vector form.

In the following sections of this paper, we will propose
an improved Hopfield network, a new self-organizing neural-
network approach, and simulated annealing heuristics to solve
particular applications which can be formulated in the general
forms of (COP1) and (COP2).

III. A H OPFIELD NETWORK APPROACH

The Hopfield network [16], [17] comprises a fully intercon-
nected system of neurons. Neuron has internal state and
output level (bounded by zero and one). The internal state

incorporates a bias current (or negative threshold) denoted
by , and the weighted sums of outputs from all other neurons.
The weights, which determine the strength of the connections
from neuron to , are given by . The relationship between
the internal state of a neuron and its output level is determined
by an activation function , which is bounded below by
zero and above by one. Commonly, this activation function
is given by

where is a parameter used to control the gain (or slope) of
the activation function.
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Hopfield [17] showed that the system for hardware imple-
mentation is determined by the resistance-capacitance equa-
tions

(8)

(9)

where , is the resistance, and is the capacitance.
For high-gain activation functions ( ), the output values
approach either zero or one, and the state space of the network
outputs is the set of corners of the-dimensional hypercube

. The final state of the network is, therefore, one of
these corners.

Hopfield networks can be used as an approximate method
for solving 0–1 optimization problems because, provided the
weights are symmetric ( ), the network converges
to a minimum of the energy function

(10)

The proof of stability of such continuous Hopfield networks
relies upon the fact that is a Lyapunov function (see
[17]), provided that the inverse function of (the first
derivative of the activation function) exists.

Furthermore, if there are no self-connections ( for
all and , although this condition is often relaxed in practical
situations), in the high-gain limit of the activation function
these minima will be at or near a vertex of . It is
noted that negative do not interfere with the Lyapunov
descent, but may force the network to converge to an interior
local minimum. In this case, annealing techniques are usually
employed to drive the solution trace toward the vertices.

Hopfield and Tank [18] showed that if a combinatorial
optimization problem can be expressed in terms of a quadratic
energy function of the general form given by (10), a Hopfield
network can be used to find locally optimal solutions of
the energy function, which may translate to local minimum
solutions of the optimization problem. Typically, the network
energy function is made equivalent to the objective function
which is to be minimized, while each of the constraints of
the optimization problem are included in the energy function
as penalty terms. Clearly, a constrained minimum of the
optimization problem will also optimize the energy function,
since the objective function term will be minimized and
constraint satisfaction implies that the penalty terms will be
zero. Unfortunately, a minimum of the energy function does
not necessarily correspond to a constrained minimum of the
objective function due to the fact that there are likely to
be several terms in the energy function which contribute to
many local minima. Thus, a tradeoff exists between which
terms will be minimized completely, and feasibility of the
network is unlikely unless the penalty parameters are chosen
carefully. Furthermore, even if the network does manage to
converge to a feasible solution, its quality is likely to be poor
compared to other techniques, since the Hopfield network is
a descent technique and converges to the first local minimum
it encounters.

A. An Improved Hopfield Network Approach

Problems of infeasibility and poor solution quality can
be essentially eliminated by an appropriate form of energy
function and modification of the internal dynamics of the
Hopfield network. By expressing all constraints of the problem
in a single term, the overall number of terms and parameters
in the energy function can be reduced. Consider the general
energy function

(11)

where

(12)

(13)

The first term of the energy function is the objective function,
while the second term measures the deviation of the vector
from the constraint plane given by . The advantage
of this energy function is that only one penalty parameter,

, needs to be selected. If is large enough, then validity
of the solution is ensured, since the constraint term will be
forced to vanish. Hence, the solution will necessarily lie on
the constraint plane. Energy functions of this nature have been
suggested by Aiyer [1] and Gee [13].

We now propose to modify the internal dynamics of the
Hopfield network to permit temporary increases in this energy
function in order to allow escape from local minima. The
motivation for this is that the Hopfield network cannot be
expected to compete with other hill-climbing heuristics such
as simulated annealing while it remains a strict Lyapunov
descent algorithm. This improved hill-climbing Hopfield net-
work (which we refer to as HCHN) provides a mechanism for
escaping local minima by varying the direction of motion of
the neurons in such a way that, while descent of the energy
function is always permitted, ascent of the energy function
is permitted often initially and is less likely as the algorithm
proceeds. Clearly, this is similar to the concept of simulated
annealing. The modified differential equation is given by

(14)

(15)

Here, the decay term from (8) has been dropped,
since it has been shown to inhibit convergence of the network
[36]. Furthermore, the sigmoidal activation function has been
replaced by the piecewise linear function

(16)

so that within the unit hypercube. The modified
differential equation means that the direction of the change in
any neuron is now controlled by a new parameter , where

random and

Fig. 1 shows how the value ofchanges with time for .
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Fig. 1. Graph ofk(t) = 1 � 2e�t=� with � = 40.

Now,

for within the unit hypercube, and

for confined to the constraint plane by a large value of.
Thus, steepest descent and ascent of the objective function
on the constraint plane are achieved when ,
respectively. Initially, , and so is randomly
selected from the range [1, 1]. Consequently, the energy
value (which is equivalent to the objective cost providedlies
on the constraint plane) will often increase initially. As ,
however, , and so will also approach unity
which is needed for strict Lyapunov descent. The length of the
Markov chain (or the number of random walks permitted in
multidimensional space) at each point in time is held constant
at a value which depends upon the size of the problem.
Thus, the modified Hopfield network HCHN allows random
increases in energy initially, with such increases becoming
less likely as time proceeds, until finally the network tends
toward a steepest descent algorithm. Provided the value of the
parameter is large enough, the convergence trace will be
forced to lie on the constraint plane, resulting in a feasible
solution.

B. Simulation Issues

It has been observed [13] that while this treatment of the
energy function is very suitable and promising for an electronic
circuit representation of the Hopfield network, simulation
of this system on a digital computer is highly impractical.
The large value of , which is necessary to confine the
trace to the constraint plane, results in correspondingly large
values for in (8) when strays marginally from the
constraint plane. Therefore, a large time-step for the discrete
time simulation of (8) is bound to lead to unstable oscillations
around the constraint plane. The extremely small size of the
time-step which is necessary to avoid such oscillations makes
this approach highly impractical to simulate on any digital
machine.

The approach can be efficiently simulated, however, if we
consider that the Lyapunov descent of the energy function (11)
for large , is analogous to steepest descent of the objective

function while is confined to the constraint plane.
Variations of this approach utilizing a strict descent dynamic
have been considered independently by Chu [6] and Gee [13].

It should also be noted here that an annealing technique
may be necessary in order to drive the convergence trace
to a vertex of the hypercube. This will be necessary if the
matrix of weights is neither positive definite nor positive
semidefinite. Since annealing of the standard Hopfield network
is usually created by slowly cooling the value of the activation
function parameter , we propose a further modification to
the piecewise linear activation function to create an annealing
effect. The activation function in (16) is replaced by

.

(17)

Initially and so that . The annealing
effect is created by allowing the values ofand to slowly
approach one another by iterating

after each pass through the clipping function .
We now present an algorithm for the efficient simulation of

the modified Hopfield network HCHN for solving problems
of the form (COP2).

C. The Algorithm

Step 1) Initialize the parameters of the network as

obtained by expanding out (11) and comparing the
coefficients to the standard energy function (10),

, , , , ,
.

Step 2) Update , and generate
randomly from the range .

Step 3) Update neurons according to

This will most likely take off the constraint plane.
Step 4) Project back onto the constraint plane, and within

the unit hypercube, according to the iterative pro-
cedure shown in Fig. 2. This is the projection and
clipping algorithm suggested by Gee [13].

Step 5) , . Repeat from Step 3) for
one Markov chain length.

Step 6) Increase and repeat from Step 2, until
and for all .

Clearly, this procedure is very similar to the dynamics of the
modified Hopfield network HCHN if implemented in hardware
with a large value of . The network updates itself in a
systematic way which performs simulated annealing on the
energy function, while the neurons are forced to assume a
feasible configuration, just as they would be for largein
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Fig. 2. Flowchart representation of Step 4) of the HCHN algorithm.

the Hopfield network. Thus, the algorithm can be seen as an
efficient and convenient simulation approach to the modified
Hopfield network with large . The feasibility of the final
solution can be guaranteed, since the solution trace is confined
to the constraint plane, and 0–1 solutions can be encouraged
using the annealing function without excessive com-
putation. Furthermore, the network is still implementable in
hardware, making the potential for rapid execution speed a
further advantage.

IV. A SELF-ORGANIZING NEURAL-NETWORK APPROACH

In this section we propose a new SONN based upon
Kohonen’s self-organizing feature map [21], and modified so
that the network is able to solve 0–1 optimization problems
of the general form (COP1) presented in Section II. We first
discuss the ideas behind the technique, and present the network
and the algorithm. We then present some new theoretical
results which address the issues of convergence and stability
of the network.

Consider the general form of the problem (COP1). Any
matrix which satisfies the constraints of (COP1) will have
as its rows a permutation of the set of-dimensional vectors

represented times

represented times
...

represented times

Such a feasible solution matrix we call apermutation matrix.
All feasible solutions to (COP1) (and hence all permutation
matrices) lie at vertices of the-dimensional unit hypercube
(where ) which also intersect the constraint plane.
Since is integer valued for all , the constraint set forms an
integral polytope.1 Suppose we allow a continuous approach

1The proof of this involves rewriting the constraints in terms of vector
variablesx so that the constraints can be expressed asAx = b, and showing
that the matrixA is totally unimodular.

Fig. 3. Architecture of SONN.

to such a vertex from within the unit hypercube, starting from
a point on the constraint plane and inside the unit hypercube (a
feasible, noninteger solution), and gradually moving along the
constraint plane to approach a feasible vertex. Let us denote the
continuous variable (matrix element) in the interior of the unit
hypercube by , so that at the vertices.
Essentially, represents theprobability that the variable in
the th row and th column of the matrix is “on.” It is the
matrix of probabilities (weights), , to which we will apply
Kohonen’s principles of self-organization, modifying existing
definitions to enable the process to solve 0–1 optimization
problems. The SONN drives to the cheapest vertex, while
employing Hopfield descent on an energy function to ensure
that also lies on the feasible constraint plane. As such,
this self-organizing neural approach can be seen as aninterior
point method.

A. The Network

The architecture of the SONN (shown in Fig. 3) consists of
an input layer of nodes, and a linear array of output
nodes. The output nodes represent the row indexes of the
solution matrix, and the input layer represents thecolumns
for the given problem. The weight connecting input nodeto
node of the output layer is given by .

Unlike other (elastic net based) self-organizing approaches,
the nodes do not move in Euclidean space. Rather, they are
fixed in this configuration, and the weights of the network are
adapted. Rows of the permutation matrix are presented to the
network through the input layer, and the nodes of the output
layer compete with each other to determine which row of the
solution matrix can facilitate the input vector with least cost.
The weights are then adapted to reflect this decision using the
neighborhood topology.

Suppose we present a row of the permutation matrix (with
a “1” in column ) to the network, and for each nodeof the
output layer, we calculate which is a linear combination
of the cost to the objective function of assigning the input
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vector the row , and the cost (to convergence) of potentially
unsettling the current values of the weight matrix.

Definition 1: The cost potential, , of node for a
particular input vector ( , , ) is

(18)

where is a parameter to be selected, andis a subset of
the indices whose weight adaptation at that time could affect
the convergence and stability of the network. This subset is
dependent upon the structure of the problem, and the natural
tendencies of the network for a given type of problem. In
Sections V and VI, we will utilize two different subsets for

which make use of the underlying structures of the two
applications.

Definition 2: The winning node, , of the output layer is
the node with minimum cost potential for a particular input
vector. That is

for all other nodes and fixed

The last term of (18) is needed so that the winning node is
not just the cheapest row in which to assign the vectorat
a particular instance in time (which may cause oscillations if
certain rows are too popular), but also considers the current
weight matrix and attempts to optimize around its current
values. Taking into account thehistory of the weight matrix
in this manner has been found to aid convergence.

Definition 3: The neighborhoodof the winning node, ,
is the set of nodes (closest neighbor to
farthest neighbor) such that

where is the size of the neighborhood for column.
Thus, the neighborhood of the winning node is not defined

spatially, according to the physical architecture of the network,
but is only defined once the cost potential of each node in the
output layer has been calculated and ranked for a particular
input vector. Therefore, winning nodes and the neighborhood
are determined by competition according to the objective
function, and the weights are modified according to Kohonen’s
weight adaptation rule within the winning neighborhood. The
size of the winning neighborhood is dependent upon which
row of the permutation matrix is currently under consideration.

At the end of the Kohonen weight adaptations, the weight
matrix has moved in a direction which has most likely
taken off the constraint plane and so the solution is
infeasible. The next stage of the SONN involves the weights
of the other nodes then organizing themselves around the
modified weights so that the matrix of network weights
remains a feasible solution to the problem at all times. This
can be achieved in hardware2 via a Hopfield neural network.

2Efficient simulation of the network on a digital computer can be achieved
by replacing the Hopfield network with the algorithm described in Section IV-
B with no hill-climbing.

Transforming the weight matrix into a vector (which
represents the states of the continuous Hopfield network), we
perform random and asynchronous updates of(excluding
the weights within the winning neighborhood) to minimize
the energy function

(19)

where represents the projection of onto the
constraint plane . The Hopfield network here does
not need to employ the hill-climbing dynamic introduced in
the previous section of this paper, since we only need to
arrive at a point on the constraint plane. Once the energy
function has reached its minimum (so thatlies on

), we return to the Kohonen updating stage, presenting
another randomly selected row of the permutation matrix to
the SONN, determining the winning node and its neighbors,
and modifying their weights. The entire process is repeated
until the network weights stabilize to a feasible 0–1 solution
which is a local minimum of the optimization problem.

During convergence, the magnitude of the weight adapta-
tions, and the size of the neighborhoods is gradually decreased.
Initially, the size of the neighborhood for each column of
given by is large, but is decreased

linearly until (the demand for column) for all .
It is worth noting that this self-organizing neural approach is

inherently stochastic in nature, since the weight modifications
made in the SONN are completely dependent upon the order
in which the rows of the permutation matrix are presented.
Consequently, the network can be run several times to arrive
at different local minima.

B. The Algorithm

Step 1) Initialize weights of the network as

thus giving an initial feasible (noninteger) solution.
Step 2) Randomly select a row from a permutation matrix.

Call this vector (input vector). Find the column
which is “on,” i.e., .

Step 3) Calculate thepotential for each node in the
output layer according to (18).

Step 4) Choose winning node, , (by competition) such
that

and identify its neighboring nodes

where is the size of the neighborhood
for .

Step 5) Update weights in neighborhood of winning node
according to
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where

(a modified version of Kohonen’s SOFM updat-
ing rule). and are monotonically decreasing
and positive functions of time. is a normal-
ized weighting vector used to help the network
decide how to break ties for a node. All other
weights (not included in neighborhood updating)
have . The modified weights are

Step 6) The weights will no longer lie on the constraint
plane, so we employ a Hopfield neural network to
enforce feasibility. With a large parameter,
is modified around the weight adaptations of the
SONN so that .

Step 7) Repeat from Step 2) until all rows of the
permutation matrix have been selected as input
vectors. This is one epoch. Repeat forepochs.
Decrease and geometrically.

Step 8) Repeat from Step 2) for another permutation matrix
until , . This represents a stable
convergence of the weights for a given neigh-
borhood size. Decrease the neighborhood sizes
linearly for all .

Step 9) Repeat entire process until ,
.

C. Convergence Properties

Convergence of Kohonen’s SOFM has been proven by
several researchers [7], [28], and since the weight adaptations
in Stage 1 of the algorithm are an exact implementation of
the SOFM (with modification to the criteria for winning node
and neighborhood selection), it too converges under similar
conditions. Stage 2 of the algorithm (the Hopfield network
with no hill-climbing) also converges to a stable solution since
the energy function can be shown to be a Lyapunov function,
which never increases and is minimized when the states of the
Hopfield network are stable [17]. Unfortunately, when these
two neural networks are joined together, as in our SONN
approach, the convergence of each is potentially disrupted.
Consequently, exposition of a formal proof of convergence of
the SONN is unlikely. Instead, we put forth some observations
which are the foundations of an intuitive explanation of the
apparent convergence of the algorithm. Proof of the following
remarks and theorems can be found in Appendix A.

Remark 1: If initially lies in or on the unit hypercube
, then is bounded above by one and below by

zero, and will stay within the hypercube provided

and

Remark 2: If approaches a feasible vertex of
as , then , and hence, the algorithm
converges.

is likely to approach a vertex since, if is chosen
to be large (at or near its maximum value of min by
Remark 1), then many updated weights will quickly approach
1, and the others will be forced to approach zero in Stage
2 to maintain feasibility of the weight matrix. Furthermore,
once a weight is dominant, it is likely to be selected again
for weight adaptation (it is generally cheaper than increasing
the value of surrounding weights), which will result in the
strongest weights getting stronger, and the weakest weights
dying off. Thus, is able to approach a vertex of the
hypercube , and will converge to a stable solution by
Remarks 1 and 2.

The last remark assumes that the weightsapproacha vertex
in a continuous sense, without any oscillations or jumps. The
convergence of the network can be controlled to this effect by
suitable choice of (the larger the value of the less likely are
oscillations), and also by a small step size in the updating
rule. If is small enough, then Stage 1 will create only a
very slight change in the weight matrix. Consequently, the
weights will not have moved very far off the constraint plane,
and Stage 2 will not need to perturb the weights too far from
their previous values in order to restore feasibility. In this way,
it can be seen that a small value of generates a limiting
behavior of the SONN which is only a slight perturbation from
the behavior of Stage 1 alone. It is under this assumption that
we present the following mathematical results.3

Suppose that an input vector has probability of occur-
rence given by , so that

(20)

where is the Dirac delta function.
Definition 3: For a given node of the output layer, the

Voronoi set comprises the set of all input vectors for
which node is selected in the winning neighborhood.

Definition 4: The three-dimensional neighborhood function
is defined to be

if
otherwise.

The nature of this neighborhood function is shown in Fig. 4.
Remark 3: Provided the learning step size is small,

there exists a function given explicitly by

(21)

3Similar results have been derived for the SOFM [25], [29] which have been
adapted here to include the optimization process, and the two-stage nature of
the SONN.
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Fig. 4. Three-dimensional neighborhood function for SONNh[(Vk; j � Vm ; j); j?]

whose expected change given a change in the state ofunder
a single learning step is given by

(22)

This result tells us that, on average, decreases and the
learning process tries to find states which minimize. Any
individual learning step can lead to an increase in, but the
overall trend is for the network to decrease. Clearly, this
is very similar to the concept of simulated annealing, where
the learning step size plays the role of temperature. is
continuous, but only piecewise differentiable. Furthermore, all
local extrema (where is differentiable) are local minima, and
the nature of the updating provides an opportunity to escape
from local minima.

Thus, for a small learning step size , the SONN can
be seen to converge approximately like the functionsince
a small step off the constraint plane during Stage 1 of the
SONN requires only a small step during Stage 2 in order
that feasibility be restored. Under this premise, Stage 2 of
the SONN can be seen to have a negligible effect on the
convergence trace of the network if is small enough.
Remark 3 demonstrates that this system will then converge to
the minimum of the function .

Addressing the issue now of whether or not this convergence
minimizes the objective function, we have the following
remarks.

Remark 4: Since then any weight modifica-
tions in Stage 1 of the SONN will increase the objective
function.

This is only a temporary increase in the objective function,
since during Stage 2 of the SONN, other weights will be
decreased in order to restore feasibility, and this will cause
a decrease in the objective function.

Remark 5: Since

assuming that the network is in a state of convergence, then
the partial derivative is such that

and

It can be seen from this last remark that selecting the
winning node by locating the minimum is akin to
selecting the node which will minimize the (temporary)
increase in when is increased.

Thus the SONN has been shown to converge provided the
learning step size is small, in which case the two-stage
process can be viewed as a single stage (Stage 1) under a slight
perturbation. Stage 1 attempts to move in the direction which
will minimize the temporary increase in the objective function.
Oscillations can be controlled or prevented by a suitable choice
of .

We have now presented two types of neural approaches
to solving combinatorial optimization problems: a Hopfield
neural network which guarantees feasibility, and allows escape
from local minima; and a self-organizing neural network which
generalizes to solve a broad class of assignment-type problems.
These techniques are now demonstrated using two practical
optimization problems which have arisen from Australian
industry.

V. APPLICATION 1: THE CAR SEQUENCING PROBLEM

We consider the problem of sequencing different car
models along an assembly line. The demands for each of
the models, and somecontiguity constraintsare assumed
to be known ahead of the scheduled manufacturing time.
The contiguity constraints take the form of separation rules,
dictating the minimum distance with which cars of the same
model should ideally follow each other. These separation rules
are a form of load balancing constraint. They are required
because the times taken to assemble each of the models is
different, and like-modeled cars must be spaced accordingly,
in order that the workload be evenly spread. These distances
are chosen with the current workforce and the average time
taken to assemble each model in mind.

The goal of the CSP is then to identify an optimal sequence
of cars on the assembly line such that the demands for each
of the models are met (hard constraints), and the separation
rules are satisfied as closely as possible (soft constraints). A
similar problem has been studied by Parrettoet al. [27] using
automated reasoning, and many assembly line balancing prob-
lems have been solved using various approximate algorithms
[15], [24]. To the best of our knowledge, there is no literature
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relating to the use of nonlinear optimization or neural-network
techniques to solve such a problem.

A. Mathematical Formulation

We define a set of binary variables

if the th car in the sequence is of type
otherwise

for and . Also, let be the
required demand and be the ideal minimum separation
distance for cars of model .

The CSP can be formulated as the following 0–1 quadratic
programming problem:

(CSP)

minimize (23)

subject to (24)

(25)

(26)

Constraint (24) ensures that no more than one car is assigned
to the same position in the sequence. Constraint (25) ensures
that the demand is satisfied (the sum of each column of

equals the demand for the car model represented by
the column). The objective function (23) enables the soft
constraints relating to ideal separation distances to be satisfied
as closely as possible. The cost matrixassigns a penalty
to the objective function which depends upon the distance
between like-modeled cars. Sequences of cars are not only
penalised for violating separation rules, but the importance of
each of the rules, and the severity of the violations are also
taken into account when assigning a penalty. This is achieved
through the choice of the cost matrix. The particular matrix

which we use in this paper is

(27)

Null rows are then added to to produce rows. is
defined to be zero for all . Clearly, the relative weightings
of each column in indicate that (in this example) it is
considered most important to attempt to satisfy separation rule
3, followed by separation rules 2, 4, and 1. The number of
nonzero elements in each columnof is exactly equal to
the ideal separation distance. Separating like-modeled cars
by a distance greater than incurs no penalty. Decreasing the
cost of violations as two like-modeled cars get further apart (as

indicated by the row number), provides a means of measuring
the severity of separation rule violations.

Further details of the problem and its formulation can be
found in [31]. It is worth noting that several other practical
optimization problems have been expressed in a similar form,
including the airline-gate assignment [30] and intermodal
trailer assignment problems [11].

Expressing (23) in standard quadratic programming form
, and examining the eigenvalues of samplematrices

based on as in (27), reveals that the objective function
is an indefinite quadratic form. Consequently, any optimiza-
tion technique which requires at least a positive semidefinite
form will be unable to locate the global minimum of CSP.
Such techniques include the commercial optimization package
GAMS using the nonlinear solver MINOS-5 [4]. In Section V-
C, GAMS/MINOS-5 is used as a local optimization technique
when comparing its performance on various instances of the
CSP with the improved Hopfield network, the SONN, and a
simulated annealing heuristic.

B. Heuristic and Neural-Network Approaches to the CSP

In this section, we briefly describe the simulated annealing
heuristic, and the choice of parameters used for the neural
techniques.

1) Simulated Annealing:The form of simulated annealing
(SA) which we employ for the CSP involves interchanging
rows of feasible solution matrices, which retains the feasibil-
ity of the matrix. We start with a random initial (feasible)
solution matrix , and walk through feasible solution space
by randomly selecting a row of to interchange with a
randomly chosen rowunder consideration. We then calculate
the energy of the system as follows.

• Let be the partial cost due to cars in positionsand
of the sequence given by .

• Swap rows and of to give a new (feasible) solution
matrix .

• Let be the partial cost due to cars in positionsand
of the sequence given by .

• Let be the total cost of solution matrix . Clearly

Let . By the theory of simulated annealing,
becomes the new feasible solution matrix if either

or random

where Boltzmann’s constant, temperature, and
random returns a uniformly distributed random number
between zero and one. Using this analogy, it is clear that
represents the change in energy of the system.

A cooling scheduleis completely specified by the initial
and final temperatures ( and ), a temperature decrement
rule (usually geometric), and the length of the Markov chain,

, (the number of random walks to be allowed at each
temperature stage). For the car sequencing problem with
cars and models, we adopt the following cooling scheme:
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The values for and have been selected using the
acceptance ratio technique. This involves calculating values
of (the probability that an uphill move is accepted) by the
method proposed by Kirkpatricket al. [20] for a selection of
problems (i.e., varying and ). is then the smallest
temperature which gives a value of greater than 0.8, for
all selected problems. Similarly, is the largest temperature
which gives a value of less than 0.2 for all selected problems.
We have selected four different sized problems on which our
cooling scheme results are based: the number of models is
fixed at , but the length of the sequence is varied for

20, 40, 60, and 80.
2) Hopfield Network Parameters for the CSP:For the ef-

ficient simulation technique of the Hopfield network, the
solution matrix of the CSP is first replaced with a solution
vector (obtained by concatenating the rows of the matrix).
The corresponding objective function and linear constraints
can be readily derived using this representation [31]. The
value of the time-step for the steepest descent is selected
to be . The neurons are initialized to small
random perturbations around the center of the hypercube.
The use of annealing to drive the solution toward a vertex
is found to be unnecessary, since it can be shown that no
constrained interior point of the CSP objective function can
ever be a local minimum. Results are presented for both the
hill-climbing dynamic, and the same network with no hill-
climbing always. While the former network is
referred to as HCHN, the latter will be denoted by HN. For
the hill climbing network HCHN the length of the Markov
chain is given by , which varies with the size of the
problem. The value of is set to 40.

3) SONN Parameters for the CSP:The SONN algorithm
as applied to the CSP can best be understood in terms of the

output layer nodes of the SONN (representing rows of,
and positions in the sequence) each competing for possession
of the car model presented through the input vector. By
comparing the objective function of the CSP, (23), with the
objective function of (COP1), we see that

if , and is zero otherwise, and for all
and . Without the final term of the cost potential function
(18), the natural tendency of the SONN for the CSP is for
each car model to try to be positioned either first or last in the
sequence, since the potential for violations of the separation
rules is then reduced. Oscillations will therefore occur since
only one car model can occupy a position in the sequence.
The final term of the cost potential function (18) can help to
avoid such oscillations by detering a node from dominating
and “overwriting” an existing decision unless it is very much
cheaper to allow it. For the CSP, the subset of indicesis
chosen so that the final term sums over the weight elements
in the row , except for the element . Thus

In this way, the suitability of each row as the winner is not
just determined by its cost, but also by the current state of

the row. If the final term of (18) is large, we are permitting
an oscillation if we select node as a winning node. If this
term is negligible, then the only strong weight in rowis

and we are not disrupting convergence. The magnitude
of the parameter is chosen in such a way that oscillations
are only permitted if they will significantly improve the cost
of the solution. For the cost matrix as specified by (27),

is found to achieve the desired balance
between avoiding unnecessary oscillations, and permitting
changes to the current weight matrix. This value is derived
analytically in Appendix B.

Another way of avoiding oscillations is to use the normal-
ized weighting vector to help the network decide which of
the input vectors competing for a certain node is the ultimate
winner. These relative weightings reflect the cost and difficulty
associated with assigning the specified demand of cars within
the sequence according to the separation rules. One measure
of this difficulty is

(28)

If , then the required number of cars of model
( ) could be assigned to positions in the sequence without
violating the separation rule given by (if the assignments
in the other columns permit it). If however, sepa-
ration rule violations are inevitable. The vectoracts as an
encouragement factorsince the SONN is unlikely to choose
such assignments often. Each elementis then normalized
before the algorithm is run, so that for all which is
a necessary condition for stability of the network as discussed
in Section IV-C.

For each particular instance of the CSP considered in
Section V-C we select the following values for the SONN
parameters:

and is defined according to (28). It is the vector
which appears to affect the results most significantly. Most
notably, as defined by (28) produces considerably better
results than those obtained using a uniformvector of “1’s”.
The values of and were determined experimentally, while
the initial value of was chosen so that the weights are always
bounded above by one.

For the Hopfield network section of the SONN, we use the
efficient simulation technique described in Section IV-B with
no hill-climbing ( ). Since there is no objective function
for this section of the SONN (only constraint satisfaction
terms), the Hopfield network simply consists of the “projection
and clipping” algorithm respresented by Fig. 2.

C. Results for the CSP

The results which follow are based on five problem classes
for four model types as described in Table I. The
demands are expressed as a proportion of the sequence length

. The cost matrix is that of (27). In practical situations,
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TABLE I
PROBLEM CLASS DESCRIPTIONS FOR THECSP

demands will often fluctuate, and the number of workers
on the assembly line may not remain constant. Since the
number of workers at different stations along the assembly
line determines the ideal separation distances (and so),
it is necessary to ensure that the methods used can handle
variations in and .

Results for each problem class are presented in Table II,
for and cars in the sequence. For all
heuristics, the algorithms are run from ten different random
starting points. In Table II, “AvMin” represents the average
value of those ten final solutions, while “BestMin” is the
cheapest cost found during the ten runs.

The first result to note from Table II is that the hill-
climbing techniques (SA and HCHN) considerably outperform
the techniques which only permit descent (GAMS/MINOS-5
and HN), and the SONN which falls into neither of these
categories. This is to be expected since the CSP objective
function is known to be highly convoluted, and plagued by
an extremely large number of local minima [31]. On the
particular instances of the CSP represented in Table II, HCHN
marginally outperforms the SA heuristic, as evidenced by
better average values of the local minima as the problem size
increases. A comparison of these two hill-climbing approaches
is shown in Fig. 5, where the best minimum results for both
SA and HCHN are plotted as a percentage deviation from the
best found solution. It is noted that for all problem classes of
all problems sizes, either SA or HCHN finds this best solution.

The pure descent version of the improved Hopfield network,
HN also outperforms both the SONN and GAMS/MINOS-5,
while the SONN consistently locates better local minima than
GAMS/MINOS-5. This relationship can be seen in Fig. 6.
Of interest in this graph, is the fact that as the problem
size increases, the performance of the three nonhill climbing
techniques becomes more even. This is in keeping with the
asymptotic properties of quadratic assignment problems (of
which the CSP is a generalized form), which state that the ratio
between the worst and best solutions of quadratic assignment
problems approaches unity as the problem size increases. We
refer the reader to [5] for a detailed exposition and proof of
this property.

A final observation from the graphs in Figs. 5 and 6 is that
the scale of the percentage deviation axis is considerably larger
in Fig. 6 than in Fig. 5. While the majority of the deviations
of the hill-climbing techniques are within 3% of the best found
solution, the deviations from the nonhill climbing techniques
are mostly within 20%.

While it is unfair to compare hill-climbing techniques with
those utilizing strict descent, it is clear from each of the
graphs that the neural techniques perform well compared to the

more traditional techniques in the same category. The SONN,
although falling into neither a hill-climbing or strict descent
category, could be further improved by embedding the ability
for foresight into the algorithm. Currently, the algorithm is
greedyin the sense that the winning node is the one with least
cost potential. If the algorithm sometimes permitted nodes to
win which were not necessarily the cheapest at that point in
time, much like simulated annealing, then the SONN may be
able to escape local minima too. Permutations of the winning
neighborhood might be another way to achieve this effect.
Further work on the choice of appropriatevalues is also
needed to ensure that these parameters are optimized.

VI. A PPLICATION 2: A POSTAL DELIVERY NETWORK

In this section we describe a practical optimization prob-
lem which has arisen from the postal services industry. The
problem considered here is an instance of the-hub location-
allocation problem and is formulated using the quadratic
integer model of O’Kelly [26].

The PDN consists of postal districts, each of which has
a certain volume of mail which needs to be delivered to the
other districts. Each postal district is represented by a single
node in the plane. In this paper, for the purposes of simplicity,
we refer to this representative node as apostoffice. The
coordinates of each postoffice are known. Mail can only be
transfered from one postoffice to another via sorting centers.
There are such sorting centers which need to be located
at existing postoffices, acting as hubs in the PDN at which
incoming mail is processed and transfered to other sorting
centers for distribution to the destination postoffices. Consider
any two postoffices and , and two sorting centers located at
postoffices and , in the planar domain. If is allocated to
a sorting center at postoffice and is allocated to a sorting
center at postoffice, then all mail originating from postoffice
and intended for delivery to postofficemust first be collected
from postoffice and sent to the sorting center at, transfered
to the sorting center at, and then delivered to postoffice
. The freight costs involved in such a route are due to the

individual costs of collection, transfer, and delivery per unit
distance per unit of volume of mail, multiplied by the volume
of mail from to and the distance travelled in delivering this
mail.

The problem is then to determine which of thepostoffices
should be designated as thesorting centers, and to which
sorting center each of the postoffices should be allocated,
so that the total freight costs of the postal delivery network
(PDN) are minimized. This practical optimization problem
is a particular instance of thehub location problemstudied
by O’Kelly [26]. A few simplifying assumptions have been
made so that we can use the same model for the PDN: we
assume that the distances between postoffices is Euclidean
(although road-map distances could just as easily be used
as input data); there are no existing sorting centers and no
capacity restrictions on the sorting centers; and finally, the
major cost contributor to the PDN is assumed to be freight
cost, so that other fixed costs are not taken into consideration.
We do not assume that the matrix of costs is symmetric, since
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TABLE II
RESULTS OF CSP TEST PROBLEMS FOR GAMS/MINOS-5, SA, HN, HCHN,AND SONN

Fig. 5. Comparison of hill-climbing techniques for the CSP test problems.

the three components to the freight costs—collection, transfer,
and distribution—could be unequal.

A. Mathematical Formulation

We define a set of binary variables

if postoffice is assigned to a sorting
center located at postoffice

otherwise
and

if postoffice is a sorting center
otherwise.

Let be the distance between postofficesand , is
the mail volume from to , and , and are the unit
costs of collection, distribution, and transfer, respectively. The
PDN can then be formulated as the following 0–1 quadratic

programming problem:

(PDN)

minimize

(29)

subject to for all (30)

(31)

for all and (32)

for all and (33)

The first term of the objective function (29) represents the
linear costs of collection and delivery, while the second term is



SMITH et al.: NEURAL TECHNIQUES FOR COMBINATORIAL OPTIMIZATION 1313

Fig. 6. Comparison of non-hill-climbing techniques for the CSP test problems.

the quadratic cost of transfering mail between sorting centers.
Constraint (30) ensures each postoffice is allocated to exactly
one sorting center, while constraint (31) makes sure exactly

sorting centers are located. Constraint (32) ensures that a
postoffice is only allocated to a sorting center, and not to
another postoffice which is not a sorting center.

Converting the objective function (29) into the standard
quadratic form reveals , where
denotes the Kronecker product of the two matrices,is the
vector obtained by concatenating the rows of
and

and

for postoffices and , allocated to sorting centersand , re-
spectively. The constraints (30)–(32) can readily be converted
into the vector form , and can further be transformed
into by employing slack variables. While the
vector is of dimension , the inequality constraints (32)
result in a further slack variables, and so the length of the
augmented vector is . This augmented vector form has
no effect of the objective function other than to add null rows
and columns to correspond to the slack variables (which do
not effect the cost). Although the linear constraints are slightly
different from those represented in (COP1), it will be shown
that the neural techniques can still be applied.

The PDN can now be expressed in the standard quadratic
integer form with linear constraints which is the required form
for the neural networks. In the following sections, we drop the
augmented notation for simplicity and assume the vectorto
already contain slack variables. The nature of the quadratic
form is indefinite due to the fact that the matrix contains
zero diagonals, since it is related to the distance matrix.
Consequently, in Section VI-C, the use of the commercial
optimization package GAMS/MINOS-5 cannot be expected to
obtain the globally optimal solution, since it requires a positive
definite form to guarantee globally optimal solutions. We use
the package merely as another local optimization technique
with which to compare the results of simulated annealing,
the Hopfield network, and the SONN. The use of the hill-

climbing Hopfield network (HCHN) was not found necessary
for the PDN, due to the fact that there are relatively fewer
local minima in the PDN as compared to the CSP.

B. Heuristic and Neural-Network Approaches to the PDN

In this section, we briefly outline the form of simulated
annealing used for the results in Section VI-C. We also specify
the parameters which were chosen for the neural techniques.

1) Simulated Annealing:The simulated annealing heuristic
which we apply to solve the PDN solves the location-allocation
problem by using centroids to determine the location of
the sorting centers and a simple exchange approach for the
allocation of the postoffices to those sorting centers. An initial
feasible solution is obtained by locating the first two sorting
centers at the postoffices which are the furthest apart in
terms of distance weighted by the mail volumes. The next
sorting center is located at the postoffice which is furthest
from the first two sorting centers in the same fashion. The
process is continued until sorting centers have been located.
Initial allocations are then made which minimize the distance
weighted by volume from each postoffice to a sorting center.
The initial feasible solution is completed by relocating the
sorting centers to lie at the postoffice which is closest in
distance to the centroid of each cluster.

The simulated annealing algorithm then proceeds by select-
ing postoffices at random and reallocating them to another
sorting center if the cost of doing so decreases, or if the
Boltzmann probability factor satisfies the requirements of
the simulated annealing algorithm [20] allowing a temporary
increase in cost (this enables escape from local minima). The
centroids of each cluster are recalculated after each transition,
and the sorting centers are relocated to the postoffices nearest
each centroid.

2) Hopfield Network Parameters for the PDN:For the
efficient Hopfield network simulation technique, HN [with

always], the value of the time-step for the steepest
descent is selected to be . The neurons are again
initialized to small random perturbations around the center of
the hypercube. Unlike the CSP, the PDN requires the use of
annealing to drive the solution toward a vertex, and the value
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used to generate the parametersand in the clipping
function (17) is .

The HCHN is not used for the PDN, since the HN yields
good quality solutions without the need for a continued search
for better quality local minima.

3) SONN Parameters for the PDN:When mapping the
PDN onto the self-organizing framework described in
Section IV, we first observe that the objective function and
constraints of the PDN are not in exactly the same form as
specified by the general problem class identified in Section II.
The form of the demand constraint has changed from a sum
down the columns in the general form, to a sum down the
diagonals in the PDN. These modifications can be easily
incorporated into the algorithm. For the SONN as applied to
the PDN, a postoffice is presented to the network, and the
other postoffices compete to determine which of them will
be the hub for this postoffice. The first two terms of the cost
potential function (18) are simply the cost of assigning a
postoffice to a hub at . This is the first derivative of the
PDN objective function (29)

(34)

Thus

and . Clearly, the natural tendency of the network
without the final term of the cost potential function will be
for all postoffices to try to assign themselves to their own
hub, since the first term of (34) will vanish. Since onlyof
the postoffices can be hubs, however, oscillations will occur.
For the PDN, the form of the final term of the cost potential
function needs to take into account the hubs which have
already formed, and permit a new hub to be formed only if it is
very much cheaper to allow it. The subset of indexesis only
nonempty if , and then consists of the diagonal indexes
of the weight matrix , except for the element , i.e.,

: . For the case where
the mail volumes are uniform, and the problem becomes one
of minimum distance only, the value of is chosen according
to the formula

(35)

for all and , which is derived in Appendix B. For nonuni-
form mail volumes, a value of does not inhibit
convergence to a feasible solution, and is the value used.

For the PDN, the vector is chosen to be uniform since
it should be no more difficult to assign one postoffice than
another. The remaining SONN parameters are selected as
follows:

The size of the neighborhood is identical for all postoffices,
and is decreased until . is selected to be equal to .

For the Hopfield network section of the SONN, the “pro-
jection and clipping” algorithm utilizes the annealing function
(17) with a value of .

C. Results for the PDN

A particular instance of the PDN is completely specified
by the number of postoffices in the region (), the required
number of sorting centers (), the coordinates of each
postoffice in the Euclidean plane (from which the distances
between postoffices can be calculated), the volume of mail
between each of the postoffices ( ), and finally, the unit
costs of collection, distribution, and transfer of mail. The
results presented in Table III consider variations in all of these
parameters (except the unit costs which are held constant at

, , and ).
For , two different configurations of ten postoffices

were randomly generated in the Euclidean plane (named
configurations and ). For each of these configurations,
two types of volume matrices are considered: a uniform
matrix (named —all elements are equal to unity), and
a nonuniform volume matrix whose elements were randomly
generated (named ). Results are presented for each of
these combinations of parameters for and .
Similarly, for , an extra five postoffices were added to
the configurations and to generate the configurations

and , while five extra rows and columns (randomly
generated in the nonuniform case) were added to the volume
matrices. The procedure was repeated for where
another five postoffices and corresponding mail volumes were
added to the combinations for . Again, for
and each of the instances of the PDN were solved for

and . The results for each of these instances
are presented in Table III for GAMS/MINOS-5, simulated
annealing (SA), HN, and the SONN. The column labeled
“Optimal” provides the exact global minimum found using an
alternative mixed integer linear programming formulation4 [9],
while the remaining columns indicate the percentage deviation
from this optimal solution.

It is clear from Table III that the modified Hopfield neural
network is particularly well suited to this type of problem,
outperforming all of the other techniques consistently. In fact,
HN locates the optimal solution in all but two instances
( , and configuration ). It should be noted here
that the simulated annealing heuristic has not been optimized,
and has been run using the same cooling schedule as the
authors of the code originally specified for this problem [22].
The simulated annealing results could no doubt be improved
if the cooling schedule was optimized. The SONN appears
to perform competitively with SA and the GAMS/MINOS-
5 solver, but seems more suited to solving the PDN with

4While the quadratic formulation usesN2 binary variables and(1 +N +
N

2) linear constraints, this linear formulation uses(N3 + N2) variables
of which N2 are binary, and(1 + N + 2N2) linear constraints. For small
sized problems this difference has little effect on computation time, but as
the problem size is increased, the linear formulation will quickly become
intractable.
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TABLE III
RESULTS OF PDN TEST PROBLEMS FOR GAMS/MINOS-5, SA, HN,AND SONN

a uniform volume matrix, rather than the nonuniform case.
The difference that the nature of the volume matrix makes to
the complexity of the problem is equivalent to the difference
in complexity between a TSP whose distances are either
Euclidean or random. An explanation for the slightly poorer
performance of the SONN in the nonuniform problems might
be that the choice of needs improvement. While was
chosen according to (35) for the problems with uniform
volume, a value of was used for the nonuniform
problems, since convergence problems do not seem to arise
when the volume matrix is nonuniform. Nevertheless, the
performance of the SONN is still very competitive with the
SA heuristic and GAMS/MINOS-5.

For each of the techniques GAMS/MINOS-5, SA, HN and
SONN, the average percentage deviation from the optimal so-
lution over all the test problems is 0.87, 4.3, 0.008, and 2.02%,
respectively. While most of the results presented in Table III
are within 5% of the optimal solution, the difference in the
nature of the solution is quite subtle. Typically a large variation
in the percentage deviation from the best found solution only
corresponds to a difference of a single location or allocation.
Suboptimally assigning just one postoffice to a sorting center
can account for a significantly poorer solution (as in the case
where and the volume matrix is nonuniform).

The results also confirm the expectation that network costs
can be considerably reduced by allowing more sorting centers
(although the initial setup costs of constructing additional
sorting centers is not included in the objective function). By
including such set-up costs, it should be possible to determine
the critical value of at which a minimum cost for the PDN
can be attained.

VII. CONCLUSIONS

In this paper, we have demonstrated that neural-network
techniquescan compete effectively with more traditional
heuristic solutions to practical combinatorial optimization
problems. We have seen how the Hopfield network has evolved
to the stage where is can now be guaranteed to find a feasible
solution to the problem, and we have extended the theory to
enable the quality of those solutions to be improved via a hill-
climbing modification to the internal dynamics. We have also
presented an SONN which, unlike existing self-organizing
approaches to optimization, is able to generalize to solve a
broad class of 0–1 optimization problems, rather than just the
TSP or related Euclidean problems. A new set of theoretical
remarks has been proposed to address the convergence of the
SONN.

While it is important to test techniques on theoretical
problems such as the TSP, it is equally important not to let the
results of such tests dominate the future direction of a field of
research, or inhibit the application of a potentially powerful
technique to solve real-world problems. To date, the accepted
wisdom on the suitability of neural networks for solving
combinatorial optimization problems has been fairly mixed.
Furthermore, there is a relative scarcity of literature which uses
practical optimization problems as the benchmarks by which to
test a neural approach. This paper has attempted to address this
issue by solving two sample practical optimization problems
which have arisen from industry. In previous work [34], [35],
we have solved other practical optimization problems and
reached the same conclusions. Comparative results between
the Hopfield and SONN approaches against simulated anneal-
ing and the commercial optimization package GAMS/MINOS-
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5 have been presented and discussed. These results show quite
clearly that the neural approaches can match the performance
of simulated annealing, and can even outperform it in many
instances. Combining this knowledge with the fact that neural
networks have the potential for rapid computational power
and speed through hardware implementation, it is clear that
neural-network techniques are immensely useful for solving
optimization problems of practical significance.

APPENDIX A
PROOFS

Proof of Remark 1:

Therefore, if

then

Since

then provided and
.

Proof of Remark 2:If is large enough, oscillations will
be dampened as , so that if is in
the winning neighborhood. Thus and

(for ).
Near a vertex then,

so

as

if approaches a vertex as .
Proof of Theorem 3:Let be de-

noted by . Using

the change in due to an update of the weight is

Omitting the higher order terms which vanish for limiting ,
we arrive at an expression for as

So the expected value of is

APPENDIX B
DERIVATION OF VALUES FOR SONN

For the CSP: needs to be chosen so that or
are not always going to be the least expensive cost potentials.
Since

(the weight matrix is feasible each time the cost potential is
calculated), then as a worst case, the first or last rows will
always win provided

or

for or . We need to find where
for and then the first row will not always win,

and the oscillations caused by all car models trying to win the
first row can be controlled. Now

Suppose the next cheapest position to sequence car model
(after the first and last positions) is row . Then

Due to the special structure of the matrix, i.e.,
, this condition can be further simplified to

If it will be cheapest if the first row (and/or the last row)
is the winner, since it is relatively expensive for any separation
rule violations. But if (the next most expensive car
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model), it would be preferable if the first row did not always
win, to enable a model 3 car to occupy the first position in the
sequence. We therefore select .

For the PDN: For the PDN, we need to find the critical
value of at which all diagonal element of the weight
matrix no longer share the sorting centers evenly (as is
the natural tendency of the network with ). When
a postoffice is presented to the network, it is cheapest
to allocate it to a sorting center also at postoffice, since
there is no linear contribution to the cost. However, if all the
postoffices are selected as sorting centers, the network will
converge to a stable nonintegral solution with values of
along the diagonal elements of the weight matrix.

For to be the winning node when presented with
postoffice , we require

for all nodes . Substituting into (34), this condition
becomes

If the matrix of volumes is uniform, and the problem becomes
one of minimum distance only, then we can make the simpli-
fying assumption that is near in Euclidean space, since
should only be considering sorting centers which are nearest
in distance. From this assumption, and the
inequality reduces to

for all . The condition for not to necessarily
be the winner is therefore

for some . Since , then
will not always be the winner provided

for some .
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