THE CENTRAL LIMIT THEOREM FOR INNER FUNCTIONS II

ARTUR NICOLAU AND ODI SOLER I GIBERT

ABSTRACT. A sharp version of the Central Limit Theorem for linear combinations of iterates
of an inner function is proved. The authors previously showed this result assuming a subop-
timal condition on the coefficients of the linear combination. Here we explain a variation of
the argument which leads to the sharp result. We also review the steps of the proof as well as
the main technical tool which is Aleksandrov Disintegration Theorem of Aleksandrov-Clark
measures.

1. INTRODUCTION AND MAIN RESULTS

Let D be the unit disc in the complex plane and let m be the normalized Lebesgue measure
on the unit circle dD. An analytic mapping from D into I is called inner if its radial limits have
modulus one at almost every point of the unit circle. Hence any inner function f induces a map
defined at almost every point z € 0D as f(z) = lim,_,;- f(rz). Let f" = fo...of:0D — JD
denote the n-th iterate of the inner function f. It has been recently shown that the iterates
{f™} behave as a sequence of independent random variables in the sense that they obey
appropriate versions of classical results on sequences of independent random variables (see
[Nic22] and [NS22]). There are of course other situations in Complex Analysis where one
encounters probabilistic behaviors in settings where the notion of independence is not directly
present. A classical example of such setting is the assymptotic behaviour of lacunary series.
In a series of classical papers by Paley and Zygmund, Salem and Zygmund and Weiss, the
authors consider versions of the Khintchine-Kolmogorov Theorem for pointwise convergence
(see |Zyg88, Section V.6]), versions of the Central Limit Theorem (|SZ47] and [SZ48|) and of
the Law of the Iterated Logarithm ([Weib9]), for lacunary series. Our work is inspired by the
Central Limit Theorem for lacunary series proved by Salem and Zygmund.

Recall that a sequence of measurable functions {fy} defined at almost every point in the
unit circle converges in distribution to a (circularly symmetric) standard complex normal
variable if for any Borel set K < C such that its boundary 0K has zero area, one has

lim m({z € dD: fy(z) € K}) = 1J e P2 qA(w).

N—o 2 K
Let f be an inner function with f(0) = 0 which is not a rotation and let {a,,} be a sequence of
complex numbers. A version of the Central Limit Theorem for linear combinations Y] a, f™ of
iterates has been given in [NS22] under certain conditions on the size of the coefficients {a,}.
The main purpose of this paper is to present the following version of this result which holds
under the minimal assumption on the size of the coefficients {a,}.

Theorem 1. Let f be an inner function with f(0) = 0 which is not a rotation. Let {a,} be a
sequence of complex numbers with

a0
D lan]? = . (1.1)
n=1
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Consider
N N—-1 N—
= Y lan> +2Re > f(0) Z Tyt 1 =1,2,... (1.2)
n=1 k=1 n=1

Assume that the coefficients {a,} satisfy that

Then
V2 &
— Z anfn
ON n=1
converges in distribution to a standard complexr normal variable.

Other versions of the Central Limit Theorem in this context have been given in [IU23] and
[AN23].

We will use an argument due to Salem and Zygmund to show that condition is optimal
in the sense that for any sequence {a,} with 3’ |a,|?> = co and

I lan|?
im sup
N—oo Zn 1 lan|?

the conclusion cannot hold. For 1 < p < o let | g, denote the L” norm of the function g on
the unit circle defined by

> 0,

9l = f glPdm.
oD

Let f be an inner function with f(0) = 0 which is not a rotation and let {a,} be a sequence
of complex numbers. It was proved in [NS22| that

L)
PR

N

2
ol

n=1

1+\f’ 0)] <
—17(0)] 2.

Hence the series ) ap f™ converges in L2(6]D) if and only if Y |a,|*> < 00. Moreover if this
last condition holds, then the series >’ a, f"(z) converges at almost every point z € D (see
[Nic22|). In this context, repeating the proof of Theorem (I} one can show that when one has
pointwise convergence, the tails obey a Central Limit Theorem.

lan|>, N =1,2,... (1.4)

Theorem 2. Let f be an inner function with f(0) = 0 which is not a rotation. Let {a,} be a
sequence of complex numbers with Y. |a,|? < o0. Consider

A(N) = > lanl* +2Re >, f/(0)F ) @nanyr, N=1,2,...
n=N k=1 n=N
Assume that the coefficients {a,} satisfy that

2
lim |

= 0. 1.5
S P (1:3)

Then

V2 A
O’(N) TLZN an f

converges in distribution to a standard complex normal variable.

Given a set A of positive integers, consider the corresponding partial sum

f(A) = Z an f".

neA
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The proof of Theorem [I| contains two main ideas. The first one is a convenient splitting of the
partial sums

N
S anf™ = SE(A) + E(BY)
n=1 k

into certain alternating blocks of consecutive terms £(Ay) and (By) which depend on N, that
is, satisfying max Ag + 1 = min B and max B; + 1 = min A1, which obey two counteracting
properties. On the one hand || > &(Bg)|2/on must be small so that > &(Bg) becomes irrele-
vant. On the other hand the number of terms of each block £(B)) must be large so that the
correlations between different blocks &(.Ay) decay sufficiently fast. The construction of these
blocks is inspired by a similar construction of Weiss in [Weib9]. The second main idea in
the proof was already present in [NS22] and concerns the decay of certain correlations which
naturally appear when proving a Central Limit Theorem. We mention two main properties.
If A and B are two sets of positive integers such that a < b for any a € A and b € B, it turns
out that |¢(A)|? and |£(B)|? are uncorrelated, that is,

[ tecoremiean - ([ ewran) ([ mzan) .

(see Theorem@ in Section. The second property provides an exponential decay of the higher

order correlations of the iterates. More concretely, let ¢;, = 1 or g; = —1 for¢ = 1,2,...,k
and n; < ... < n be positive integers satisfying n; —n;—1 > ¢ > 1, j = 2,...,k. Denote
e = (e1,...,6x) and n = (n1,...,nk). For a positive integer n, denote by f~" the function

defined by f7"(z) = f(2), z € dD. It was shown in [NS22] that

Ll

if ¢ is sufficiently large and where ® is a certain function depending on the choice of indices
that satisfies ®(e,n) > kq/4 and that is well suited for summing over the indices afterwards
(see Theorem [10|in Section . The main technical tool in the proof of both properties
and is the theory of Aleksandrov-Clark measures and more concretely, the Aleksandrov
Disintegration Theorem.

We have tried to make this paper self-contained. We use some auxiliary results from [NS22]
but, when possible, we have provided simple proofs. This paper is structured as follows. In
Section |2[ we show that the growth condition on the coefficients cannot be improved.
Section (3| contains a brief exposition on Aleksandrov-Clark measures and their application
in the proof of Theorem In Section [ we state some auxiliary results. Finally, we prove
Theorem [ in Section [

We thank the referee for reading carefully the paper and for several important suggestions.
In particular the referee found several errors and inaccuracies which fortunately could be
solved.

< CRRIf(0)®Em) k=1,2,..., (1.7)

2. OPTIMALITY OF THE ASSUMPTION ON THE COEFFICIENTS

We now prove the optimality of condition ([1.3)) using an argument due to Salem and Zyg-
mund [SZ47|. The main idea is contained in the following result, from which we will deduce
the optimal nature of condition (|1.3]).

Proposition 3. Le {g,} be a sequence of functions in the unit circle with |g,(z)| < 1 for every
n = 1 and for almost every z € dD. Let {a,} be a sequence of complex numbers that is not
square summable and define

N
Sx =] lanl*.
n=1
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Denote N
GN(Z) = Z angn(z)a z € dD.
n=1

Assume that the sequence {Gn/Sn} satisfies the uniform decay
m ({z € 0D: Gn(2)
SN

where p(r) is a positive decreasing function with lim,_,o ¢(r) = 0. Assume that
Jan|?

> r}) < p(r), forallr>0,N > 1, (2.1)

> 0. (2.2)

< r}) ~1 (2.3)

< T}
and define the functions
Pn(r) =m({An(r)}), P(r) = ligfninf Pn(r).
—00
From the definitions, it is clear that Py are nondecreasing functions and, hence, so is function
P. Moreover, for each N > 1 we have that lim,_, o Py(r) = 1. Furthermore, condition ({2.1]
implies that also lim, .o, P(r) = 1. Indeed, the bound ({2.1)) for a given r > 0 is equivalent to

m({An(r)}) 21— ¢(r)
for all N > 1 and, in particular, P(r) = 1 — ¢(r). Therefore, the decay of ¢(r) ensures that
lim, o, P(r) = 1.

Note that is the same as to say that P(r) = 1 for all r = r¢. Thus, assume that this
is not the case, so P(r) < 1 for any finite r. Because of , there exists € > 0 such that
lan|* > £S% for infinitely many values of N. For such values of N we get that

St1 _ Sk — lawl®

= <1l-—e¢.
Sk Sk

lim sup
2
N—0 SN

Then, there exists rg > 0 such that

lim m <{z e oD: ‘GN(Z)
N—00 SN

for all r = rg.
Proof. Given r > 0 and N > 1, denote

Gn(2z)
SN

An(r) = {z e dD: ‘

Now write
Gy  GN-1S5N-1 | angn

Sy Sn-1 SN " SN
For r > 0, observe that if z € Ax_1(r), by the previous identity we have that z € Ay(rv/1 — e+
1). In particular, by the definition of P, taking the limit in N we find that P(r) < P(ry/1 —e+
1). For r > 1/(1 — 4/1 —¢), it holds that ry/1 —e + 1 < r and, since P is nondecreasing, we
actually have that P(r) = P(rv/1 —e+1).

Pick ro > 1/(1 — /1 —¢) large enough so that s9 = rgv/1—¢ + 1 < (1 — ¢/4)rg. By
the previous argument and because P is nondecreasing, we find that P(r) = P(rg) < 1 for
all so < r < 7o, that is P is constant in the interval [so,ro] (see Figure [1)). Next, pick
s1 € [ro(1 —e/4),ro] and let

S1 — 1

V1—¢

Note that by our choice of ry and s;, there exists a constant C' > 1 such that r; > Cry.
Repeating the previous argument and using that P(s1) = P(rg), we get that P(r) = P(rg) <1
for all sg < r < r;. Iterating this procedure, we see that for any r > sy it holds that
P(r) = P(rg) < 1. However, this contradicts the fact that lim,_,o, P(r) = 1, which must hold
because of , and thus concludes the proof. O

T =
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FIGURE 1. First, we choose points 79 > 1/(1 —+/1 —¢) and sg = r9y/1 — e + 1.
Thus, P is constant and equal to P(rg) in the interval [sg, 79]. Then, by choosing
s1 in [sg,ro] we see that P is also equal to P(ro) in [so,71], where 1 = (s1 —

1)/v/1 —e.

We will now deduce that condition is optimal.

Let f be an inner function with f(0) = 0 which is not a rotation and let {a,,} be a sequence
of complex numbers whose modulus is not square summable. Let oy be defined by .
Assume that )

oy, (2.4)
N=o et lan]?

We will now show that
V2 &
— 2 anfn
ON n=1
does not converge in distribution to a standard complex normal variable.
Define Sy as before and denote

N
Gn(z) = Z anf"(2), z € dD.

n=1
Assume now that Gy/on converges in distribution to a normal random variable. Esti-
mate asserts that there exists C = C(f) > 1 such that C71 < 0%/S% < C (see
also Theorem . Therefore, even though {Gy/Sn} might not converge in distribution, the
properties of the normal distribution and the boundedness of the ratio o /Sy ensure that for

every r > 0 exists Ny = Ny(r) such that
< r}) <1
lim inf m <{z e dD: ‘GN(Z)

m ({z e oD: IGN(Z)
SN
< .
im in S r}) <1 (2.5)
for all finite r. Next, note that since oy = |G x|, we have the uniform bound
HG’N < C’l/ 2‘
SN Il
Hence, by Chebyshev’s inequality, the functions {G x/Sn} satisfy the uniform decay (2.1]) with
@(r) = C/r?. Thus, (2.5) and Proposition |3| provide a contradiction.

for all N = Ny. In particular,
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3. ALEKSANDROV-CLARK MEASURES

Given an analytic mapping f from the unit disc into itself (not necessarily inner) and a
point « € JD, the function (o + f)/(« — f) has positive real part and hence there exists a
positive measure fi, = pio(f) in the unit circle and a constant C,, € R such that

a+ f(w) f zZ4+w
a—fw) Jopz—w
The measures {pq: o € 0D} are called the Aleksandrov-Clark measures of the function f.
Clark introduced them in his paper |Cla72] and many of their deepest properties were found
by Aleksandrov in [Ale86|, [Ale87] and [Ale89]. The two surveys [PS06] and [Sak07] as well as
[CMRO6, Chapter IX] contain their main properties and a wide range of applications. Observe
that if f(0) = 0 then p, are probability measures. Moreover, f is inner if and only if p, is a
singular measure for some (all) « € dD. From the definition it is clear that, if f is an inner
function, the mass of p, is carried by the set f~({a}) = JD.
Assume f(0) = 0. Computing the first two derivatives in formula and evaluating at
the origin, we obtain

dpa(z) +1Cq, weD. (3.1)

J Zdua(z) = f(0)a, «e€dD, (3.2)
oD

and

f 22 dpa(z) = f”(o)@ + f(0)*a*, e dD.
oD 2

More generally, if we expand both terms of identity (3.1)) in power series, we get that for every
positive integer [ it holds that

l
J 2 dug(z) = Z a | f(2)FEdm(z), «edD.
oD -1 Jop
Hence for any integer [, the [-th moment of u, is a trigonometric polynomial in the variable
« of degree less than or equal to |I|. Moreover, the coefficients of this polynomials are given
by derivatives of powers of f due to Cauchy’s formula.

Our main technical tool is Aleksandrov Disintegration Theorem which asserts that

m= | podm(a) (3.3)
oD

holds true in the sense that
j Gdm = J G(z) dpa(z) dm(a)
oD oD JoD

for any integrable function G on the unit circle. In other words, for any given analytic self-
mapping f of the unit disk, the Lebesgue measure is the average of the Aleksandrov-Clark
measures {1} of f.

Before showing the main application of the Aleksandrov Disintegration Theorem in our
context, we mention a basic fact of inner functions, which is just a restatement of Lowner’s
Lemma. Recall that Lowner’s Lemma claims that if f is an inner function such that f(0) = 0,
then m (f~1(E)) = m(E) for any measurable set E < dD (see for instance [DM91, Corol-
lary 1.5]).

Lemma 4. Let f be an inner function with f(0) = 0.

(a) Let G be an integrable function on dD. Then

G(f(z))dm(z) = G(z)dm(z).
oD oD

(b) Let k < j be positive integers. Then

|7 dm = 0y
oD
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Proof of Lemma[fl Assume that G is the characteristic function of a measurable set E < JD.
Since m(f~(E)) = m(E), the identity () follows. The result for general integrable functions
holds because of density of linear combinations of characteristic functions. Using (b)) and
Cauchy formula, we have

| TP am = [ =) dme) - 10
oD oD
where the last equality follows from the chain rule. O

When proving Theorem [I| we will need to estimate integrals of products of iterates of an
inner function f. We will use Aleksandrov Disintegration Theorem to integrate factors of these
products separately. The following lemma is a particular example of this procedure. However,
the reader will easily see how to apply the same technique to more general products of iterates.
The reason to choose this particular example is not only for clarity, but also because it will
have a direct application in studying the L? norms of partial sums in Section

Lemma 5. Let f be an inner function with f(0) = 0. Fork =1,2,...,p, let nk, ji, be positive
integers such that

max{ng, jr} < min{ngi1,Jjk+1}, k=1,...,p— L (3.4)
Then

D _ p e
ngf”kfﬂkdm = HLDf fixdm. (3.5)

Proof of Lemmal[5. We argue by induction on p. Assume (3.5) holds for p — 1 products. We
can assume n; < j;. By part @ of Lemma |4| we have

p

.fﬂﬂww”fzﬂm>ﬂﬂwwWMmmwy
oD =1

k=2

Let {pa: @ € 0D} be the Aleksandrov-Clark measures of the inner function f1=". The
Aleksandrov Disintegration Theorem (3.3) and the fact that the mass of p, is carried by the
set {z e dD: fi—m(z) = a} gives that last integral can be written as

LDLDZ“Hf”’“ (@) it (@) dpia(2) dm(a).

k=2
By (3.2) and part (]ED of Lemma |4, we have

[ <o) = O 0= [T
oD D

Hence
J H f7 fik dm = (f fm i dm> H frRTI fI=T dm
oD 1 oD 2
and we can apply the inductive assumption. One more use of the invariance property of part
of Lemma, [4| finishes the proof. O

Linear combinations of iterates of inner functions are not independent, but under suitable
conditions their correlations decay fast enough, which is sufficient for many applications.
The following theorem states a simple condition under which the moduli squared of linear
combinations of iterates of an inner function are uncorrelated.

Theorem 6. Let f be an inner function with f(0) = 0. Let Ag, k = 1,2,...,p, be finite
collections of positive integers such that

max{n: ne Ay} <min{n: ne Axy1}, k=1,....,p—1. (3.6)
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Consider

Sk = Z an f".

neAg

P P
| Tl am =TT [ el am.
oD =1 k=10D
Proof. At almost every point of the unit circle we have

6l = 2 lanl® + X (@na; I f + Tjan 1),

neAg

Then

where the last sum is taken over all indices n, j € Ay, with j > n. Hence [ |£x|? can be written
as a linear combination of terms of the form

[T 1,
where ny, ji, € Ag. Observe that (3.6]) gives the assumption (3.4 in Lemma 5| Now Lemma
finishes the proof. O

4. AUXILIARY RESULTS

This section is devoted to collect some results which will be used in the proof of Theorem
Given an inner function f on the unit disk and a positive integer n, we denote f~" = fn.
By applying Lemma [5| several times we can estimate expressions of the form

J f81n1 f€2n2 o feknk dm,
oD

where ny,...,n, are positive integers and 1, ...,ex € {+1,—1}. The following lemma states
the corresponding results for some particular configurations with 4 factors that will turn out
to be useful later on.

Lemma 7. Let f be an inner function with f(0) = 0 which is not a rotation. Fork =1,2,3,4,
let ng be positive integers and ey € {+1,—1}. Consider

I — I(€1n17 62”2, €3n3’ €4n4) — J f&lﬂl f827l2f63n3f647l4 dm
oD

(a) Assume g1 = —e9, €3 = €4 and max{ny,n2} < min{ns,ng}. Then I = 0.

(b) Assume ny < ng < ng < nyg. If e169 = e3e4 = —1 then we have |I| = |f/(0)|"2~"1tna="s,
If ey = €9 and n3 —ng = 3, then there exists a constant C = C(f) > 0, independent of the
indices ny,na, ng,ng, such that |I| < C|f'(0)[™+m.

(c) Let ny < ma < ng be positive integers with no — ny = 3. Then there exists a constant
C = C(f) > 0, independent of the indices ny,ng,ns, such that

|| ez s am < el
oD

Proof of Lemma[7. We can assume n; < ng and €1 = 1. Since Lebesgue measure is invariant
under f we have

I= [ agestraom) oo () o) (2 dm().
oD

Let {pq: o € dD} be the Aleksandrov-Clark measures of the inner function f"27". The
Aleksandrov Disintegration Theorem ([3.3)) and the fact that the mass of p,, is carried by the
set {z € dD: f"7"(z) = a} give that

= f f 2052 f25(1712) (o) £ =12) () dpg (=) din( ).
oD JoD
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By (3.2) and part (]ED of Lemma 4| we have
T A\ 2—n1

f zdua(z) = f'(0)
oD
We deduce that

n2—mni

IO [t e o) 0 @) di(a),

If e = —1 and e3 = ¢4 last integral vanishes and we obtain the statement in (a). If g9 = —1
and e3 = —ey4, the modulus of the last integral is | f/(0)|™4 "8 and we deduce first part of (b).
Assume now €9 = 1. Then

——n9—n1

T |2 ) o) ) ),

Let {0n: a € 0D} be the Aleksandrov-Clark measures of the inner function f"37"2. The
Aleksandrov Disintegration Theorem (3.3)) and the fact that the mass of o, is carried by the
set {z € dD: f™7"2(z) = o} gives that

=" " f J 2208 24T () dpug (2) dm().
oD JoD

By (3.2)
f Pdpa(z) = o f(0) " + ab,
oD

and |b| < C|f'(0)|™~"2 because ng — ny = 3. We deduce that

1] < Ol o) max{

J ol f24a=n3) (o)) dm ()
oD

b

where the maximum is taken over all positive integers | with || < 3. This gives the second
part of statement (b). Similar arguments give part (c). O

The next statement collects convenient estimates of L2 and L* norms of linear combinations
of iterates of an inner function (see [NS22| for details). Here, given u,v € C, we denote by
{u,v) = Re(uv) the standard scalar product of u and v when considered as elements of R?.

Theorem 8. Let f be an inner function with f(0) = 0 which is not a rotation and let {a,}
be a sequence of complex numbers with Y., |an|* < 0. Consider

o0

E= > anf"

n=1

and

s
|
S
S
3
+
ol

0 0
0% = ) lan> +2Re ) f/(0)*
n=1 k=1

a) We have §2=02 and
(a) €13

n=1

1
where £ = (1 + [ f(0))(1 = [f(0)))~".
(b) For anyt € C we have

f 462 dm = Lt
oD 2

(¢) There exists a constant C = C(f) > 0 independent of the sequence {a,}, such that |§|, <
Clgll; -
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In the proof of Theorem [I| we will need to consider partial sums of the series of iterates of
an inner function and also partial sums restricted to certain subsets of indices {A(k)}. This
auxiliary result, proved in [NS22|, will allow us to compare the L? norms of these partial sums.

Lemma 9. Let {a,} be a sequence of complex numbers and A € C with |\| < 1. Consider the

sequence
N-1

N N—k
o3 = Z lan|® + 2Re 2 p Z Unanir, N=1,2...
n=1 k=1 n=1

For N > 1, let A(j) = A(§,N), for j = 1,...,M = M(N), be pairwise disjoint sets of
consecutive positive integers smaller than N. Consider
2 (AG) = D lanl* +2Re D) NF > Untnik, j=1,2...,M.
neA(j) k=21 neA(j): n+keA(j)
Let A= UA(j). Assume
2
N=oo 301 lan?

and

2. ;
iy e s m € AG)}
J=® ZneA(j) |an|
St 02 (A7)

lim 5
N—0 OnN

=0. (4.2)
Then
=1.

Another technical tool for the proof of Theorem[T]is the following general version of Lemmal7]
(see [NS22|). It quantifies the correlation of iterates of an inner function when the number of
iterations differ by a large amount. More concretely, if the minimum difference between the
number of iterations on each iterate is at least ¢, large enough, then we have certain control
over correlations of up to ¢ different such iterates. Here we use the notation f~" = f7,

Theorem 10. Let f be an inner function with f(0) = 0 and a = |f'(0)] < 1. Let 1 < k < ¢

be positive integers. Let € = {5]-}?:1 where ej = 1 orej = —1, and let n = {nj}é?:l where
ny < ng < ... < ng are positive integers with nj 1 —nj > q for any j = 1,2,...,k — 1.
Consider i

I(e,n) = J Hfaj”j dm

Then there exist constants C = C(f) > 0, qo = qo(f) > 0 independent of € and of n, such
that if ¢ = qo we have
I(e,n) < CFEla®E™ k=12, .,

where ®(e,n) = Z?;l dij(njp1 —nj), with §; € {0,1/2,1} for any j = 1,...,k — 1, and with
01 = 1 and 6,1 = 1/2. In addition, for j = 2,... k —1 the coefficient 6; = 1 if and only if
dj—1 = 0. Furthermore, if 0;_1 > 0, the coefficient 0; depends on €ji1,...,e, and nj,...,ny

forj=2,...)k—1

The last auxiliary result of this section will be used to simplify the proof of Theorem [1| Its
proof is an elementary application of Cauchy-Schwarz’s inequality (see [NS22]).

Lemma 11. Let {f,}, {gn} be two sequences of measurable functions defined at almost every
point of the unit circle. Assume that there exists a constant C > 0 such that the following
conditions hold

(a) sup,, ||fn]2 < C and

(b) gn(z) > —C' for almost every z € dD and lim, 4 ||gn|2 = 0.
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Then

lim fne 9" dm = 1.

5. PROOF OF THE CENTRAL LIMIT THEOREM

The proof of Theorem [I| relies on splitting the partial sum
N

D anf™ = > (& + )

n=1 k

into certain blocks of consecutive terms which depend on N and that are of two alternating
types: & and ng. In other words, we will have a block 7, between blocks & and &x.1. The
main idea in this construction relies on balancing two counteracting properties. On the one
hand | > nkll2/on must be small so that 7 becomes irrelevant. On the other hand the
number of terms of each block 7 must be large so that the correlations between different
blocks & decay sufficiently fast. This procedure was used by M. Weiss in order to prove the
Law of Iterated Logarithm for lacunary series [Wei59] and is detailed in our context in next
lemma. Let |A] denote the number of elements of a set A of integers.

Lemma 12. Consider an inner function f with f(0) = 0 which is not a rotation and a
sequence {ay} of complex numbers. Denote

N N-1 N—k
o3 = 2 |an|?* + 2Re 2 F(0)* Z [ .
n=1 k=1 n=1

N
Sx = lan/?
n=1

and assume that there exists a nonincreasing function ¢ with imy_,o (N) = 0 such that
sup{|an|?: 1 <n < N} < (N)S%. (5.1)

If N is large enough, then we can choose indices 0 < My < Ngy1 < M1 < N, for 0 <k <
Qn — 1, such that if we define the blocks of consecutive integers

Ak)={neN: Mp_1 <n< N}, Bk)={neN:Ny<n<M}, 1<k<Qn (52)

and the block sums

S= D, anf" M= ), anf", 1<k<Qn, (5.3)
neA(k) neB(k)
it holds that,
. 1
dim Qup(N)YF = ., (5.4)
€115 < ()30, (5.5)
— > anf™ =D G| < o)1 (5.6)
IN |p=1 k=1 o
and .
JAR) = o(N)5, |B(k)| = 5@(N)*1/2, k=1,2,...,Qn. (5.7)

In particular, observe that (5.4)) and (5.7) imply that
Qn < e(N)TP < (N)T2 < [B(K)|, 1<k<Qn,

if N is sufficiently large. Hence the number of blocks & is much smaller than the number of
(possibly null) terms in the blocks 7.
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J(1) aE J(Pn) coefficients in T

1 2 3 Ji JPN71_|_1 JPN JPN_|_1 N

FIGURE 2. The blocks of indices J (k) are pairwise disjoint blocks of consecu-
tive indices that contain all positive integers up to Jp, .

Proof. We may assume that N is large enough for ¢(N) to be already small. Recall that,
by Theorem we have that S% =~ 0]2\,. First we define an auxiliary sequence of indices
0 < Ji < Jip1 < N as follows. Pick Jg = 0 and let J; be the smallest positive integer such
that

D lanl* = o(N)ES5%,.
n=1

Now define the auxiliary block of consecutive integers
J1)={neN: Jy<n<Ji}.
It is clear that the minimality of J; and the bound on the coefficients imply that
D0 lanl® < @(N)ESK + Jag, [P < (0(N) 5 + o(N)) S

neJ (1)
Assume that we have chosen Jy, Ji,...,JJr_1 and defined the blocks of consecutive integers
J(1),...,TJ(k—1). Then pick J to be the smallest positive integer such that
Jk
D1 lanf® = o(N)ES%,
n=Jp_1+1

and let
j(k) = {HGNS Jr_1<n < Jk}
As before, the minimality of Ji and (5.1]) give that

p(N)BS < D) lanl® < (p(N)8 + o(N)) SR (5.8)
neJ (k)
We continue this process until we reach Jp, such that
N
D1 lanf <o(N)VESY (5.9)
n=JpN+1
and denote T3 = N Tpo 41 lan|? (see Figure . Observe that by estimate (5.8), summing
N

over k, we have that
P(N)ESX Py < S} = TR < (p(N)"® + o(N)SK P
Thus, since p(N) — 0, by (5.9) we get that the number Py of auxiliary blocks satisfies
lim @(N)Y8Py = 1. (5.10)
N—w
Also note that, since |a,|? < ¢(N)S% for n < N, we deduce from the lower bound in ([5.8) that
©(N)S%|T (k)| = ¢(N)/8S%, 1 < k < Py. Hence, the number of indices in J (k) satisfies
|T(k) = o(N)"8, 1<k<Py. (5.11)

Next, we modify the auxiliary blocks [J (k) to obtain the blocks A(k) and B(k) (see Figure|3]).
Fix 1 < k < |Py/2|. By (5.11)), each block J7(2k) has length larger than ¢(N)~7/8, which is
larger than p(IN )*1/ 2. We pick py, smaller pairwise disjoint blocks of consecutive integers B(k, j)
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J(1) B@,1)B(1,2)B(1,3)B(1,4) J3) BE,1)BR2BE3  T(5)

A1) B(1) A2) B@)|  A®B)

FIGURE 3. In each block J(2k) consider smaller blocks B(k,j). Then, we
choose B(k) to be one of these blocks for which 3 s, lan|? is minimal.

Finally, the blocks A(k) are the sets of indices between blocks B(k — 1) and
B(k).

of lengths |(N)~'/2|. Note that the estimate (5.11)) on the number of indices in J(k), gives

that we can get at least

_ lgepl 1
p(N)~12 2

such shorter blocks. Now we pick B(k) to be one of the blocks B(k, j) such that the sum

Z ‘an‘Z

p(N) 58 (5.12)

neB(k,j)
is minimal. It turns out that
1
M laaP < X laal® < 200(N) V253, (513)
neB(k) k e (k)

where the last inequality follows from (5.8) and (5.12)).
We define now the sequences M and Nj. For clarity, we will assume that Py is even,

since the minor modifications when it is odd will be obvious. Set Qn = Py/2, My = 0 and,
Ny =minB(k) — 1, M} = max B(k) for 1 <k < Qn, and

A(k) ={neN: M1 <n< N}, 1<k<Qn.
Note that (5.2)) is clear by the definition of M} and N. In addition, by the construction of
B(k) for 1 < k < Qn we have that

B(k)| = S(N) 712,

N | =

Also, taking into account that each block A(k), 1 < k < Qn, contains some block 7 (i) with
1 <1 < Py odd, estimate ([5.11)) gives that

LA(K)| = (N)
and this proves (5.7)). After defining the sets of indices A(k) and B(k), the block sums &
and 7 are given by (5.3) for 1 < k < Qu. Also note that for any 1 < k£ < Qn we have

Ak)c J(@i—1) v J({E) v J(i+1) for some odd 1 < i < Py (where we consider J(0) = ).
Hence applying Theorem [§] to & we find

léxlz 2 lanl? < o(N)P0h, 1<k <Qw,
neJ (i—-1)uJ(1)uJ (i+1)
which is property .

When Py is even, the construction already gives that Qn = Px/2, while if Py is odd, then
QN = (Py + 1)/2. In any of these two cases, using we get . The other differences
that we would have when Py is odd are that we would have one more block A(k) than B(k)
and that the last index in the sequences {M}} and {Nj} would be Ng, instead of Mg, .

We are only left with checking . First denote the sums over indices that are not in any
of the blocks & and ng, by

N N
Re= Y lafs ox= Y af

n=MQN+1 n=MQN+1
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In particular, note that

JPN N
Ry= > el + D) laaf < (20(N)V® + o(N)SE:
n=Mgq\ +1 n=Jpy +1

Thus, using Theorem [§| twice we see that
2

N QN
lonl; = Z anf" — Z (& +m)| < Ry < o(N)V80%. (5.14)
n=1 k=1 2

Note that
N

QN
Zanf ka—ZleJrﬂN
Then using and (| ., we deduce

N QN
Dlanf" - Zék < Inkllz + lowllz <
n=1 k=1 2 k=1 (515)
< QN@(N)1/4UN + (p(N)l/lﬁaN < (p(N)l/16UN.
This concludes the proof of . O

We use Lemma [12] to prove Theorem (1| The idea is that we will discard the blocks n; and
the tail px as their total L2 norm is irrelevant compared to that of the full partial sum. Then,
the correlation between the blocks & will be controlled due to the length of the blocks 7 that
separate them. In practice, this will imply that the blocks &, will behave almost as if they
were independent.

Proof of Theorem[1. For a given value of N split the partial sum
N
Z anfn
n=1
into the blocks & and g, with 1 < k < Qn, given by Lemma Observe that, because of
property and Chebyshev’s inequality, we only need to see that

ka

UNkl

tends in distribution to a standard complex normal random variable as N tends to infinity.
We split the proof into several parts.

1. The characteristic function of Txn. By the Levi Continuity Theorem, it is sufficient to
show that for any complex number ¢ we have

en(t) = J etV dm — e P2 a5 N - o0, (5.16)
oD

As before (t,w) = Re(tw) is the standard scalar product in the plane. Fix ¢ € C. Our first
step is to show the approximation

/2t t, &y’
lim o (t f (1 + M) exp [ =4 ’5’“2> dm = 0. (5.17)
oD 1 ON oN
We start with some apriori estimates. Given 9 > 0, consider the sets Fy = FE(6,N) = {z €
oD: | (2)] > 50N} kE=1,2,...,Qn. By part (d) of Theorem and estimate ([5.5) we have

leels S (V) V4o, Chebyshev s inequality and estlmate 4) give

QN N V4o N)L/8
@ N&

S (s < 28 )544 Y < <54>

k=1 IN
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if N is sufficiently large. Given pu > 1, consider the set

QN
Ey = Eo(p,t,N) = {z e dD: Z (&, Ep(2))? > ,ua?v} .

k=1
Part (]ED of Theorem [8] estimates ([5.4)), and Chebyshev’s inequality yield
2 1/8 42
. < ) P
poy N o

if N is sufficiently large. Hence the set

5M,tN UEk

m(E) < (*0(](\;31/8 + W) . (5.18)

satisfies

7

Now we will choose appropriate constants § > 0 and p > 1. Using the elementary identity

exp (2) = (1 + 2)exp ('Z; + o(\zQD) ,

where o(|z]?)/|z|? — 0 as z — 0, we deduce

QN . 9
exp (iKt, T )) = (H <1 + W) exp <_<tv52k>>> exp <Z <<t &) ))
k=1 N IN k=1 ox

Fix ¢ > 0 and let x> 1 be a constant to be fixed later. Note that (t,&(2))? /0% < 62|t|? if
z€ dD\Ek, k=1,...,Qn. So picking 6 = d(e, t) > 0 sufficiently small we have

%o(W) se%fwgeu, z € OD\E.

k=1 IN
Note that the last inequality holds because z € D\ Ey. Hence

J exp (i(t, Ty )) dm — <1 + M) exp _M dm
OD\E OD\E j;_1 ON o3

1) H<1+2<t5k>> ep<_<tf?k>2>dm<ew_1,

<

Last inequality follows from the elementary estimate (1 + x)2e72/2 < 1 if £ > 0. Hence

L 28)=(49)

Taking 1 = 1/4/¢ > 1 we get that both [t|*/u and ey are small. Then estimate (5.18) yields
the approximation ([5.17)) as N — co. Therefore to prove ({5.16) it is sufficient to show that for
any t € C one has

2

lim ]_[ ( § Y g’“>) —@ dm = exp (—[t*/2).
N—o0 aDk 1 ON

This will follow from Lemma [11] applied to the functions

fN=Qﬁ<1+i\/§<t’€k>>,

o
k=1 N

dm| < 2m(E) + e — 1.
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2<5>—ﬂ

N k=1
According to Lemma [11] it is sufficient to show

Sup | fvl2 < oo, (5.19)
lim [gn|2 =0, (5.20)
N—0
lim fndm = 1. (5.21)
N—w Jsp
2. The norm || fn|| . Observe that
QN
2<t €k> 2
H( *1+Z 2k2<t €J1 ‘<t7€jk>’
k=1
where the last sum is taken over all collectlons of indices 1 < j; < ... < jr < Q. Since

(€)% < |t2]€n]?, Theorem @, part (a)) of Theorem [8 and estimate (5.5]) give that
LD (6 dm < C(NF PR e(N) 502 1<k < Qy.

Since the total number of distinct collections of indices j1, ..., ji verifying 1 < j; < ... < ji <
Qn is (QkN ), we deduce

2t QN C k2kt2k N)k/8 52k
LH(” &, sk>> <H;<Qg> (Y o) oot

D j_1 ON

Simplifying last expression we deduce

2<t,§k>2 - 2 ar1/e) QN
LD“( Thl )d < (1+20(DltPe()#) Y.

Now (5.4) implies that Qn < @(N)~Y/8, if N is sufficiently large, from which we get that

w12 < exp BC(P)[t]?). This gives (B-19).
3. The norm ||gn|2. Recall that

&= ), anf,  k=1...,Qn. (5.22)

neA(k)
Let A = Ugjl A(k). Observe that (5.6) together with Theorem (8] gives

This is assumption (4.1)) of Lemmal9] Assumption (4.2) is an immediate consequence of (5.1)
and (5.5). Thus, Lemma |§| gives

]\}LOOZ UJV‘&“‘? — 1 (5.23)
Denote A = t/|t|]. We have
:WQZN(QK |2+ﬁ§2+)\2? UJQV)
IN 4012\, ] F F k )N
Applying , the proof of reduces to show
1 QN
lim | — Z vl =0,

2
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where ¥y = 2(|&|? — |&[5) + A267 + N%€2. Now

2 QN—-1QnN o
- Z g +2Re Y 3, [ dm. (5.24)
2 k=1 j>kvoD

Since || < 4]&]? + 2|3, parts () and () of Theorem [§ and estimate (5.5) give that
lrlla < C(f)p(N)Y4o%. Hence, using that QN ©(N)~/® by expression (5.4)), we get

Z [kl < @(N)Poy

and we deduce

lim — =0.
dm e 3l

The second term in ([5.24]) splits as

QN IQN
fwkwjdm A+B+C+ D,
k:l]>k

where
Qn-1QnN

4=4 ¥ 3 |, (6P = 168) (157 - bs13)
B- QQNZwﬁ]VJD (&l = eul)
)

k=1 j>k
QN—-10QnN . . )

c=2 % 3 [ (Ve n@) (6l - sl3) dm
k=1 j>k“D

(
()\ 2y )\2§2>
(I

QN 1 QN _ —
D= f Vet + %) (g + %) dm
k: 1 j>k

By Theorem@ I€&5ll5 = €kl I€5], if & # j and we deduce A = 0. Since the mean of £F over
the unit circle vanishes and at almost every point in the unit circle one has

6> = ). lanl* +2Re )] D @ (5.25)
neA(k) neA(k) jeA(k),j>n

the integrals in B can be written as a linear combination of
fmﬁ (ﬁgg + vgz) dm,
where n1,j1 € A(k) and hence max{nl,jl} < min{n: n € A(j)}. According to part (a) of
Lemma [7}
g dm =0
oD
and we deduce B = 0. Since the mean of 5,% over the unit circle vanishes, we have

QN—-1QnN

C =4ReX? ) megagjy?dm.

k=1 j>k
Fix j > k. Using again that & vanishes at the origin and formula (5.25]), we have

J £§!§j|2dm=f & Rehy dm,
oD oD
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where
hj=2 > Gaffh
rleA(j),I>r
Using formula (5.22)) to expand &7, we obtain

f 1,2 dm = B+ F,
oD

where

E= ) a%[m(f”)2 (@af"f' + s J7) dm,

neA(k) rle A(j),I>r
P2 Y a | s (s + s 1) dm.
n,se A(k): s>n rleA(j),l>r oD
By part of Lemma (7| we have

| s dm] ¥
oD
We deduce that

f (fn)Qflfrdm’ <C(f)|f’(0)|lin, ifn<r<l,r—mn=>=3.
oD

EI<C() Y, laal® D lallallf/(0)) "

neA(k) rleA(j),l>r
Denote 1)(N) = o(N)~Y2/2. According to (5.7), since j > k we have r —n > )(N) for any
r € A(j) and any n € A(k). Hence we have
Y ladllallf ) < [f/OF™ Y1 0) > |ar|arte- (5.26)

rleA(j),l>r t=1 reA(y): r+te A(j)

By Cauchy-Schwarz’s inequality, last sum is bounded by . AG) lar|> < o(N)Y 802, Hence

|E] < C(HIF(0)]*Mp(N) oy (5.27)
Similarly, part (]E[) of Lemma |7| gives that

U s dm‘ ¥ U f"fsf’"f’dm‘ <CNIFOI", n<s<r<l,
oD oD
if r— s> 3. Then
Fl<2C0(f) D, lanlladl DT O arlal.
n,seA(k): s>n rleA(j),I>r

As before, since j > k we have that » — s > ¢(N) for any r € A(j) and any s € A(k). Hence
l—-n=Il—-r+r—s+s—n=2¢(N)+1l—-r+s—n, for any n,s € A(k), s > n and any
r,l e A(j), I > r. Hence

P <20(HIF O ST [£0) " an]asl DO |al.

n,seA(k): s>n rleA())I>r
Repeating the argument in we obtain
[F| < 20(fonlf (0. (5.28)
Now, the exponential decay in ([5.27) and (5.28) give that
J\}i_r)noo UC?’V = 0. (5.29)

The corresponding estimate for D follows from the estimate

U §:2¢2dm| < C(f)SKIF (O)Y™), &k <.
oD
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As before this last estimate follows from (5.7) and from

PET ] < COIFOF <5 <1<t =53
oD
which follows from part of Lemma (7] This finishes the proof of (5.20)).
4. The integral of fn. In this last step we will prove (5.21). Observe that at almost every
point in the unit circle we have

QN ka /2
N =1+ Z Z<t7 511> e '<t7§ik>7 (5.30)
where the second sum is taken over all collections of indices 1 < i1 < ... < i < Qn. Fix

1<ié <...<ip < Q@Qpn. The integral

k
J 80y (& ydm = Qkf H (t&, + t&,) dm
oD oD n=1
is a multiple of a sum of 2¥ integrals of the form
) € €
tt LD(S“I & dm,

where 7 +1 =k, e, = 1 or g = —1 for i = 1,...,k. We recall the notation & 1(2) = &(2),
z € dD. Now, each &; is a linear combination of iterates of f, that is

fj = Z anfn'
neA(j)
Hence
ﬁ &gk dm =) Ha f e fRER iy
oD neC j=1

where - means the sum over the collection C of all possible k-tuples n = {n; };?:1 of indices

such that n; € A(i;) for j = 1,..., k. Since |a,| < Sy, n < N, we have
& dm‘ <SE || ek dm). (5.31)
nec |/OD

Let € = {6J}k ! be fixed and consider ®(n) = ®(e,n) = 25;11 dj(nj+1 — nj) where ; €
{0,1/2,1} for j = 1,. k; 1, with 61 = 1 and d;—; > 1/2, and with 6; = 1 if and only if

dj1=0forj=2,.. — 1, as introduced in Theorem . Let a = |f/(0)|. Theorem [10| gives
U SR s dm’ <KISKC(F)F D a®™. (5.32)
neC

We split the sum over n € C as follows. Let D denote the set of (k — 1)-tuples § = {J; }f;ll of
coefficients that can appear in ®(n) as one varies m, that is, those tuples with ¢; € {0,1/2,1}
for j =1,...,k —1, with 6, = 1 and 0,1 > 1/2, and with §; = 1 if and only if §;_1 = 0,
for j = 2,...,k — 1. Observe that D has at most 2 elements. Given a k-tuple n € C, let us
denote by d(n) the (k — 1)-tuple § of coefficients appearing in ®(n) for that particular value

of n. Then we have that
Z a2 _ Z 2 pCON
neC €D {neC: §(n)=4}
Given 6 = {6]-};"9;11 € D fixed, we define ®s5(n) = Zf 1 0i(njy1 —ny) for every m e C. We

clearly have that
Dla®™ < YT N a%em), (5.33)
neC 6eD neC
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Consider now a fixed § = (d1,...,0x—1) € D and let us compute the rightmost sum in (5.33).
Recall that §; = 1. It may be useful for the following argument to have in mind that & might
look like 6 = (1,1/2,...,1/2,0,1,0,1,1/2,...,,1/2). This is to say that d has consecutive

chains of nonzero elements (at least one such chain), all of them starting by 1 and with the
rest of the terms, if any, equal to 1/2. Moreover, there is exactly one null term between each
consecutive pair of such chains. Let /(1) be the minimum integer such that &)1, = 0 (we set
I(1) =k—1if §; # 0 for all 1 < j <k —1). This is to say that {(1) is the last index of the
first chain of nonzero elements. In particular, observe that if /(1) > 1, we have that §; = 1/2
for 2 < j < I(1) because by Theorem 9; = 1if and only if §;_; = 0 for j > 1. Assume now
that we have determined I(m — 1). If {((m — 1) < k — 1, then let [(m) be the minimum integer
such that I[(m — 1) <I(m) < k — 1 and such that d;(,,)4+1 = 0. As before, we set [(m) =k — 1
if ; # 0 for all I(m — 1) < j < k — 1. We iterate this process until we set {(r) = k — 1 for
some integer 1 < r < k. Roughly speaking the indices [(m) indicate the end of the strips of
nonzero terms in the components of §. Taking /(0) = —1, note that

" 1
Z dj(njr1 — Z < Ni(m—1)+3 — M(m—1)+2) + 5(”1(m)+1 - nl(m1)+3)> .

Hence the sum
Z a®s(m)
neC
in the right-hand side of ([5.33] - ) becomes a product over m = 1,...,r, of sums of the form
I(m)+1
Z Z a(M(m—1)+3 = (m— 1)+2)+5 (M (m)+1 =M (m-1)+3) (5.34)
j=l(m—1)+2n;eA(i;)
Thus, to estimate
Z a®s(m)
neC
we need to estimate sums of the form ([5.34). Since the argument is identical for any m, we
present it for m = 1. To simplify the notation write [ = (1) and assume [ > 2. Denote here
1 = max . A(i1), ng = min A(i2) and 141 = min A(4;11), and observe that no —ny > (N)
because of (5.7). Here as before, 1»(N) = p(N)~1/2/2. Not that the exponent in (5.34) is

1 1 1
(n2 —n1) + i(nlﬂ —ng) = §(nl+1 —n1) + §(n2 —ny) = Ew(N) + §(nl+1 —n1).
Summing over n; and ny we get that (5.34)) is bounded by

I+1

N)/2 Z Z nl+1 n1)/

J=3 njeA(i;)

Next, summing over n; for j up to [ yields the factor |A(i3)| + ... + |A(4)], while summing

(ni+1—71)/2

over n;y1 we get the factor a . In other words,

I+1
DT a2 TR A 4+ AG)))
J=3n;eA(i;)
Here, |A(i;)| denotes the number of indices in the set A(i;). Recall that between each con-
secutive pair of sets A(i;), there is a set B(i;) with at least 1)(IV) terms. Thus, we have that
Mi1 =T 2 $(N)-+A(i2) (V) +LA() - -+ 0 (N)+AGD)| > W)+ | A(ia)] 4. |G
In the last step we used again, so that we have |A(i;)| = @(N)~"/® > (N) for any
j=1,...,k Hence, we find that
I+1
Z Z (n2—m1)+(nj41—n2)/2 < Call/)(N)/Q (535)

J=1n;eA(iy)
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because the factor alA@)|++AGI(| A(i3)| 4 ... + |.A(4;)]) is bounded. Note that if I = 1 or

[ = 2, then (5.35)) is obvious.

Now,the full sum

2 a%(n)7

neC

in the right-hand side of (5.33) becomes a product over m = 1,...,r, of sums of the form
(5.34). Thus, applying the estimate ([5.35)) we get that

S 6?5 < [ Calltm=tm=D-Du(N)/2 ¢ Crahu(N)/5
m=1

neC

where in the last step we used that I(m) > I[(m — 1) + 2 by Theorem [10| (so in particular
r < [k/2]). Now, summing over § € D and using the fact that D has at most 2* such tuples,
we get that the sum in the left hand side of ([5.33)) can be estimated as

Z a®™ < (20)kaH N/,

neC

Thus, using (5.31)) and ((5.32)), there exists a constant C(f) > 0 such that

‘mefll...ff:dm

Y

< KISEC(f)karv N5,

We deduce that
< KISKC(f)F|tFakv N5,

f &> (6 > dm
oD

Since the total number of collections of indices 1 < iy < ... < i < Qn is (QkN), using ([5.30)),
it follows that

QN
S dm — 1‘ <) (QkN> kK122 F(C () S [t])Fakv N5,
k=1

oD
Since k! < Qﬁ, for any integer 1 < k < Qu, last sum is smaller than

(1 + C(f)\/ﬁ\t\SNQNaw(NW)QN —1,

ON

which tends to 0 as N — o0 because by (5.4)) we have

2 JH(N)/5
lim —SNQNQ =

N—o0 ON

0.
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