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Introduction and Motivation Introduction — Statement of the problem

A transitive map on a graph has positive topological entropy and

o Transitivity, - . S .
dense set of periodic points (except for an irrational rotation on

@ the existence of infinitely many periods and

the circle).
@ positive topological entropy
ﬁ A. M. Blokh.
. . B . On transitive mappings of one-dimensional branched manifolds.
Often CharaCterlze the com pIeXIty n dynamlcal SyStems In Differential-difference equations and problems of mathematical physics (Russian), pages 3-9, 131. Akad.

Nauk Ukrain. SSR, Inst. Mat., Kiev, 1984

ﬁ A. M. Blokh.

The connection between entropy and transitivity for one-dimensional mappings.
Uspekhi Mat. Nauk, 42(5(257)):200-210, 1987

Def|n|t|0n @ LI. Alseda, M. A. Del Rio, and J. A. Rodriguez.
o A S f i A survey on the relation between transitivity and dense periodicity for graph maps.
A map f: X — X is transitive if for every pair of open subsets O Diffesence Bt Al O(.20L.268. 3003
U V C X there |S a pOSItlve Integer n SUCh that fn(U) ﬂ V # @ Dedicated to Professor Alexander N. Sharkovsky on the occasion of his 65th birthday.
N 0
A map f is called totally transitive if all iterates of f are transitive. B 11 Aseda, M. A ael o, ana 3. . Rocriguer

Transitivity and dense periodicity for graph maps.
J. Difference Equ. Appl., 9(6):577-598, 2003.
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\ Introduction and Motivation Introduction and Motivation

Thus, in view of

@ J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey.

On Devaney's definition of chaos.
Amer. Math. Monthly, 99(4):332-334, 1992

Summarizing

every transitive map on a graph is chaotic in the sense of Devaney

(except, again, for an irrational rotation on the circle). Totally transitive maps on graphs are complicate since they have

positive topological entropy and cofinite set of periods.

Moreover, a totally transitive map on a graph which is not an
irrational rotation on the circle has cofinite set of periods (meaning
that the complement of the set of periods is finite or, equivalently,
that it contains all positive integers larger than a given one).

@ LI. Alseda, M. A. del Rio, and J. A. Rodriguez.

A note on the totally transitive graph maps.
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11(3):841-843, 2001.
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\ Introduction and Motivation Introduction and Motivation

In this talk we consider the question whether the simplicity
phenomenon that happens for the topological entropy can be

HOWGVGI’, for every graph that is not a tree and for every € > 0, extended to the set of periods_ More preciselyy

there exists a totally transitive map with periodic points such that

its topo|ogica| entropy is positive but smaller than ¢. is it true that when a tOta”y transitive graph map with periOdiC
points has small positive topological entropy it also has small

D Ll. Alsed3, M. A. del Rio, and J. A. Rodriguez. “cofinite part” of the set of periods?

A splitting theorem for transitive maps.
J. Math. Anal. Appl., 232(2):359-375, 1999.

This is, in fact, a study about the dynamics simplicity of
complicate maps (totally transitive), and the consistency among
the different ways of measuring it. The dynamics simplicity can be
measured in different ways:

Summarizing again

The complicate totally transitive maps on graphs may be relatively

simple because they may have arbitrarily small positive topological
entropy. @ small set of periods (or small cofinite part of the set of

periods),

@ small topological entropy,

small cardinality of the set of periodic points of a given period,

others ....
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" Introduction and Motivation Boundary of Cofiniteness definition

To measure the size of the “cofinite part” of the set of periods we
introduce the notion of boundary of cofiniteness.

The aim of this study is to show the consistency of the measures
of dynamical simplicity of the totally transitive graph maps. That
is, when a sequence of totally transitive graph maps endeavours a
path to simplification it does it with respect to all measures of
dynamical complexity: entropy, size of the cofinite part of the set
of periods, and others?

The boundary of cofiniteness

of a totally transitive map f, denoted by BdCof (), is defined as
the largest positive integer L € Per(f), L > 2 such that
L — 1 ¢ Per(f) but there exists n > L such that
Per(f) D {n,n+1,n+2,...} and
/ Card({1,...,L — 2} N Per(f)) < 2logy(L —2)
L-2 - L—2
That is, the cofinite part of the set of periods is beyond the
boundary of cofiniteness and the density of the low periods is smaII.J

Currently we look at the consistency of the entropy and the size of
the cofinite part of the set of periods.

Clearly, the larger it is the boundary of cofiniteness the simpler it is
the set of periods.
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A first attempt: proving theorems

Results for the circle and the o graph.

Results for the circle and the o graph.
For o-maps (continuous self maps of the space o) we use the

extension of lifting, degree and rotation interval Rotg developed in

Rotation sets for graph maps of degree 1.
Let {f,}nen be a sequence of totally transitive circle maps of st Fourier (Grenoble) S8(4) 12551204, 2008
degree one with periodic points such that lim,_,o h(f,) = 0. For to get the same result:
every n let F, € L1 be a lifting of f,. Then,

o limy o0 len (Rot(F)) = 0. (Theorem |

o there exists N € N such that BdCof(f,) exists for every Let {f'.’}"eN @e o e of tota//)./ transitive o-maps of degree
0> N. and one with periodic points such that lim,_,~ h(f,) = 0. For every n

let F, € L1 be a lifting of f,. Then,
o lim,_,~ BdCof(f,) = co.

) @ lim,_,~ len (Rot(F,)) =0,
o there exists N € N such that BdCof(f,) exists for every
n> N, and

o limp_y00 BACof(f,) = oo.
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A first attempt: proving theorems A second attempt:

constructing examples for general graphs

The problem is that these results deal with very particular (and When we show the three examples observe that they are
simple) spaces, and require a lot of theory and dynamical constructed in two steps:

knowledge of the spaces under study.

@ Construct the desired example in the circle, with good control
of the dynamics and verifying the desired properties (rotation
number and set of periods).

Or conversely: currently we do not have the tools to consider these
problems out of the circle and the o graph, unless we find a much

simpler strategy for these results.
P &y o Extend the circle example to an arbitrary graph by keeping the

basic desired properties.
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| Example I: with persistent fixed low periods . Example |l with non-constant low periods
For every n € {4k T E T e o el e (Theoem .|

continuous circle map of degree one such that: Rot(f,) = [ % ’ n24;12]' i) For every n € N there exrstg altogalliv translltlve fonltmuoils circle map of degree
one such that: Rot(f,) = [ s o ] = [; = 5207 W] , and

Per(f,) = {2} U{p odd: 2k +1 < p < n—2}
U{n,n+1,n+2,...}. Per(f,) = {n} U
{tn+k:tef{2,3,...,.v—1}and — Lt <k<% keZlu

Moreover lim,_, h(f,) = 0. Furthermore, given any graph G with a circuit,
oo hll) = & & {LeN:L>m+1-%}

the maps f, can be extended to continuous totally transitive maps g,: G — G
so that Per(g,) = Per(f,) but still limp—o h(gn) = 0.
{n if n is even, and
V=

@ 2k +1 < BdCof(gn) = BdCof(f,) < n and, hence, and n < BdCof(f,) < nv—1-— 3.
limp— oo BdCof(gn) = o0

with

Moreover lim,—,o h(f,) = 0 and lim,—, oo BdCof(f,) = co. Furthermore, given

@ The density of “lower” periods outside the cofinite part converges to % any graph G with a circuit, the maps f, can be extended to continuous totally
and there is a very small period 2. transitive maps gn,: G —> G so that Per(g,) = Per(f,) but still
@ Despite of the fact that still lim,—. h(gs) = 0, in general, h(gn) is lim;— oo h(gn) = 0. )

slightly larger than h(f,).
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- Example II: with non-constant low periods  Example I1: the dream example

For every n € N there exists a totally transitive continuous circle map of degree
one such that: Rot(f,) = [ﬁ, ﬁ], and

Per(f,) = {n,n+1,n+2,...}.

@ The density of “lower” periods outside the cofinite part converges to % Moreover lim, o h(f,) = 0. Furthermore, given any graph G with a circuit,
but the smallest period is n. the maps f, can be extended to continuous totally transitive maps g,: G — G

so that Per(g,) = Per(f,) but still lim,—« h(g) = 0.
v
@ BdCof(gn) = BdCof(f,) = n and, hence, lim,_,oc BdCof(g,) = 0.

@ There are no “lower” periods outside the cofinite part.

@ As before, despite of the fact that still limp—o h(gn) = 0, in general,
h(gn) is slightly larger than h(f,).

@ As in the previous two cases, despite of the fact that still
limy— oo h(gn) = 0, in general, h(g,) is slightly larger than h(f,).
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- Circle dynamics of degree one — Liftings - Circle dynamics of degree one — Rotation numbers

Let e: R — S! be the natural projection which is defined by
e(x) := exp(2mix).

Given a continuous map f: St —s Sl, we say that a continuous Let F € £, and let x € R. The number
map F: R — R is a lifting of f if
. F(x) — x
e(F(x)) = f(e(x)) pr(x) == Illrlsot;p
for every x € R, will be called the rotation number of x. Moreover, the set
For such F, there exists d € Z such that Rot(F) := {pr(x) : x e R} = {pr(x) : x €[0,1]}

Fx+1)=Fl)+d forall xeR, will be called the rotation interval of F. It is well known that it is a

and this integer is called both the degree of f and the degree of F. closed interval of the real line (c.f. [Ito]).

If G and F are two liftings of f then G = F + k for some integer k
and so F and G have the same degree.

Ly denotes the set of all liftings of circle maps of degree d.
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Circle dynamics of degree one - Circle dynamics of degree one — Upper and lower maps

More on rotation numbers

For every F € L1 we define the
lower map F;: R — R by

If F € L1 is a non-decreasing map, then Fi(x) = inf{F(y): y > x}
niyy _ F F
pr(x) = lim Fr) = x and the upper map F,: R — R F
n—00 n by u

for every x € R and, moreover, it is independent on x.

Fu(x) = sup{F(y) : y < x}.
Then this number (pge(x) for any x € R), will be called the ‘ l
0

rotation number of F. It is easy to see that Fj, F, are 0 1
non-decreasing maps from Lj.

Figure: An example of a map
F € L7 with its lower map F; in red
and its upper map F, in blue.
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Circle dynamics of degree one - Circle dynamics of degree one — Lifted orbits

Upper and lower maps and rotation interval

To study the periodic orbits of a circle map we introduce the
notion of lifted orbit.

Let f be a continuous circle map of degree d and let F € L4 be a
lifting of f. A set P C R will be called a lifted orbit of F if there

) . _ exists z € S! such that
The next theorem gives an effective way to compute the rotation

interval from the rotation numbers of the upper and lower maps. P=c1 (Orbf(z)) and  f(e(x)) = e(F(x))

for every x € P.
For every F € Ly it follows that Rot(F) = [p(F;), p(Fu)].

Whenever z is a periodic point of f of period n, P will be called a
lifted periodic orbit of F of period n. We will denote by Per(F) the
set of periods of all lifted periodic orbits of F.

Per(F) = Per(f).
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- Circle dynamics of degree one — A remark on lifted orbits

Let F € £1 and let P be a lifted periodic orbit of F of period
period n. Set
}

with x; < x; if and only if i < j. The fact that P = e~!(Orb¢(2)),
in this case, gives

P = { ey X2y X1, X0, X1, X2, . ..

Card(PN[r,r+1))=n
for every r € R and, hence,

Xinti = Xj + K

for every i, k € Z.

Moreover, there exists m € Z such that F"(x;) = x; + m = Xmpi
for every x; € P. Consequently,

pE(xi)

n

for every x; € P.
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Circle dynamics of degree one — Twist lifted orbits

A lifted periodic orbit P of F € L7 such that Flp is increasing will
be called twist.

Let
}

be a twist lifted periodic orbit of F € L1 of period n and rotation
number m/n labelled so that x; < x; if and only if i < j. Then, m
and n are coprime and

[P = { s X2, X_1,X0,X1,X2,...

F(Xi) = Xi+m,

for all i € 7.

LI. Alseda
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Circle dynamics of degree one — More on lifted orbits

From the above remark it follows that if P is a lifted periodic orbit
of F € L1, then all the points of P have the same rotation number.

This number will be called the rotation number of P.

LI Alseda 24/56

 Circle dynamics of degree one — The set of periods

Recall that the Sharkovskii Ordering s,> (the symbols 5,>, <s,
and <g, will also be used in the natural way) is a linear ordering of
Ng, := N U {2°°} (we have to include the symbol {2°°} in order to
ensure the existence of supremum of every subset with respect to
the ordering ¢,>) defined as follows:

Complexity/Simplicity of totally transitive graph maps

3a>b0 > T > 9g> - o>
2'3Sh>2'55h>2‘75h>2-95h>...Sh>
4'3Sh>4'55h>4'75h>4-95h>...Sh>

2n'35h>2n'55h>2n‘75h>2n‘9sh>"'Sh>

200 Sh> Sh> 2n Sh> Sh> 16 Sh> 85h> 4Sh> 2Sh> 1
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Circle dynamics of degree one — The set of periods

Circle dynamics of degree one — The set of periods

Notation Misiurewicz Theorem

Given ¢,d € R, ¢ < d we set

M(c,d) :=={ne N:c < k/n < d for some integer k}.

Let F € £; and let ¢ be an endpoint of Rot(F). We define the set

)0
Qrle) = {{sk . ke Nand k <g, s}

Let f be a continuous circle map of degree one having a lifting

if c¢Q

if ¢ = r/s with r, s coprime

F € L. Assume that Rot(F) = [c, d]. Then

Per(f) = Qr(c) U M(c, d) U Qe(d).

and s. € Ng, is defined by the Sharkovskii Theorem on the real line
as follows: Indeed, since ¢ = r/s and r and s are coprime, the map
F* — r is a continuous map on the real line with periodic points.
By the Sharkovskii Theorem there exists an s. € Ng, such that the
set of periods (not lifted periods) of F* — r is precisely

{keN: k <g sc}.
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Minimum dynamics in the circle — Definition

Minimum dynamics in the circle — Definition

For c,d € R, c < d and z > 1 we define

Redq(z) := Z z 9.

{(p.q) : PEZ, gEN and ¢ < 2 < d}

The graphs of the maps Gﬁ in blue
and G, = (G. .} in brown (note that
G, coincides with G. . on the interval
[£s, to] and hence it is left in blue color
for clarity). The orbit of 0 = xg is
labelled so that G. :(x) = x1 and

Rc’d(z) =

% has a unique solution B¢ 4 > 1. J

LI Alseda

We define a lifting G 4 € L1 by:

gc.d denotes the circle

B b
map of degree 1 Pe,aX + De,d

if 0 <x<ucyg,

G :(x1) =x +1 (|n this case the

(tempora/) labelling leaves the orbit

sorted in the real line) and the orbit of
. = to is labelled so that

which has G. 4 as a Ged(x) = Bed(l=x) + beg +1 ifucg <x<1, w G (t,) =1+ tjiyq for
lifting. Ged(x — [x])+ [x]  if x¢[0,1], { i€70,1,2,4,5,7,8}, G. L (t) = ti
i lil for i € {3 6} and G. (tg) = to. In this
o Beatl o ! 1 case the (temporal) labelling does not
With te,d : 2Pc.d €(0.1) and | M sort the O(I’blt the 2orted version of this
/3c g — 1) 0 i iii orbit is obtained by setting yg := ty and
be.d Bed Lne] Bea b Visi = taips for k =0,3,6 and i = 0,1,2

|-| denotes the integer part function.

Complexity/Simplicity of totally transitive graph maps
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Minimum dynamics in the circle

Useless Remark on the computation of the numbers 3¢ 4

Forc € R, ¢ > 0, and z > 1 we define

and, for definiteness, we set To(z) = 0. Then, for c,d € R, ¢ < d,
c €[0,1), and z > 1 we define

Qeg(z) =z +1+2 <Zf1 —Ti—c(2) - Td(2)>
One can show that
Qe,a(z) = (2 —1) (1 = 2Rc,.q(2)) -
Hence, B¢ 4 is the largest root of the equation Q. 4(z) = 0.
This observation gives a much easier way of calculating the

numbers (B 4.

LI. Alseda
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Minimum dynamics in the circle

Properties of the minimum dynamics maps

Theorem A (entopy goes to zero with the rotation interval)

A nice natural property consistent with the minimality

Let {[cn, dn]} nen be a sequence of non-degenerate intervals
contained in the interval (0,1) such that c,, d, € Q for every
n € N, and lim,_, o, min M(cp, d,) = 0o. Then,

lim h(ge,.d,) = log Be,,d, = 0.
o

n—

The inequality min M(c,, d,) > M implies that M ¢ M(cp, dn) and
this is equivalent to % <c,<d, < ktl for some k € Z., which

M
implies d,, — ¢, < ﬁ

Hence, limp_o0 min M(cn, dn) = oo implies limp_o0 dn — ¢ = 0.

Note: Theorem A is general and does not depend on a, and b,.

LI. Alseda
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Minimum dynamics in the circle

Properties of the minimum dynamics maps

The next theorem justifies the importance of the the minimum
dynamics maps:

Theorem ([A., Llibre, Mafiosas, Misiurewicz])

Let f be a circle map of degree 1 with rotation interval [c, d] with
c < d. Then h(f) > log fc,4. Moreover, for every c,d € R with
c<d, Rot(qu) = [c, d] and h(gc,4) = log Bc.q-

LI. Alseda Complexity/Simplicity of totally transitive graph maps 32/56

- Skipable proof of Theorem A

|-]] is a function similar to the integer part function, defined by:

Ix] = —1—|—x| = {LXJ

if x ¢ Z, and

x — 1 otherwise.

The fact that, for every n € N, h(ge, 4,) = log B¢, q, follows from
Theorem 1. So, we need to show that lim,_, 3¢, d, = 1.

For every g € N, || gd,]] — [ gcn] is equal to the number of integers
contained in the interval (gcn, gd,) which, in turn, is the
cardinality of the set

{p€Z: suchthat ¢, < g < dp}.
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- Skipable proof of Theorem A (l1)

For every n € N, let us denote N, := min M(c,, dp) —
every g < N,, g ¢ M(cp, d,) which is equivalent to

1. So, for

{pEZ: suchthatc, < £ < dp} =0 <= [qdnll-[qcn] =0.
Moreover, if % < dp — ¢n, then k € M(cp, dp) and this implies that
k > N,. Hence, kK < N, implies d,, — ¢, < %, which is equivalent to

(d,, - c,,)k <1.

LI. Alseda
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| Skipable proof of Theorem A (IV)

Now let us consider the equation z~N» (§2_1)2
3z-2

2 We note that:

% which is

equivalent to zNn = 2(

Q The map z+— 2@2:1?2 is strictly
decreasing on (1 +00),
lim,_,1+ 2( 1)2 = 400 and

—2
limz o0 2 (Z z-12 =

@ The map z — zNr is strictly
. . Nn _
increasing and z =1

@ Clearly, N, < N,, implies zNn < zNm
for every z > 1.

Then, for each n, there exists a unique real

number ~y, > 1 such that " = (3'7” 725 Ym < In whenever
Nn, < Np, and lim,_ v, = 1 because lim,_ o N, = 0.

LI. Alseda Complexity/Simplicity of totally transitive graph maps
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Skipable proof of Theorem A (lII)

Consequently, when z > 1,

Skipable proof of Theorem A (and V)

Since, Re, d,(7n) < vy N (3%_1§

2, we have 1 < B¢, 4, < Vn

because R, d, is continuous and decreasing on the interval (1, 00).

So, limy—oo Be,.d, exists and satisfies

1< lim Be, g, < lim v, =1.
n—o00 n—o00

Complexity/Simplicity of totally transitive graph maps

o]
Re.d(z) := Z Z ([Lkdn] — chnj)z*k
{(p,q) : PEZ, geN and c < £ < d} k=N,+1
o]
< Z d — c,, k + ) —k
k=N,+1
=z " ((dn— cn)(Np + k) +1) 27
k=1
o)
<z N Z ((dn — c,,)k + 2) zk
k=1
= 3z-2
<z ™M k4 2)z7k =z .
= 17
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Characterization of the minimum dynamics on the circle Minimum dynamics on the circle (cont'd)

Let [c, d] be a non-degenerate interval contained in the interval QO Set

(0,1) such that ¢ = g and d = £ with p,q,r,s € Nand

(p,q) = (r,s) = 1. Then, the following statements hold: Q={..x1,x%=0x1,%,...,Xg-1,Xq, Xq+1,-- -}, and
o 8c,d is tOta”y transitive. P = { < Y-1,Y0,Y1,¥25- - -, Ys—1 = Uc,d) Ys) Ys+1, - - - }

Q@ Q =e!(Orbg ,(e(0))) is a twist periodic orbit of G. 4 of

period g and rotation number ¢ with the property that BN 55 << o &l v <€ i W el @il (174 << o i, o7 evey

. . . i,j €EZ
Q C Ukez [k, k + Bc—ld> . Moreover, Q is the unique lifted EASE
periodic orbit of G 4 with rotation number c. Xigti = Xi +J,  Yjs+i = Yi +J,
Q P= e_l(OrbgC’d(e(ucyd))) is a twist periodic orbit of G 4 of Ged(xi) = xiyp and  Gea(yi) = Yitr
period s and rotation number d such that
P C Ukez | k+ Bzcgzl, k + Uc,d:| . Moreover, P is the unique Moreover, we also have that 0 = xo < yo, Xg—1 < Ys-1 = Ued
lifted periodic orbit of G, 4 with rotation number d. A s PO ot = e < 1L = 2y 600 SoliEsarinG 1t QL P';
v

| Minimum dynamics on the circle (cont’d) | Minimum dynamics on the circle (cont’d)

© QU P i a short Markov partton for Gog, and g is Markoy

) et T 4 = H Y LgJ Then, 1 < £ < [%J : with respect to the Markov partition

ni=q—¢p>p>1t:=s—4re{0,1,2,...,r—1}, and Orbg. 4(€(0)) U Orbg ,(e(uic,q)- )

X=0<x < <Xp1<y<y1 < <y1< Short Markov Partition
Xn < <yt <...<yt+r71 <

< Xp4p—
et Let X be a topological graph and let f: X — X be a continuous map. A

e SONS K S Tk SO Pl S Markov invariant set is defined to be a finite f-invariant set Q D V/(X)
: <. < < <. < < (f(Q) C Q) such that the closure of each connected component of X \ Q,
: : : : called a Q-basic interval, is an interval of X.
X|n|+(@—1)P < o< X|"|+4P—1 < yltl+(€—1)r <o < y‘t‘”’—l <xg =1 When f is monotone on each Q-basic interval Q is called a Markov partition of
= Xg—1 Vs—r Vs—1 X with respect to f and f is called a Markov map with respect to Q.
U!,d Let F € £; be a lifting of f and let @ be a Markov partition with respect to F.
v A Q-basic interval will be called F-short if the length of the interval F(/) is

strictly smaller than 1. Then, Q will be called a short Markov partition with
respect to F whenever every Q-basic interval is F-short.
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Minimum dynamics on the circle (cont'd) The examples factory: The minimalistic extension to graph

maps

Let g be a Markov circle map of degree one with respect to a
Markov partition @. Assume that there exist pairwise disjoint basic
intervals 1, J, K € B(Q) such that f(/)=J and f(J) =K. Let G
be an arbitrary graph with a circuit C. The minimalistic extension

Let [c, d] be a non-degenerate interval contained in the interval of g to G with base at C, is a continuous self map of G defined as
(0,1) such that c,d € Q. Let q and s be the denominators of ¢ follows.
and d when written in irreducible form, respectively. Then, Let S C C be an interval such that S N V(G) — () and let
: St — C be a homeomorphism such that C\Int(S) = n(J).
P = M(c,d). 7
er(ge.d) = {g,5} U M(c, d) Clearly, X := G \ Int(S) D n(J) is a subgraph of G and the two

elements of S = 9n(J) are endpoints (and thus vertices) of X but
they are not vertices of G because SN V(G) = (). Then we have

G=XUS=XUt(S) = (X\{ab})US,

and
V(X)=V(G)UadS = V(G)U{a, b}

where, for definiteness, we have set {a, b} := 95 = 9n(J).
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A topological graph
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G and the definition Now we define an auxiliary graph map f~c =nogont: C— C.
of g®¢. The circuit Clearly, fc is a Markov map with respect to 7(Q), conjugate to g.
C (with apple shape) B
is drawn in blue. The assumptions g(/) = J and g(J) = K imply that f¢ sends
Then, the interval S homeomorphically dn(/) to 9n(J) and the latter to dn(K). Hence,
is the (thin) path in we can consider a homeomorphism &: | — [0,1] with an
C from bto a orientation such that {(n~%(z})) = 0 and £(n~%(z})) = 1, where
counter-clockwise , . | . .

B z} (respectively z}) denotes the endpoint (and unique element) of
(0S ={a,b}) and b ~
the interval n(/) such that fc(zh) = a (respectively fc(z;) = b). Similarly, we
C\Int(S) =n(J) is consider a second homeomorphism (: [0, 1] — n(K) with an
the thick path in C orientation such that ¢(0) = fc(a) and ¢(1) = fc(b).

from b to a clockwise.
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 The minimalistic extension to graph maps | Exporting circle dynamics to graphs — A utility lemma

Let X be a topological graph which is not an interval and let
a,b € V(X) be two different endpoints of X. Then, there exist a

When G = C then we set fG:C := fo. When G # C we define the partition of the interval [0,1], 0 = sp < s <--- < sy = 1, with
map f%¢ by means of the Utility Lemma for the subgraph X. For m = m(X,a,b) > 5 odd, and two continuous surjective maps
every x € G we set: Yap: [0,1] — X and ¥, p: X — [0, 1] such that the following
statements hold:
vap(E(M1(x))) if x € n(l); Q@ o, p(W)={si:ie{0,1,...,m}}, where
fG;C(x) = C(wa,b(X)) if x € X;
)%(X) ifxES\Int(n(/)). W .= SOa,b({si: iE{O,l,...,m}}) D V(X),

and ¢, 5(0) = a and ¢, (1) = b.

@ Foreveryi=0,1,....m—1, SOa,b|[s. sl is injective and
©ab([si,sit1]) is an interval which is the closure of a
connected component of the punctured graph X \ W.
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lLea | - ' [ A sketch of a
Q If pab(si) = wan(sj) then i=j (mod 2). ls/ab,> topological
Q Vau(wan(si)) =0 ifiiseven and ), p(0an(si)) =1 ifiis 05' 0 ! graph X and the
odd (in particular, 1, p(a) = 0 and 1, p(b) = 1). maps from the
’ Lemma (top

is injective and

The ma
o P Ya,b pan(lsissisa]) picture). The
¢a7b(¢a7b([si, s,-+1])) =[0,1] forevery i =0,1,....,m—1. In 1 ‘ map Y2 b © Pap
particular, the map (V250 ©ap) \[Shs’“] is strictly monotone. is shown in the
bottom picture.

v
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| The minimalistic extension minimal dynamical properties

Theorem (The minimalistic extension factory)

Let g be a Markov circle map of degree one with respect to a
Markov partition Q. Assume that there exist pairwise disjoint basic
intervals I, J, K € B(Q) such that g(I) = J, g(J) = K and | is the
unique basic interval that g-covers J. Let G be an arbitrary graph
with a circuit C. Then, the minimalistic extension of g to G with
base at C, f, is a continuous well defined self map of G which is
Markov with respect to a Markov partition R. Moreover,

Per(g) C Per(f) and h(f) < h(g) + Iog%

where L is a constant depending solely on the graph G and not on
the function g, and p is the minimal length of a loop from | to
itself in the Markov graph of g.
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Very Important Remark

The existence of the three pairwise disjoint basic intervals

I,J,K € B(Q) such that g(/) = J, g(J) = K and [ is the unique
basic interval that g-covers J is assured by statement 5 of
Theorem B, which is the key of the “factory” construction from
the previous theorem.
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Proposition

Let H € £1 be a Markov map with respect to a Markov partition
P U Q such that Rot(H) is a non-degenerate interval contained in
(0,1). Let ¢ be a rational endpoint of Rot(H) and let g be the
denominator of ¢ when written in irreducible form. Assume also
that P is a twist periodic orbit of H with period g and rotation
number ¢ and that P is the unique lifted orbit of H with rotation
number c. Then, in the Markov graph of H with respect to PU @
there exists a unique loop (modulo shifts) which is associated to P.

Definition
The above loop will be called the P-fundamental loop of g.

LI. Alseda
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In the assumptions of the minimalistic extension factory theorem
suppose that g has a lifting H such that Rot(H) = [c,d] is a
non-degenerate interval contained in (0,1). Then Per(g) = Per(f)
provided that one of the following three contions is satisfied:
Q Per(g) = M(c, d).
@ Per(g) = {q} U M(c, d) where q is the denominator of the
rational endpoint ¢ when written in irreducible form,
q ¢ Qu(d) € M(c,d), Q has a subset R such that exp™1(R)
is the unique lifted periodic orbit of H with period q and
rotation number c, and the path | — J — K is not a
subpath of the R-fundamental loop of g.

© Analogously for the other endpoint.
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| The minimalistic extension minimal dynamical properties

In the assumptions of minimalistic extension factory theorem
suppose that g is Q-expanding, transitive, and Per(g) is cofinite.
Then, f is R-expanding and totally transitive.
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Let {[cn, dn]}nen be a sequence of non-degenerate intervals
contained in the interval (0, 1) such that c,, d, € Q for every

n € N, and lim,_,oc min M(c,, d,) = co. Assume also that the map
8c,.d, Vverifies the assumptions of the minimalistic extension factory
theorem. Let G be an arbitrary graph with a circuit C. Then,

Him, (fer,) =0

where f., 4. denotes the minimalistic extension of g, 4, to G with
base at the circuit C.
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