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Introduction and Motivation

Transitivity,

the existence of infinitely many periods and

positive topological entropy

often characterize the complexity in dynamical systems.

Definition

A map f : X −→ X is transitive if for every pair of open subsets
U,V ⊂ X there is a positive integer n such that f n(U) ∩ V ̸= ∅.
A map f is called totally transitive if all iterates of f are transitive.
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Introduction – Statement of the problem

A transitive map on a graph has positive topological entropy and
dense set of periodic points (except for an irrational rotation on
the circle).

A. M. Blokh.

On transitive mappings of one-dimensional branched manifolds.
In Differential-difference equations and problems of mathematical physics (Russian), pages 3–9, 131. Akad.
Nauk Ukrain. SSR, Inst. Mat., Kiev, 1984.

A. M. Blokh.

The connection between entropy and transitivity for one-dimensional mappings.
Uspekhi Mat. Nauk, 42(5(257)):209–210, 1987.

Ll. Alsedà, M. A. Del Ŕıo, and J. A. Rodŕıguez.

A survey on the relation between transitivity and dense periodicity for graph maps.
J. Difference Equ. Appl., 9(3-4):281–288, 2003.
Dedicated to Professor Alexander N. Sharkovsky on the occasion of his 65th birthday.

Ll. Alsedà, M. A. del Ŕıo, and J. A. Rodŕıguez.

Transitivity and dense periodicity for graph maps.
J. Difference Equ. Appl., 9(6):577–598, 2003.
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Introduction and Motivation

Thus, in view of

J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey.

On Devaney’s definition of chaos.
Amer. Math. Monthly, 99(4):332–334, 1992.

every transitive map on a graph is chaotic in the sense of Devaney
(except, again, for an irrational rotation on the circle).

Moreover, a totally transitive map on a graph which is not an
irrational rotation on the circle has cofinite set of periods (meaning
that the complement of the set of periods is finite or, equivalently,
that it contains all positive integers larger than a given one).

Ll. Alsedà, M. A. del Ŕıo, and J. A. Rodŕıguez.

A note on the totally transitive graph maps.
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11(3):841–843, 2001.
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Introduction and Motivation

Summarizing

Totally transitive maps on graphs are complicate since they have
positive topological entropy and cofinite set of periods.
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Introduction and Motivation

However, for every graph that is not a tree and for every ε > 0,
there exists a totally transitive map with periodic points such that
its topological entropy is positive but smaller than ε.

Ll. Alsedà, M. A. del Ŕıo, and J. A. Rodŕıguez.

A splitting theorem for transitive maps.
J. Math. Anal. Appl., 232(2):359–375, 1999.

Summarizing again

The complicate totally transitive maps on graphs may be relatively
simple because they may have arbitrarily small positive topological
entropy.
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Introduction and Motivation

In this talk we consider the question whether the simplicity
phenomenon that happens for the topological entropy can be
extended to the set of periods. More precisely,

is it true that when a totally transitive graph map with periodic
points has small positive topological entropy it also has small
“cofinite part” of the set of periods?

This is, in fact, a study about the dynamics simplicity of
complicate maps (totally transitive), and the consistency among
the different ways of measuring it. The dynamics simplicity can be
measured in different ways:

small topological entropy,

small set of periods (or small cofinite part of the set of
periods),

small cardinality of the set of periodic points of a given period,

others ....
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Introduction and Motivation

The aim of this study is to show the consistency of the measures
of dynamical simplicity of the totally transitive graph maps. That
is, when a sequence of totally transitive graph maps endeavours a
path to simplification it does it with respect to all measures of
dynamical complexity: entropy, size of the cofinite part of the set
of periods, and others?

Currently we look at the consistency of the entropy and the size of
the cofinite part of the set of periods.
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Boundary of Cofiniteness definition

To measure the size of the “cofinite part” of the set of periods we
introduce the notion of boundary of cofiniteness.

The boundary of cofiniteness

of a totally transitive map f , denoted by BdCof (f ), is defined as
the largest positive integer L ∈ Per(f ), L > 2 such that
L− 1 /∈ Per(f ) but there exists n ≥ L such that
Per(f ) ⊃ {n, n + 1, n + 2, . . . } and

Card
(
{1, . . . , L− 2} ∩ Per(f )

)

L− 2
≤ 2 log2(L− 2)

L− 2
.

That is, the cofinite part of the set of periods is beyond the
boundary of cofiniteness and the density of the low periods is small.

Clearly, the larger it is the boundary of cofiniteness the simpler it is
the set of periods.
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A first attempt: proving theorems
Results for the circle and the σ graph.

Theorem

Let {fn}n∈N be a sequence of totally transitive circle maps of
degree one with periodic points such that limn→∞ h(fn) = 0. For
every n let Fn ∈ L1 be a lifting of fn. Then,

limn→∞ len (Rot(Fn)) = 0,

there exists N ∈ N such that BdCof (fn) exists for every
n ≥ N, and

limn→∞ BdCof (fn) = ∞.
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Results for the circle and the σ graph.

For σ-maps (continuous self maps of the space σ) we use the
extension of lifting, degree and rotation interval RotR developed in

Ll. Alsedà and S. Ruette.

Rotation sets for graph maps of degree 1.
Ann. Inst. Fourier (Grenoble), 58(4):1233–1294, 2008.

to get the same result:

Theorem

Let {fn}n∈N be a sequence of totally transitive σ-maps of degree
one with periodic points such that limn→∞ h(fn) = 0. For every n
let Fn ∈ L1 be a lifting of fn. Then,

limn→∞ len (Rot(Fn)) = 0,

there exists N ∈ N such that BdCof (fn) exists for every
n ≥ N, and

limn→∞ BdCof (fn) = ∞.
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A first attempt: proving theorems

The problem is that these results deal with very particular (and
simple) spaces, and require a lot of theory and dynamical
knowledge of the spaces under study.

Or conversely: currently we do not have the tools to consider these
problems out of the circle and the σ graph, unless we find a much
simpler strategy for these results.
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A second attempt:
constructing examples for general graphs

When we show the three examples observe that they are
constructed in two steps:

Construct the desired example in the circle, with good control
of the dynamics and verifying the desired properties (rotation
number and set of periods).

Extend the circle example to an arbitrary graph by keeping the
basic desired properties.
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Example I: with persistent fixed low periods

Theorem

For every n ∈ {4k + 1, 4k − 1: k ∈ N} there exists a totally transitive
continuous circle map of degree one such that: Rot(fn) =

[
1
2
, n+2

2n

]
, and

Per(fn) = {2} ∪ {p odd : 2k + 1 ≤ p ≤ n − 2}
∪ {n, n + 1, n + 2, . . . }.

Moreover limn→∞ h(fn) = 0. Furthermore, given any graph G with a circuit,
the maps fn can be extended to continuous totally transitive maps gn : G −→ G
so that Per(gn) = Per(fn) but still limn→∞ h(gn) = 0.

Remark

2k + 1 ≤ BdCof (gn) = BdCof (fn) < n and, hence,
limn→∞ BdCof (gn) = ∞.

The density of “lower” periods outside the cofinite part converges to 1
4

and there is a very small period 2.

Despite of the fact that still limn→∞ h(gn) = 0, in general, h(gn) is
slightly larger than h(fn).

Ll. Alsedà Complexity/Simplicity of totally transitive graph maps 13/56



Example II: with non-constant low periods

Theorem

For every n ∈ N there exists a totally transitive continuous circle map of degree
one such that: Rot(fn) =

[
2n−1
2n2

, 2n+1
2n2

]
=

[
1
n
− 1

2n2
, 1
n
+ 1

2n2

]
, and

Per(fn) = {n} ∪
{tn + k : t ∈ {2, 3, . . . , ν − 1} and − t

2
< k ≤ t

2
, k ∈ Z}∪

{L ∈ N : L ≥ nν + 1− ν
2
}

with

ν =

{
n if n is even, and

n − 1 if n is odd;

and n ≤ BdCof (fn) ≤ nν − 1− ν
2
.

Moreover limn→∞ h(fn) = 0 and limn→∞ BdCof (fn) = ∞. Furthermore, given
any graph G with a circuit, the maps fn can be extended to continuous totally
transitive maps gn : G −→ G so that Per(gn) = Per(fn) but still
limn→∞ h(gn) = 0.
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Example II: with non-constant low periods

Remark

The density of “lower” periods outside the cofinite part converges to 1
2

but the smallest period is n.

As before, despite of the fact that still limn→∞ h(gn) = 0, in general,
h(gn) is slightly larger than h(fn).
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Example III: the dream example

Theorem

For every n ∈ N there exists a totally transitive continuous circle map of degree

one such that: Rot(fn) =
[

1
2n−1

, 2
2n−1

]
, and

Per(fn) = {n, n + 1, n + 2, . . . }.

Moreover limn→∞ h(fn) = 0. Furthermore, given any graph G with a circuit,
the maps fn can be extended to continuous totally transitive maps gn : G −→ G
so that Per(gn) = Per(fn) but still limn→∞ h(gn) = 0.

Remark

BdCof (gn) = BdCof (fn) = n and, hence, limn→∞ BdCof (gn) = ∞.

There are no “lower” periods outside the cofinite part.

As in the previous two cases, despite of the fact that still
limn→∞ h(gn) = 0, in general, h(gn) is slightly larger than h(fn).
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Circle dynamics of degree one — Liftings

Let e : R −→ S1 be the natural projection which is defined by
e(x) := exp(2πix).

Given a continuous map f : S1 −→ S1, we say that a continuous
map F : R −→ R is a lifting of f if

e(F (x)) = f (e(x))

for every x ∈ R.

For such F , there exists d ∈ Z such that

F (x + 1) = F (x) + d for all x ∈ R,

and this integer is called both the degree of f and the degree of F .

If G and F are two liftings of f then G = F + k for some integer k
and so F and G have the same degree.

Ld denotes the set of all liftings of circle maps of degree d .
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Circle dynamics of degree one — Rotation numbers

Let F ∈ L1 and let x ∈ R. The number

ρF (x) := lim sup
n→∞

F n(x)− x

n

will be called the rotation number of x . Moreover, the set

Rot(F ) := {ρF (x) : x ∈ R} = {ρF (x) : x ∈ [0, 1]}

will be called the rotation interval of F . It is well known that it is a
closed interval of the real line (c.f. [Ito]).

Ll. Alsedà Complexity/Simplicity of totally transitive graph maps 18/56



Circle dynamics of degree one
More on rotation numbers

If F ∈ L1 is a non-decreasing map, then

ρF (x) = lim
n→∞

F n(x)− x

n

for every x ∈ R and, moreover, it is independent on x .

Then this number (ρF (x) for any x ∈ R), will be called the
rotation number of F .
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Circle dynamics of degree one — Upper and lower maps

For every F ∈ L1 we define the
lower map Fl : R −→ R by

Fl(x) = inf{F (y) : y ≥ x}

and the upper map Fu : R −→ R
by

Fu(x) = sup{F (y) : y ≤ x}.

It is easy to see that Fl ,Fu are
non-decreasing maps from L1.

0
0

1

1

F

Fu

Fl

Figure: An example of a map
F ∈ L1 with its lower map Fl in red
and its upper map Fu in blue.
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Circle dynamics of degree one
Upper and lower maps and rotation interval

The next theorem gives an effective way to compute the rotation
interval from the rotation numbers of the upper and lower maps.

Theorem

For every F ∈ L1 it follows that Rot(F ) = [ρ(Fl), ρ(Fu)].
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Circle dynamics of degree one — Lifted orbits

To study the periodic orbits of a circle map we introduce the
notion of lifted orbit.

Let f be a continuous circle map of degree d and let F ∈ Ld be a
lifting of f . A set P ⊂ R will be called a lifted orbit of F if there
exists z ∈ S1 such that

P = e−1
(
Orbf (z)

)
and f (e(x)) = e(F (x))

for every x ∈ P.

Whenever z is a periodic point of f of period n, P will be called a
lifted periodic orbit of F of period n. We will denote by Per(F ) the
set of periods of all lifted periodic orbits of F .

Remark

Per(F ) = Per(f ).
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Circle dynamics of degree one — A remark on lifted orbits

Let F ∈ L1 and let P be a lifted periodic orbit of F of period
period n. Set

P = {. . . , x−2, x−1, x0, x1, x2, . . . }
with xi < xj if and only if i < j . The fact that P = e−1

(
Orbf (z)

)
,

in this case, gives
Card (P ∩ [r , r + 1)) = n

for every r ∈ R and, hence,

xkn+i = xi + k

for every i , k ∈ Z.

Moreover, there exists m ∈ Z such that F n(xi ) = xi +m = xmn+i

for every xi ∈ P. Consequently,

ρF (xi ) =
m
n

for every xi ∈ P.

Ll. Alsedà Complexity/Simplicity of totally transitive graph maps 23/56



Circle dynamics of degree one — More on lifted orbits

From the above remark it follows that if P is a lifted periodic orbit
of F ∈ L1, then all the points of P have the same rotation number.

This number will be called the rotation number of P.
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Circle dynamics of degree one — Twist lifted orbits

A lifted periodic orbit P of F ∈ L1 such that F
∣∣
P
is increasing will

be called twist.

Remark

Let
P = {. . . , x−2, x−1, x0, x1, x2, . . . }

be a twist lifted periodic orbit of F ∈ L1 of period n and rotation
number m/n labelled so that xi < xj if and only if i < j . Then, m
and n are coprime and

F (xi ) = xi+m,

for all i ∈ Z.
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Circle dynamics of degree one — The set of periods

Recall that the Sharkovskĭı Ordering Sh≥ (the symbols Sh>, <Sh

and ≤Sh will also be used in the natural way) is a linear ordering of
NSh := N ∪ {2∞} (we have to include the symbol {2∞} in order to
ensure the existence of supremum of every subset with respect to
the ordering Sh≥) defined as follows:

3 Sh> 5 Sh> 7 Sh> 9 Sh> · · · Sh>

2 · 3 Sh> 2 · 5 Sh> 2 · 7 Sh> 2 · 9 Sh> · · · Sh>

4 · 3 Sh> 4 · 5 Sh> 4 · 7 Sh> 4 · 9 Sh> · · · Sh>

...

2n · 3 Sh> 2n · 5 Sh> 2n · 7 Sh> 2n · 9 Sh> · · · Sh>

...

2∞ Sh> · · · Sh> 2n Sh> · · · Sh> 16 Sh> 8 Sh> 4 Sh> 2 Sh> 1.
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Circle dynamics of degree one — The set of periods
Notation

Given c , d ∈ R, c ≤ d we set

M(c , d) := {n ∈ N : c < k/n < d for some integer k}.

Let F ∈ L1 and let c be an endpoint of Rot(F ). We define the set

QF (c) :=

{
∅ if c /∈ Q
{sk : k ∈ N and k ≤Sh sc} if c = r/s with r , s coprime

and sc ∈ NSh is defined by the Sharkovskĭı Theorem on the real line
as follows: Indeed, since c = r/s and r and s are coprime, the map
F s − r is a continuous map on the real line with periodic points.
By the Sharkovskĭı Theorem there exists an sc ∈ NSh such that the
set of periods (not lifted periods) of F s − r is precisely
{k ∈ N : k ≤Sh sc}.
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Circle dynamics of degree one — The set of periods
Misiurewicz Theorem

Theorem

Let f be a continuous circle map of degree one having a lifting
F ∈ L1. Assume that Rot(F ) = [c , d ]. Then

Per(f ) = QF (c) ∪M(c , d) ∪ QF (d).
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Minimum dynamics in the circle — Definition
For c , d ∈ R, c < d and z > 1 we define

Rc,d(z) :=
∑

{(p,q) : p∈Z, q∈N and c < p
q < d}

z−q.

Rc,d(z) =
1
2 has a unique solution βc,d > 1.

We define a lifting Gc,d ∈ L1 by:

gc,d denotes the circle
map of degree 1
which has Gc,d as a
lifting.

Gc,d(x) :=





βc,dx + bc,d if 0 ≤ x ≤ uc,d ,

βc,d(1− x) + bc,d + 1 if uc,d ≤ x ≤ 1,

Gc,d(x − ⌊x⌋) + ⌊x⌋ if x /∈ [0, 1],

with uc,d :=
βc,d+1
2βc,d

∈ (0, 1) and

bc,d :=
(βc,d − 1)2

βc,d

∞∑

n=1

⌊nc⌋β−n
c,d .

⌊·⌋ denotes the integer part function.
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Minimum dynamics in the circle — Definition

Gu

Gu

x0

x1

x1

1 + x0

1 + x0

t4

t6

t7

t9

t0

t5

1 + t6

t8

1 + t9

t4

1 + t5

t7

1 + t8

t0

1 + t1

1 + t3

1 + t2

t3 t2 t1

G 1

2
, 7

10

The graphs of the maps G 1

2
, 7

10

in blue

and Gu =
(
G 1

2
, 7

10

)
u
in brown (note that

Gu coincides with G 1

2
, 7

10

on the interval
[t3, t0] and hence it is left in blue color
for clarity). The orbit of 0 = x0 is
labelled so that G 1

2
, 7

10

(x0) = x1 and
G 1

2
, 7

10

(x1) = x0 + 1 (in this case the
(temporal) labelling leaves the orbit
sorted in the real line) and the orbit of
u 1

2
, 7

10

= t0 is labelled so that
G 1

2
, 7

10

(ti ) = 1 + ti+1 for
i ∈ {0, 1, 2, 4, 5, 7, 8}, G 1

2
, 7

10

(ti ) = ti+1

for i ∈ {3, 6} and G 1

2
, 7

10

(t9) = t0. In this
case the (temporal) labelling does not
sort the orbit; the sorted version of this
orbit is obtained by setting y9 := t0 and

yk+i := t3i+3 for k = 0, 3, 6 and i = 0, 1, 2.
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Minimum dynamics in the circle
Useless Remark on the computation of the numbers βc,d

For c ∈ R, c > 0, and z > 1 we define

Tc(z) :=
∞∑

n=0

z−⌊
n
c ⌋,

and, for definiteness, we set T0(z) ≡ 0. Then, for c , d ∈ R, c < d ,
c ∈ [0, 1), and z > 1 we define

Qc,d(z) := z + 1 + 2

(
z

z − 1
− T1−c(z)− Td(z)

)

One can show that

Qc,d(z) = (z − 1) (1− 2Rc,d(z)) .

Hence, βc,d is the largest root of the equation Qc,d(z) = 0.

This observation gives a much easier way of calculating the
numbers βc,d .
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Minimum dynamics in the circle
Properties of the minimum dynamics maps

The next theorem justifies the importance of the the minimum
dynamics maps:

Theorem ([A., Llibre, Mañosas, Misiurewicz])

Let f be a circle map of degree 1 with rotation interval [c , d ] with
c < d . Then h(f ) ≥ log βc,d . Moreover, for every c, d ∈ R with
c < d , Rot

(
Gc,d

)
= [c , d ] and h(gc,d) = log βc,d .
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Minimum dynamics in the circle
Properties of the minimum dynamics maps

Theorem A (entopy goes to zero with the rotation interval)
A nice natural property consistent with the minimality

Let {[cn, dn]}n∈N be a sequence of non-degenerate intervals
contained in the interval (0, 1) such that cn, dn ∈ Q for every
n ∈ N, and limn→∞minM(cn, dn) = ∞. Then,

lim
n→∞

h(gcn,dn) = log βcn,dn = 0.

Remark

The inequality minM(cn, dn) > M implies that M /∈ M(cn, dn) and
this is equivalent to k

M ≤ cn < dn ≤ k+1
M for some k ∈ Z, which

implies dn − cn ≤ 1
M .

Hence, limn→∞minM(cn, dn) = ∞ implies limn→∞ dn − cn = 0.

Note: Theorem A is general and does not depend on an and bn.
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Skipable proof of Theorem A

Notation

T·U is a function similar to the integer part function, defined by:

TxU := −1− ⌊−x⌋ =
{
⌊x⌋ if x /∈ Z, and
x − 1 otherwise.

The fact that, for every n ∈ N, h(gcn,dn) = log βcn,dn follows from
Theorem 1. So, we need to show that limn→∞ βcn,dn = 1.

For every q ∈ N, TqdnU − ⌊qcn⌋ is equal to the number of integers
contained in the interval (qcn, qdn) which, in turn, is the
cardinality of the set

{p ∈ Z : such that cn <
p
q < dn}.
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Skipable proof of Theorem A (II)

For every n ∈ N, let us denote Nn := minM(cn, dn)− 1. So, for
every q ≤ Nn, q /∈ M(cn, dn) which is equivalent to

{p ∈ Z : such that cn <
p
q < dn} = ∅ ⇐⇒ TqdnU−⌊qcn⌋ = 0.

Moreover, if 1
k < dn − cn, then k ∈ M(cn, dn) and this implies that

k > Nn. Hence, k ≤ Nn implies dn − cn ≤ 1
k , which is equivalent to(

dn − cn
)
k ≤ 1.

Ll. Alsedà Complexity/Simplicity of totally transitive graph maps 35/56



Skipable proof of Theorem A (III)

Consequently, when z > 1,

Rc,d(z) :=
∑

{(p,q) : p∈Z, q∈N and c < p
q < d}

z−q =
∞∑

k=Nn+1

(
TkdnU − ⌊kcn⌋

)
z−k

≤
∞∑

k=Nn+1

((
dn − cn

)
k + 1

)
z−k

= z−Nn

∞∑

k=1

((
dn − cn

)
(Nn + k) + 1

)
z−k

≤ z−Nn

∞∑

k=1

((
dn − cn

)
k + 2

)
z−k

< z−Nn

∞∑

k=1

(k + 2)z−k = z−Nn
3z − 2

(z − 1)2
.
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Skipable proof of Theorem A (IV)

Now let us consider the equation z−Nn 3z−2
(z−1)2

= 1
2 , which is

equivalent to zNn = 2 3z−2
(z−1)2

. We note that:

1 The map z 7→ 2 3z−2
(z−1)2

is strictly

decreasing on (1,+∞),
limz→1+ 2 3z−2

(z−1)2
= +∞ and

limz→∞ 2 3z−2
(z−1)2

= 0.

2 The map z 7→ zNn is strictly
increasing and zNn

∣∣
z=1

= 1.

3 Clearly, Nn < Nm implies zNn < zNm

for every z > 1.

Then, for each n, there exists a unique real

1

1 z
γm
γn

· · · · · ·

2 3z−2

(z−1)2

zNn

zNm

number γn > 1 such that γNn
n = 2 3γn−2

(γn−1)2
, γm < γn whenever

Nn < Nm, and limn→∞ γn = 1 because limn→∞Nn = ∞.
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Skipable proof of Theorem A (and V)

Since, Rcn,dn(γn) < γ−Nn
n

3γn−2
(γn−1)2

= 1
2 , we have 1 < βcn,dn < γn

because Rcn,dn is continuous and decreasing on the interval (1,∞).

So, limn→∞ βcn,dn exists and satisfies

1 ≤ lim
n→∞

βcn,dn ≤ lim
n→∞

γn = 1.
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Characterization of the minimum dynamics on the circle

Theorem B

Let
[
c , d ] be a non-degenerate interval contained in the interval

(0, 1) such that c = p
q and d = r

s with p, q, r , s ∈ N and
(p, q) = (r , s) = 1. Then, the following statements hold:

1 gc,d is totally transitive.

2 Q = e−1
(
Orbgc,d (e(0))

)
is a twist periodic orbit of Gc,d of

period q and rotation number c with the property that

Q ⊂ ⋃
k∈Z

[
k, k + 1

βc,d

)
. Moreover, Q is the unique lifted

periodic orbit of Gc,d with rotation number c .

3 P = e−1
(
Orbgc,d (e(uc,d))

)
is a twist periodic orbit of Gc,d of

period s and rotation number d such that

P ⊂ ⋃
k∈Z

(
k +

βc,d−1
2βc,d

, k + uc,d

]
. Moreover, P is the unique

lifted periodic orbit of Gc,d with rotation number d .
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Minimum dynamics on the circle (cont’d)

Theorem B

4 Set

Q = {. . . x−1, x0 = 0, x1, x2, . . . , xq−1, xq, xq+1, . . . }, and

P = {. . . y−1, y0, y1, y2, . . . , ys−1 = uc,d , ys , ys+1, . . . }

with xi < xj and yi < yj if and only if i < j . Then, for every
i , j ∈ Z,

xjq+i = xi + j , yjs+i = yi + j ,

Gc,d(xi ) = xi+p and Gc,d(yi ) = yi+r ,

Moreover, we also have that 0 = x0 < y0, xq−1 < ys−1 = uc,d
and the points ys−1 = uc,d < 1 = xq are consecutive in Q ∪P.
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Minimum dynamics on the circle (cont’d)

Theorem B

5 Assume that ℓ :=
⌊
s
r

⌋
̸=

⌊
q
p

⌋
. Then, 1 ≤ ℓ <

⌊
q
p

⌋
,

n := q − ℓp ≥ p ≥ 1, t := s − ℓr ∈ {0, 1, 2, . . . , r − 1}, and
x0 = 0 < x1 < · · · < xn−1 < y0 < y1 < · · · < yt−1 <

xn < · · · < xn+p−1 < yt < · · · < yt+r−1 <
xn+p < · · · < xn+2p−1 < yt+r < · · · < yt+2r−1 <
...

...
...

...< · · · < < < · · · < <...
...

...
...

xn+(ℓ−1)p < · · · < xn+ℓp−1 < yt+(ℓ−1)r < · · · < yt+ℓr−1 < xq = 1.
q q q q

xq−p xq−1 ys−r ys−1

q
uc,d
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Minimum dynamics on the circle (cont’d)

Theorem B

6 Q ∪ P is a short Markov partition for Gc,d , and gc,d is Markov
with respect to the Markov partition
Orbgc,d (e(0)) ∪ Orbgc,d (e(uc,d)).

Short Markov Partition

Let X be a topological graph and let f : X −→ X be a continuous map. A
Markov invariant set is defined to be a finite f -invariant set Q ⊃ V (X )
(f (Q) ⊂ Q) such that the closure of each connected component of X \ Q,
called a Q-basic interval , is an interval of X .

When f is monotone on each Q-basic interval Q is called a Markov partition of
X with respect to f and f is called a Markov map with respect to Q.

Let F ∈ L1 be a lifting of f and let Q be a Markov partition with respect to F .
A Q-basic interval will be called F-short if the length of the interval F (I ) is
strictly smaller than 1. Then, Q will be called a short Markov partition with
respect to F whenever every Q-basic interval is F -short.
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Minimum dynamics on the circle (cont’d)

Corollary

Let [c , d ] be a non-degenerate interval contained in the interval
(0, 1) such that c, d ∈ Q. Let q and s be the denominators of c
and d when written in irreducible form, respectively. Then,

Per(gc,d) = {q, s} ∪M
(
c , d

)
.
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The examples factory: The minimalistic extension to graph
maps

Let g be a Markov circle map of degree one with respect to a
Markov partition Q. Assume that there exist pairwise disjoint basic
intervals I , J,K ∈ B(Q) such that f (I ) = J and f (J) = K . Let G
be an arbitrary graph with a circuit C . The minimalistic extension
of g to G with base at C , is a continuous self map of G defined as
follows.

Let S ⊂ C be an interval such that S ∩ V (G ) = ∅ and let
η : S1 −→ C be a homeomorphism such that C \Int(S) = η(J).
Clearly, X := G \ Int(S) ⊃ η(J) is a subgraph of G and the two
elements of ∂S = ∂η(J) are endpoints (and thus vertices) of X but
they are not vertices of G because S ∩ V (G ) = ∅. Then we have

G = X ∪ S = X ∪ Int
(
S
)
=

(
X \ {a, b}

)
∪ S ,

and
V (X ) = V (G ) ∪ ∂S = V (G ) ∪ {a, b}

where, for definiteness, we have set {a, b} := ∂S = ∂η(J).
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The minimalistic extension to graph maps — The figure

a

sIm
q
zI

b

sIl+1

Vl
sIl

sI0q
zI
a

b

· · ·
· · ·

η(I)

η(K)

g̃C

g̃C

Uj

0 1sl

sl+1

· · ·

ξ ϕa,b

1 0

ζ

ψa,b

A topological graph
G and the definition
of gG ;C . The circuit
C (with apple shape)
is drawn in blue.
Then, the interval S
is the (thin) path in
C from b to a
counter-clockwise
(∂S = {a, b}) and
the interval
C \ Int(S) = η(J) is
the thick path in C
from b to a clockwise.
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The minimalistic extension to graph maps

Now we define an auxiliary graph map f̃C := η ◦ g ◦ η−1 : C −→ C .
Clearly, f̃C is a Markov map with respect to η(Q), conjugate to g .

The assumptions g(I ) = J and g(J) = K imply that f̃C sends
homeomorphically ∂η(I ) to ∂η(J) and the latter to ∂η(K ). Hence,
we can consider a homeomorphism ξ : I −→ [0, 1] with an
orientation such that ξ

(
η−1(z I

a)
)
= 0 and ξ

(
η−1(z I

b)
)
= 1, where

z I
a (respectively z I

b) denotes the endpoint (and unique element) of

η(I ) such that f̃C (z
I
a) = a (respectively f̃C (z

I
b) = b). Similarly, we

consider a second homeomorphism ζ : [0, 1] −→ η(K ) with an
orientation such that ζ(0) = f̃C (a) and ζ(1) = f̃C (b).
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The minimalistic extension to graph maps

When G = C then we set f G ;C := f̃C . When G ̸= C we define the
map f G ;C by means of the Utility Lemma for the subgraph X . For
every x ∈ G we set:

f G ;C (x) :=





φa,b

(
ξ
(
η−1(x)

))
if x ∈ η(I );

ζ
(
ψa,b(x)

)
if x ∈ X ;

f̃C (x) if x ∈ S \ Int
(
η(I )

)
.
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Exporting circle dynamics to graphs — A utility lemma

Lemma

Let X be a topological graph which is not an interval and let
a, b ∈ V (X ) be two different endpoints of X . Then, there exist a
partition of the interval [0, 1], 0 = s0 < s1 < · · · < sm = 1, with
m = m(X , a, b) ≥ 5 odd, and two continuous surjective maps
φa,b : [0, 1] −→ X and ψa,b : X −→ [0, 1] such that the following
statements hold:

1 φ−1
a,b(W ) = {si : i ∈ {0, 1, . . . ,m}}, where

W := φa,b

(
{si : i ∈ {0, 1, . . . ,m}}

)
⊃ V (X ),

and φa,b(0) = a and φa,b(1) = b.

2 For every i = 0, 1, . . . ,m − 1, φa,b

∣∣
[si ,si+1]

is injective and

φa,b

(
[si , si+1]

)
is an interval which is the closure of a

connected component of the punctured graph X \W .
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Exporting circle dynamics to graphs — A utility lemma

Lemma

3 If φa,b(si ) = φa,b(sj) then i ≡ j (mod 2).

4 ψa,b(φa,b(si )) = 0 if i is even and ψa,b(φa,b(si )) = 1 if i is
odd (in particular, ψa,b(a) = 0 and ψa,b(b) = 1).

5 The map ψa,b
φa,b([si ,si+1])

is injective and

ψa,b

(
φa,b([si , si+1])

)
= [0, 1] for every i = 0, 1, . . . ,m − 1. In

particular, the map
(
ψa,b ◦ φa,b

)∣∣
[si ,si+1]

is strictly monotone.
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Exporting circle dynamics to graphs — A utility lemma

b

a

0

1

sl
sl+1

.

.

.

φa,b

0 1

ψa,b

0

1

0 1slsl+1 · · ·

· · ·

ψa,b ◦ φa,b

A sketch of a
topological
graph X and the
maps from the
Lemma (top
picture). The
map ψa,b ◦ φa,b

is shown in the
bottom picture.
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The minimalistic extension minimal dynamical properties

Theorem (The minimalistic extension factory)

Let g be a Markov circle map of degree one with respect to a
Markov partition Q. Assume that there exist pairwise disjoint basic
intervals I , J,K ∈ B(Q) such that g(I ) = J, g(J) = K and I is the
unique basic interval that g-covers J. Let G be an arbitrary graph
with a circuit C . Then, the minimalistic extension of g to G with
base at C, f , is a continuous well defined self map of G which is
Markov with respect to a Markov partition R. Moreover,

Per(g) ⊂ Per
(
f
)

and h
(
f
)
≤ h(g) + log L

ρ

where L is a constant depending solely on the graph G and not on
the function g , and ρ is the minimal length of a loop from I to
itself in the Markov graph of g .
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The minimalistic extension minimal dynamical properties

Very Important Remark

The existence of the three pairwise disjoint basic intervals
I , J,K ∈ B(Q) such that g(I ) = J, g(J) = K and I is the unique
basic interval that g -covers J is assured by statement 5 of
Theorem B, which is the key of the “factory” construction from
the previous theorem.
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The minimalistic extension minimal dynamical properties

Proposition

Let H ∈ L1 be a Markov map with respect to a Markov partition
P ∪ Q such that Rot(H) is a non-degenerate interval contained in
(0, 1). Let c be a rational endpoint of Rot(H) and let q be the
denominator of c when written in irreducible form. Assume also
that P is a twist periodic orbit of H with period q and rotation
number c and that P is the unique lifted orbit of H with rotation
number c. Then, in the Markov graph of H with respect to P ∪ Q
there exists a unique loop (modulo shifts) which is associated to P.

Definition

The above loop will be called the P-fundamental loop of g .
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The minimalistic extension minimal dynamical properties

Theorem

In the assumptions of the minimalistic extension factory theorem
suppose that g has a lifting H such that Rot(H) = [c , d ] is a
non-degenerate interval contained in (0, 1). Then Per(g) = Per

(
f
)

provided that one of the following three contions is satisfied:

1 Per(g) = M(c , d).

2 Per(g) = {q} ∪M(c , d) where q is the denominator of the
rational endpoint c when written in irreducible form,
q /∈ QH(d) ⊂ M(c , d), Q has a subset R such that exp−1(R)
is the unique lifted periodic orbit of H with period q and
rotation number c , and the path I −→ J −→ K is not a
subpath of the R-fundamental loop of g.

3 Analogously for the other endpoint.

Ll. Alsedà Complexity/Simplicity of totally transitive graph maps 54/56



The minimalistic extension minimal dynamical properties

Theorem

In the assumptions of minimalistic extension factory theorem
suppose that g is Q-expanding, transitive, and Per(g) is cofinite.
Then, f is R-expanding and totally transitive.
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The minimalistic extension minimal dynamical properties

Corollary

Let {[cn, dn]}n∈N be a sequence of non-degenerate intervals
contained in the interval (0, 1) such that cn, dn ∈ Q for every
n ∈ N, and limn→∞minM(cn, dn) = ∞. Assume also that the map
gcn,dn verifies the assumptions of the minimalistic extension factory
theorem. Let G be an arbitrary graph with a circuit C . Then,

lim
n→∞

h
(
fcn,dn

)
= 0,

where fcn,dn denotes the minimalistic extension of gcn,dn to G with
base at the circuit C .
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