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Abstract. Given a finite positive Borel measure µ in the open unit
disc of the complex plane, we construct a bounded outer function E
whose boundary values have vanishing mean oscillation such that |E|µ
is a vanishing Carleson measure. As an application it is shown that
given any function in a Hardy space, there exists a bounded analytic
function in the unit disc whose boundary values have vanishing mean
oscillation, with the same critical points and multiplicities.

1. Introduction

Let D be the open unit disc in the complex plane and let ∂D be the
unit circle. With dA, respectively dm, we denote the normalized Lebesgue
measure in D, respectively in ∂D. For 0 < p < ∞ let Hp be the Hardy space
of analytic functions F in D such that

∥F∥pp = sup
0<r<1

ˆ
∂D

|F (rξ)|pdm(ξ) < ∞,

and let H∞ be the space of bounded analytic functions F in D with ∥F∥∞ =
sup{|F (z)| : z ∈ D}. Any function F ∈ Hp with 0 < p ≤ ∞ has radial limit,
denoted by F (ξ), at m-almost every point ξ ∈ ∂D and factors as F = BE
where B is an inner function and E an outer function. We recall that B is
called inner if B ∈ H∞ and |B(ξ)| = 1 for m-almost every ξ ∈ ∂D and that
the outer function E can be written as

E(z) = exp
(ˆ

∂D

ξ + z

ξ − z
h(ξ)dm(ξ)

)
, z ∈ D,

where h is an integrable function in the unit circle. Actually log |E(ξ)| =
h(ξ) for m-almost every ξ ∈ ∂D. See Chapter II of [Gar06].

Given an arc I ⊂ ∂D of normalized length m(I) = |I|, let Q = Q(I) =
{z ∈ D : |z| ≥ 1 − |I|, z/|z| ∈ I} be the Carleson square based at I. It is
customary to denote ℓ(Q) = |I|. A finite positive Borel measure µ in D is
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called a Carleson measure if there exists a constant C > 0 such thatˆ
D
|F (z)|pdµ(z) ≤ C∥F∥pp,

for any F ∈ Hp. A celebrated result of Carleson says that µ is a Car-
leson measure if and only if there exists a constant C1 > 0 such that
µ(Q) ≤ C1ℓ(Q) for any Carleson square Q. A Carleson measure µ is called
a vanishing Carleson measure if

µ(Q)

ℓ(Q)
→ 0 as ℓ(Q) → 0.

The average of an integrable function h over an arc I ⊂ ∂D, is denoted by

hI =

 
I
h(ξ)dm(ξ) =

1

m(I)

ˆ
I
h(ξ)dm(ξ).

An integrable function h in ∂D is in BMO if

∥h∥BMO = sup

 
I
|h(ξ)− hI |dm(ξ) < ∞,

where the supremum is taken over all arcs I ⊂ ∂D. The subspace of functions
h ∈ BMO such that 

I
|h(ξ)− hI |dm(ξ) → 0 as m(I) → 0

is denoted by VMO and coincides with the closure in the BMO semi-norm
of the continuous functions on ∂D. Given an integrable function h in ∂D we
denote by h(z) with z ∈ D, its harmonic extension to D. Functions in BMO
and Carleson measures are intimately related. Indeed, an integrable function
h is in BMO, respectively in VMO, if and only if |∇h(z)|2(1−|z|2)dA(z) is a
Carleson, respectively vanishing Carleson, measure. See Chapter VI [Gar06]
for all these well known results.

Our work is inspired by the beautiful article [Wol82] of T. Wolff who
considered the algebra QA of bounded analytic functions whose boundary
values are in VMO. He proved the following deep result.

Theorem A. [Wol82, Theorem 1] Given any bounded function f in ∂D,
there exists an outer function E ∈ QA such that Ef ∈ VMO.

We now state our main result.

Theorem 1. (a) Let µ be a Carleson measure in D. Then, there exists
an outer function E ∈ QA with log |E| ∈ VMO such that |E|µ is a
vanishing Carleson measure.

(b) Let µ be a finite positive Borel measure in D. Then, there exists
an outer function E ∈ QA with log |E| ∈ BMO such that |E|µ is a
vanishing Carleson measure.
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Let µ be a finite positive Borel measure in D. Roughly speaking, for most
Carleson squares Q we have µ(Q) < C(Q)ℓ(Q) where C(Q) → 0 as ℓ(Q) →
0. See Proposition 17. So for most Carleson squares, the contribution from
|E| is not needed. Consequently, |E| only needs to be small on few Carleson
squares, offering the flexibility to construct E ∈ QA such that |E|µ is a
vanishing Carleson measure. The proof of Theorem 1 uses a decomposition
of the measure µ, stopping time arguments yielding nested families of dyadic
arcs on ∂D and a construction of certain BMO functions due to J. Garnett
and P. Jones ([GJ78]).

Theorem 1 is sharp in several different senses. First, in the conclusion,
the vanishing Carleson measure condition can not be replaced by a stronger
condition of the same sort. Actually for any increasing function ω : [0, 1] →
[0,∞) with ω(0) = 0, there exists a Carleson measure µ such that for any
outer function E ∈ H∞ we have

lim sup
ℓ(Q)→0

´
Q |E(z)|dµ(z)
ℓ(Q)ω(ℓ(Q))

= ∞.

See Proposition 14. Second, one can not replace QA by the disk algebra
A(D) of analytic functions in D which extend continuously to D. Actually a
Carleson measure µ will be constructed for which |E|µ fails to be a vanishing
Carleson measure for any non trivial E ∈ A(D). See Proposition 15. Finally,
in part b) one can not have the sharper condition log |E| ∈ VMO, as it is in
part a). See Proposition 16.

Theorem 1 has applications in three different contexts. First, using The-
orem 1 one can prove Theorem A of T. Wolff. The second application of
Theorem 1 concerns critical points of functions in Hardy spaces. Let BMOA,
respectively VMOA, be the space of functions F ∈ H2 whose boundary val-
ues F (ξ) with ξ ∈ ∂D, are in BMO, respectively in VMO. W. Cohn proved
in [Coh99, Theorem 1] that given 0 < p < ∞ and F ∈ Hp, there exists
G ∈ BMOA such that the zeros (and the multiplicities) of F ′ and G′ coin-
cide. Later D. Kraus in [Kra13, Theorem 1.1] proved that given 0 < p < ∞
and F ∈ Hp, there exists a Blaschke product B such that the zeros (and
the multiplicities) of F ′ and B′ coincide. Using Theorem 1 and a beautiful
technique developed by D. Kraus in [Kra13] we prove the following result.

Theorem 2. Let 0 < p ≤ ∞ and F ∈ Hp. Then there exists a function
G ∈ QA such that the zeros (and the multiplicities) of F ′ and G′ coincide.

Our last application of Theorem 1 concerns generalized Volterra integral
operators. Given an analytic function G in D, the action of the generalized
Volterra operator TG on the analytic function F is defined as

TG(F )(z) =

ˆ z

0
F (w)G′(w)dw, z ∈ D.

Notice that if G ∈ BMOA, then TG : H∞ → BMOA is continuous, see [AS95,
Proposition 1]. As expected TG : H∞ → BMOA is compact if and only if
G ∈ VMOA. We will apply Theorem 1 to obtain the following result.
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Theorem 3. Let G ∈ BMOA be non constant. Then TG : H∞ → BMOA is
not bounded from below and TG(H∞) is not closed in BMOA.

The rest of the paper is organized as follows. Section 2 contains auxiliary
results that are used in the proof of Theorem 1 which is given in Section
3. In Section 4, Theorem 1 is applied to prove Theorems A, 2 and 3. The
sharpness of Theorem 1 is discussed in the last section.

As usual, the notation A ≲ B means that there exists a universal constant
C > 0 such that A ≤ CB.

It is a pleasure to thank O. Ivrii, D. Kraus and O. Roth for several helpful
discussions.

2. Auxiliary Results

Our first result states that any finite positive Borel measure in D can be
written as the sum of two measures which have small mass on a certain
sequence of annuli.

Lemma 4. Let µ be a finite positive Borel measure in D. Let {εn} be a
decreasing sequence of positive numbers tending to zero. Then there exists
an increasing sequence {rn} with 0 ≤ rn < 1, n = 0, 1, . . . and two positive
measures µ1, µ2 with µ = µ1 + µ2 such that

(1) µ1 {z ∈ D : |z| > r2n+1} ≤ ε2n+1(1− r2n+1)

and

(2) µ2 {z ∈ D : |z| > r2n} ≤ ε2n(1− r2n),

for n = 0, 1, . . . . Moreover {rn} can be chosen of the form rn = 1− 2−N(n)

for some integer N(n) ≥ 0, n = 0, 1, . . . and
∑

(1− rn) < ∞.

Proof. By induction one can define an increasing sequence {rn} with r0 = 0
and 0 ≤ rn < 1, n = 1, 2, . . ., such that

µ{z ∈ D : |z| ≥ rn+1} ≤ εn(1− rn), n = 0, 1, 2, . . . .

It is clear that {rn} can be taken as described in the last part of the state-
ment. Let 1n be the indicator function of the annulus {z ∈ D : rn ≤ |z| <
rn+1}. Define the two measures µ1, µ2 as

µ1 = µ

∞∑
n=0

12n and µ2 = µ

∞∑
n=0

12n+1.

We notice that µ = µ1 + µ2. Moreover for n = 0, 1, . . . , we have that

µ1{|z| ≥ r2n+1} = µ1{|z| ≥ r2n+2} ≤ µ{|z| ≥ r2n+2} ≤ ε2n+1(1− r2n+1)

and

µ2{|z| ≥ r2n} = µ2{|z| ≥ r2n+1} ≤ µ{|z| ≥ r2n+1} ≤ ε2n(1− r2n).

□
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The proof of Theorem 1 uses a beautiful construction due to P. Jones and
J. Garnett ([GJ78]) of certain functions in BMO supported in a given arc
which are large on certain subsets of the arc. A Lipschitz function a : ∂D →
R is called B-adapted to the arc I ⊂ ∂D if the following three conditions
hold: the support of a is contained in the dilated arc 3I; sup |a| ≤ 1 and
|∇aj(ξ)| ≤ B/|I| for any ξ ∈ ∂D.

Lemma 5. [GJ78] Let {Ij} be a sequence of arcs in ∂D. Assume that there
exists a constant C1 > 0 such that for any arc I ⊆ ∂D we have

(3)
∑
Ij⊂I

|Ij | ≤ C1|I|.

Let aj be a B-adapted function to the arc Ij for j = 1, 2, . . . . Then
∑

j aj ∈
BMO and ∥∥∥∥∑

j

aj

∥∥∥∥
BMO

≲ C1B.

For the proof of Lemma 5, we refer to Lemma 2.1 in [GJ78] (see Lemma
3.2 of [NO00] for a VMO version). The following result may be known but,
since it is not clearly stated in the literature, we provide a short proof based
on an idea in Lemma 1.2 in [Wol82].

Corollary 6. Let {Ij} be a sequence of arcs in ∂D with
∑

j |Ij | < ∞. Then,
there exists a positive function f ∈ VMO such that

lim
j→∞

 
Ij

fdm = +∞.

Proof. We use Lemma 2.2 of [GJ78], which says that given a measurable set
E ⊂ ∂D there exists a positive function h with ∥h∥BMO ≤ 1 such that

− logm(E) ≲ h(ξ), for all ξ ∈ E.

Moreover, if E is a finite union of arcs, then h may be taken in C∞(∂D).
Since

∑
j |Ij | < ∞, the collection {Ij} can be split as {Ij} = ∪n≥1An where

An is a collection of finitely many arcs which satisfies∑
I∈An

|I| ≲ e−n3
, n = 1, 2, . . .

Let fn be a positive smooth function in ∂D satisfying ∥fn∥BMO ≲ 1 and

fn(ξ) ≥ n3, for all ξ ∈
⋃

I∈An

I.

We set f =
∑

n fn/n
2. Then f ∈ VMO and

lim
j→∞

1

|Ij |

ˆ
Ij

fdm = ∞.

□
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Let D denote the family of dyadic arcs of the unit circle. The correspond-
ing family of dyadic Carleson squares is defined as {Q(I) : I ∈ D}. Note
that two dyadic Carleson squares are either disjoint or one is contained into
the other. Given a Carleson square Q = Q(I) where I ⊂ ∂D is an arc cen-
tered at the point ξ ∈ ∂D, consider zQ = (1− ℓ(Q))ξ. The next preliminary
result will be needed in the proof of Theorem A.

Lemma 7. Let µ be a Carleson measure in D. Given ε > 0 consider the
collection A = A(ε) of Carleson squares Q such that µ(Q) ≥ εℓ(Q). Let
E ∈ VMOA such that |E|µ is a vanishing Carleson measure. Then

lim
Q∈A, ℓ(Q)→0

|E(zQ)| = 0.

Proof. Given a Carleson square Q denote I(Q) = Q∩ ∂D. Fixed a constant
η > 0 and a Carleson square Q ∈ A(ε), consider the family {Qj} of maximal
dyadic Carleson squares contained in Q such that

sup{|E(w)− E(zQ)| : w ∈ T (Qj)} ≥ η.

Here T (Qj) = {z ∈ Qj : 1 − |z| ≥ ℓ(Qj)/2} is the top part of Qj . Since
E ∈ VMOA, we have

(4)
1

ℓ(Q)

∑
ℓ(Qj) → 0 as ℓ(Q) → 0.

Consider the region R = R(Q, η) = Q \ ∪Qj . Since µ is a Carleson measure
and Q ∈ A(ε), from (4) we deduce that

(5)
µ(R)

µ(Q)
→ 1 as ℓ(Q) → 0.

Moreover, by construction we have that

sup{|E(w)− E(zQ)| : w ∈ R} ≤ η.

Hence ˆ
Q
|E|dµ ≥

ˆ
R
|E|dµ ≥ 1

2
(|E(zQ)| − η)εℓ(Q),

if ℓ(Q) is sufficiently small. Since |E|µ is a vanishing Carleson measure and
η > 0 can be taken arbitrarily small, we deduce that |E(zQ)| → 0 as ℓ(Q)
tends to 0. □

Next result will be used in the proof of Theorem 2. It can be understood
as a hyperbolic analogue of the classical fact that a harmonic function u in
D such that |∇u(z)|2(1 − |z|2)dA(z) is a Carleson measure, has boundary
values in BMO.

Lemma 8. Let F be an analytic self-mapping of the unit disc.
(a) Assume that

(6)
|F ′(z)|2(1− |z|2)
(1− |F (z)|2)2

dA(z)
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is a Carleson measure. Then log(1− |F |2) ∈ BMO.
(b) Assume that

(7)
|F ′(z)|2(1− |z|2)
(1− |F (z)|2)2

dA(z)

is a vanishing Carleson measure. Then log(1 − |F |2) ∈ VMO and conse-
quently,

sup
0<r<1

ˆ
∂D

dm(ξ)

(1− |F (rξ)|)s
< ∞,

for any 0 < s < ∞.

Proof. (a) Let u(z) = − log(1− |F (z)|2), z ∈ D. By Schwarz’s Lemma there
exists a constant C1 > 0 such that

(8) sup{|u(z)− u(w)| : z ∈ T (Q), w ∈ T (Q1)} ≤ C1,

for any pair of Carleson squares Q1 ⊂ Q with ℓ(Q1) = ℓ(Q)/2. Let K be
the Carleson norm of the Carleson measure in (6). Let C > 2C1 + 2K be a
large constant to be determined later.

Let I be an arc of the unit circle and consider the dyadic decomposition
of Q(I). We now use a stopping time argument. Let G1 be the collection of

maximal dyadic Carleson squares Q
(1)
j ⊂ Q(I) such that

(9) sup{|u(z)− u(zQ(I))| : z ∈ T (Q
(1)
j )} ≥ C.

The maximality and (8) give that

C − C1 ≤ |u(z
Q

(1)
j

)− u(zQ(I))| ≤ C + C1.

We continue by induction. More concretely, assume that the collection

Gn−1 = {Q(n−1)
l : l = 1, 2, . . .} has been defined. For each Q

(n−1)
l ∈

Gn−1 consider the collection Gn(Q
(n−1)
l ) of maximal dyadic Carleson squares

Q
(n)
j ⊂ Q

(n−1)
l such that

(10) sup{|u(z)− u(z
Q

(n−1)
l

)| : z ∈ T (Q
(n)
j )} ≥ C.

The collection Gn is defined as

Gn = ∪l Gn(Q
(n−1)
l ).

As before the maximality and (8) give that

C − C1 ≤ |u(z
Q

(n)
j

)− u(z
Q

(n−1)
j

)| ≤ C + C1.

Observe that

(11) |u(ξ)− u(zI)| ≤ (C + C1)n, ξ ∈ I \ ∪jQ
(n)
j , n = 1, 2, . . . .
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Let Q ∈ Gn−1. Consider the region Ω = Q \ ∪Q(n)
j , where the union is

taken over all Carleson squares Q
(n)
j ∈ Gn(Q). Note that

(12) ∆u(z) =
|F ′(z)|2

(1− |F (z)|2)2
, z ∈ D

and

(13) |∇u(z)|2 ≤ |F ′(z)|2

(1− |F (z)|2)2
, z ∈ D.

These facts follow from direct calculations and have been recently used in
[IN24], [BN25] and [IN25]. Since ∆(u− u(zQ))

2 = 2|∇u|2 +2(u− u(zQ))∆u
and |u(z)− u(zQ)| ≤ C for any z ∈ Ω, using (12) and (13) we deduce that

(14) ∆(u(z)− u(zQ))
2 ≤ 2(C + 1)|F ′(z)|2

(1− |F (z)|2)2
, z ∈ Ω.

Apply Green’s Formula to the functions (u(z) − u(zQ))
2 and log |z|, Then

the estimate (14) gives

|
ˆ
∂Ω

(u(z)− u(zQ))
2 ∂n log |z|ds(z)−

ˆ
∂Ω

log |z| ∂n(u(z)− u(zQ))
2ds(z)| ≲

≲
ˆ
Ω

2(C + 1)|F ′(z)|2(1− |z|2)
(1− |F (z)|2)2

dA(z) ≤ 2(C + 1)Kℓ(Q).

(15)

Note that |∇(u(z) − u(zQ))
2| ≤ 2C|∇u(z)| for any z ∈ Ω and that (1 −

|z|2)|∇u(z)| ≤ 1 for any z ∈ D. We deduce that

(16)

ˆ
∂Ω

| log |z| ∂n(u(z)− u(zQ))
2|ds(z) ≲ Cℓ(Q).

Note that ∂n log |z| is supported on the circular parts of the boundary of Ω,
where it has values ±1/|z|. Since |u − u(zQ)| ≤ C1 on T (Q) and |u(z) −
u(zQ)| > C − C1 for any z ∈ T (Q

(n)
j ), from (15) and (16), we deduce

(17) C2
∑
j

ℓ(Q
(n)
j ) ≲ CKℓ(Q)

Fix C sufficiently large such that

(18)
∑
j

ℓ(Q
(n)
j ) ≲

K

C
ℓ(Q) ≤ 1

2
ℓ(Q).

Iterating this estimate we obtain

(19)
∑
j

ℓ(Q
(n)
j ) ≲

1

2n
|I|, n = 1, 2, . . . .
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Next we show that u ∈ BMO. Fix λ > 2C and let n be the integer part
of λ/(C + C1). Note that (11) gives that

{ξ ∈ I : |u(ξ)− u(zI)| > λ} ⊂ ∪jQ
(n)
j ∩ I.

Then, estimate (19) gives that

m({ξ ∈ ∂D : |u(ξ)− u(zI)| > λ}) ≤ 1

2n
|I|.

This implies that

1

|I|

ˆ
I
|u(ξ)− u(zI)|dm(ξ) =

1

|I|

ˆ ∞

0
m({ξ ∈ I : |u(ξ)− u(zI)| > λ})dλ

is bounded by a universal constant independent of I. This finishes the proof
of (a).

(b) The proof of (b) only requires minor modifications. Actually one only
needs to observe that if |I| is sufficiently small, the constant K in (17) can
be taken also small. This allows to fix also C > 0 such that K/C is also
small. Hence given ε > 0, if |I| is sufficiently small, one can replace the
factor 1/2 in (18) by ε. This gives that log(1−|F |2) ∈ VMO. Last assertion
in (b) follows from the well known fact that u ∈ VMO implies that esu is
integrable for any s > 0.

□

3. Proof of Theorem 1

We now prove our main result.

Proof of Theorem 1. The proof is organized in three steps.
1. Splitting the measure. Let µ be a finite Borel measure on D. Let

{εn} be a decreasing sequence of positive numbers tending to 0. We apply
Lemma 4 to find two measures µ1, µ2 which satisfy (1) and (2) respectively.
For n ≥ 0, we pick the maximal dyadic squares {Qn

k : k = 1, 2, . . .} with
1− r2n+3 < ℓ(Qn

k) ≤ 1− r2n+1 such that

(20)
µ1(Q

n
k)

ℓ(Qn
k)

≥ ε2n+1.

We notice that if Q is a Carleson square with ℓ(Q) = 1− r2n+1, then

µ1(Q)

ℓ(Q)
< ε2n+1.

Indeed, applying (1), we have

(21)
µ1(Q)

ℓ(Q)
≤ µ1({z ∈ D : |z| ≥ r2n+1})

1− r2n+1
≤ ε2n+1.
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Since {Qn
k : k = 1, 2, . . .} are pairwise disjoint, equation (20) gives that∑

k

ℓ(Qn
k) ≤

1

ε2n+1
µ1({|z| ≥ r2n+1}) ≤ 1− r2n+1

and we have

(22)
∑
n

∑
k

ℓ(Qn
k) ≤

∑
n

(1− r2n+1) < ∞.

We split each arc Ink = Qn
k ∩ ∂D into finitely many smaller pairwise disjoint

subarcs {Jn
k,j : j = 1, 2, . . .} such that

|Jn
k,j | = 1− r2n+5, j = 1, 2, . . .

Due to (22), we have that∑
n,k,j

|Jn
k,j | =

∑
n

∑
k

|Ink | < ∞.

A similar construction is applied to the measure µ2.
2. Proof of (a). For i = 1, 2 we will construct an outer function Ei ∈ QA

with log |Ei| ∈ VMO such that |Ei|µi is a vanishing Carleson measure. Once
this is done the result will follow easily. We will explicitly describe E1. The
function E2 is constructed using the same procedure.

Apply Corollary 6 to find a positive function f ∈ VMO such that

(23) lim
|Jn

k,j |→0

 
Jn
k,j

fdm = +∞.

Consider the outer function E1 defined by log |E1(ξ)| = −f(ξ), ξ ∈ ∂D.
Note that ∥E1∥∞ ≤ 1. Since f ∈ VMO we have that E1 ∈ QA. Next we
will show that |E1|µ1 is a vanishing Carleson measure.

We first argue with dyadic Carleson squares. Given a dyadic Carleson
square Q fix n such that 1− r2n+3 < ℓ(Q) ≤ 1− r2n+1. If Q is not contained
in any of the {Qn

k : k = 1, 2, . . .}, we have that µ1(Q) ≤ ε2n+1ℓ(Q) andˆ
Q
|E1(z)|dµ1(z) ≤ µ1(Q) ≤ ε2n+1ℓ(Q).

If Q ⊂ Qn
k for some k, thenˆ

Q
|E1(z)|dµ1(z) =

ˆ
Q∩{|z|≥r2n+3}

|E1(z)|dµ1(z)+

ˆ
Q∩{|z|<r2n+3})

|E1(z)|dµ1(z).

Applying (1), we haveˆ
Q∩{|z|≥r2n+3}

|E1(z)|dµ1(z) ≤ µ1(Q ∩ {|z| ≥ r2n+3}) ≤ ε2n+3(1− r2n+3) ≤ ε2n+3ℓ(Q).

Fix z ∈ Q ∩ {z ∈ D : |z| < r2n+3}. Consider the arc I(z) ⊂ ∂D centered
at z/|z| of length 1 − |z|. Note that |I(z)| ≥ 1 − r2n+3. Since Q ⊂ Qn

k we
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deduce that ∑
i:Jn

k,i⊂I(z)

|Jn
k,i| ≥

|I(z)|
4

.

Hence, by (23), given ε > 0 we have |E1(z)| < ε if n is sufficiently large.
Thus ˆ

Q∩{|z|<r2n+3})
|E1(z)|dµ1(z) ≤ εµ1(Q),

if n is sufficiently large. Hence, given ε > 0 there exists δ > 0 such thatˆ
Q
|E1|dµ1 ≤ εℓ(Q)

when Q is a dyadic Carleson square with ℓ(Q) < δ. Since for any Carleson
square Q one can find two dyadic Carleson squares Q1, Q2 such that Q ⊂
Q1 ∪ Q2 and ℓ(Qi) ≤ 2ℓ(Q), i = 1, 2, we deduce that |E1|µ1 is a vanishing
Carleson measure.

We repeat the above construction for µ2 and we find another outer func-
tion E2 with log |E2| ∈ VMO such that |E2|µ2 is a vanishing Carleson mea-
sure. Now E = E1E2 ∈ QA satisfies that |E|µ is a vanishing Carleson
measure. Moreover log |E| = log |E1|+ log |E2| ∈ VMO.

3. Proof of (b). We now prove part (b) of Theorem 1. Let µ = µ1 + µ2

be the decomposition of Step 1. The Carleson squares Qn
k of Step 1 will

now be denoted as Qn
k = Qn,0

k , k = 1, . . .; n = 1, . . .. Note that (20) and

the maximality gives that µ1(Q
n,0
k ) ≤ 2ε2n+1ℓ(Q

n,0
k ). We will now use a

stopping time argument in each Qn,0
k . Fix n and k and pick the maximal

dyadic Carleson squares {Qn,1
j : j = 1, 2, . . .} contained in Qn,0

k such that

µ1(Q
n,1
j )

ℓ(Qn,1
j )

≥ 10 · ε2n+1.

Note that the maximality gives that µ1(Q
n,1
j ) ≤ 20 · ε2n+1ℓ(Q

n,1
j ). We con-

tinue by induction, that is, if i > 1 is an integer and we have constructed

a Carleson square Qn,i−1
j such that 10i−1 · ε2n+1ℓ(Q

n,i−1
j ) ≤ µ1(Q

n,i−1
j ) ≤

2 · 10i−1 · ε2n+1ℓ(Q
n,1
j ) , we consider the maximal dyadic Carleson boxes

{Qn,i
l : l = 1, 2, . . .} contained in Qn,i−1

j such that

µ1(Q
n,i
l )

ℓ(Qn,i
l )

≥ 10i · ε2n+1.

As before, the maximality gives

µ1(Q
n,i
l )

ℓ(Qn,i
l )

≤ 2 · 10i · ε2n+1, l = 1, 2, . . . .
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We denote In,il = Qn,i
l ∩ ∂D. Since

∑
l: In,i

l ⊂In,i−1
j

|In,il | ≤ 1

10i · ε2n+1

∑
l: In,i

l ⊂In,i−1
j

µ1(Q
n,i
l ) ≤

µ1(Q
n,i−1
j )

10i · ε2n+1
≤ 1

5
ℓ(Qn,i−1

j ),

we obtain that

(24)
∑

l: In,i
l ⊂In,i−1

j

|In,ik | ≤ 1

5
|In,i−1
j |, i = 1, 2, . . . ; j = 1, 2, . . . ;n = 0, 1, . . . .

Consequently, iterating (24), we have that

(25)
∑

l: In,i
l ⊂In,0

k

|In,il | ≤ 1

5i
|In,0k |, i, k = 1, 2, . . . ;n = 0, 1, . . . .

For each n, i, l we pick a smooth B-adapted function an,il to the arc In,il

such that an,il (ξ) = 1 if ξ ∈ In,il . By Lemma 5 we have ∥
∑

l a
n,i
l ∥BMO ≲ B/5i.

The function

hn =

∞∑
i=0

∞∑
l=1

an,il

belongs to BMO and ∥hn∥BMO ≲ B. Moreover, applying (25), (20) and (1)
we obtainˆ

∂D
hndm ≲6

∞∑
i=0

∞∑
l=1

|In,il | ≲
∞∑
k=1

|In,0k | ≲ 1

ε2n+1

∑
k

µ1(Q
n,0
k )

≤ 1

ε2n+1
µ1({z ∈ D : |z| ≥ r2n+1}) ≤ 1− r2n+1.

Let E1 be the outer function given by

log |E1(ξ)| = −4 · log(10)
∞∑
n=1

hn(ξ), ξ ∈ ∂D.

Note that ∥E1∥∞ ≤ 1. At this point, we verify that |E1|µ1 is a vanishing
Carleson measure. We first deal with dyadic Carleson squares. Let Q be a
dyadic Carleson square. Pick the integer n such that 1 − r2n+3 < ℓ(Q) ≤
1− r2n+1. If Q lays outside

⋃
k Q

n,0
k , then

µ1(Q)

ℓ(Q)
≤ ε2n+1.

On the other hand, ifQ ⊂ Qn,i−1
k \

⋃
l Q

n,i
l for some integer i ≥ 1, k = 1, 2, . . .,

then
µ1(Q)

ℓ(Q)
≤ 10iε2n+1.
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Note that hn(ξ) ≥ i for any ξ ∈ In,i−1
k . Then log |E1(z)| ≤ −i log(10) for

any z ∈ Qn,i−1
k and we obtain

´
Q |E1(z)|dµ1(z)

ℓ(Q)
≤ 10−iµ1(Q)

ℓ(Q)
≤ ε2n+1.

Hence given ε > 0 we have proved that
ˆ
Q
|E1|dµ1 ≤ εℓ(Q)

if Q is a dyadic Carleson square with ℓ(Q) sufficiently small. Since any
Carleson square Q is contained in the union of two dyadic Carleson squares
Q1, Q2 with ℓ(Qi) ≤ 2ℓ(Q), i = 1, 2, we deduce that |E1|µ1 is a vanishing
Carleson measure. The same construction applied to µ2 provides an outer
function E2 ∈ H∞ such that |E2|µ2 is a vanishing Carleson measure.

We apply part (a) of Theorem 1 to the Carleson measure

| (E1(z)E2(z))
′ |2(1− |z|2)dA(z)

and find an outer function F ∈ QA with log |F | ∈ VMO such that the
measure

|F (z)|| (E1(z)E2(z))
′ |2(1− |z|2)dA(z)

is a vanishing Carleson measure. Note that since log |F | ∈ VMO we have

that F 1/2 ∈ QA. Consequently, the function E = F 1/2E1E2 is an outer
function in QA such that |E|µ is a vanishing Carleson measure.

Finally we show that log |E| ∈ BMO. It is sufficient to prove that
log |E1| ∈ BMO. Since

− log |E1(ξ)| =
∑
n

hn(ξ) =
∑
n

∑
i

∑
l

an,il (ξ), ξ ∈ ∂D,

it is sufficient to observe that {an,il }n,i,l are B-adapted functions to the arcs

{In,il } which satisfy the packing condition (3). □

4. Applications

4.1. Theorem A. Our first application is a proof of Theorem A of T. Wolff
using Theorem 1.

Proof of Theorem A. Let Pz(f) = f(z) denote the harmonic extension of
f to D. We apply case (a) of Theorem 1 to the Carleson measure µ(z) =
|∇Pz(f)|2(1−|z|2)dA(z) to obtain an outer function E ∈ QA with log |E| ∈
VMO such that |E|µ is a vanishing Carleson measure. Let I ⊂ ∂D be an
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arc. We have that 
I
|E(ξ)f(ξ)− E(zI)f(zI)|dm(ξ)

≤
 
I
|E(ξ)− E(zI)||f(ξ)|dm(ξ) +

 
I
|f(ξ)− f(zI)||E(zI)|dm(ξ)

≤ ∥f∥∞
 
I
|E(ξ)− E(zI)|dm(ξ) + |E(zI)|

 
I
|f(ξ)− f(zI)|dm(ξ),

where zI = (1− |I|)ξI and ξI is the center of I. Since E ∈ VMOA, the first
integral tends to 0 as |I| tends to 0 and we only need to show that

(26) lim
|I|→0

|E(zI)|
 
I
|f(ξ)− f(zI)|dm(ξ) = 0.

By the Cauchy-Schwarz inequality, we have that( 
I
|f(ξ)− f(zI)|dm(ξ)

)2

≤
 
I
|f(ξ)− f(zI)|2dm(ξ) ≲

ˆ
∂D

|f(ξ)− f(zI)|2PzI (t)dm(ξ)

≤
ˆ
D
|∇f(w)|2 (1− |zI |2)(1− |w|2)

|1− zIw|2
dA(w) =

ˆ
D

(1− |zI |2)
|1− zIw|2

dµ(w),

where PzI is the Poisson kernel at the point zI . We notice that

1− |zI |2

|1− wzI |2
≲

1

22n|I|
, w ∈ 2nQ(I) \ 2n−1Q(I), n ≥ 1.

Thus ˆ
D

(1− |zI |2)
|1− zIw|2

dµ(w) ≲
µ(Q(I))

|I|
+

∑
n≥1

µ(2nQ(I) \ 2n−1Q(I))

22n|I|
.

Since µ is a Carleson measure, for any ε > 0 we have that∑
n≥log(1/ε)

1

22n|I|
µ(2nQ(I) \ 2n−1Q(I)) ≲

∑
n≥log(1/ε)

1

2n
≤ ε

and then
(27) 
I
|f(ξ)−f(zI)|dm(ξ) ≲

( log(1/ε)∑
n=1

µ(2nQ(I))

22n|I|
+ε

)1/2
≤

(µ(ε−1Q(I))

|I|
+ε

)1/2
.

We are now going to show (26). Fix ε > 0. Let us consider two cases.
Assume first that µ

(
ε−1Q(I)

)
≤ ε|I|. Then (27) gives that 

I
|f(ξ)− f(zI))|dm(ξ) ≲ ε1/2

and (26) follows. Assume now that µ
(
ε−1Q(I)

)
> ε|I|. Since |E|µ is a

vanishing Carleson measure, Lemma 7 applied to the family A(ε2) gives
that |E(z(ε, I))| ≤ ε, if |I| is sufficiently small. Here z(ε, I) denotes zε−1I .
Since E ∈ VMOA we have (1− |z|)|E′(z)| → 0 as |z| → 1. We deduce that
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|E(zI)| < 2ε if |I| is sufficiently small. This proves (26) and finishes the
proof

□

As usual Lp(∂D) denotes the classical Lebesgue spaces on the unit circle,
0 < p ≤ ∞.

Corollary 9. Let f ∈ Lp(∂D), 0 < p ≤ ∞. Then, there exists an outer
function E ∈ QA such that Ef ∈ VMO∩L∞(∂D).

Proof. Consider the outer function E0 defined as

E0(z) = exp

(
−
ˆ
∂D

ξ + z

ξ − z
log+ |f(ξ)|dξ

)
, z ∈ D.

It is clear that E0 belongs to H∞ and E0f ∈ L∞(∂D). We apply Theorem A
twice. First, we find an outer function E1 ∈ QA such that E1E0 ∈ QA. Since
E1E0f ∈ L∞(∂D), another application of Theorem A provides a function
E2 ∈ QA such that E2E1E0f ∈ QA and one can take E = E2E1E0. □

4.2. Critical points of functions in Hardy spaces. Theorem 2 follows
from a convenient variant of a classical result by W. Cohn on factorization
of derivatives of functions in Hardy spaces. Fix 0 < p < ∞. W. Cohn
proved in [Coh99, Theorem 1] that, given F ∈ Hp, there exist a function
G ∈ BMOA and an outer function H ∈ Hp such that F ′ = G′H. Conversely,
for any G ∈ BMOA and H ∈ Hp, the function G′H is the derivative of a
function in Hp. See [Dya12] for a version in the Nevanlinna class. Next we
apply Theorem 1, Lemma 8 and a nice technique of [Kra13] to show the
following result which obviously implies Theorem 2.

Lemma 10. Fix 0 < p < ∞. For every F ∈ Hp there exist G ∈ QA and an
outer function H ∈ Hq for any q < p such that F ′ = G′H.

Proof. Let F ∈ Hp. According to Cohn’s result, there exist Φ ∈ BMOA
and an outer function R ∈ Hp such that F ′ = Φ′R. Applying Theorem 1 to
the Carleson measure |Φ′(z)|2(1− |z|2)dA(z), one obtains an outer function

E ∈ QA with log |E| ∈ VMO, such that E1/2Φ′ is the derivative of a function
G ∈ VMOA. Consequently

F ′ = G′ R

E1/2
.

Since log |E| ∈ VMO, the John-Nirenberg Theorem gives that E−1/2 ∈ Hr

for every 0 < r < ∞. Holder’s inequality gives that RE−1/2 ∈ Hq for any
0 < q < p.

Note that the function G ∈ VMOA may be unbounded. Next we will
apply the technique in [Kra13]. Consider the partial differential equation

(28) ∆u(z) = 4|G′(z)|2e2u(z), z ∈ D.
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Since G is in BMOA the PDE (28) has a solution u0 which is bounded on
D (see Remark 3.4 of [Kra13]). By Liouville’s Theorem (see Theorem 3.3 of
[KR08]), there exists an analytic self-mapping I of D such that

u0(z) = log
( 1

|G′(z)|
|I ′(z)|

(1− |I(z)|2)
)
, z ∈ D.

Since u0 is bounded in D, we deduce that |G′| is comparable to |I ′|/(1−|I|2)
on D. Hence I and G have the same critical points with the same multiplici-
ties. Since G is in VMOA, we deduce that |I ′(z)|2(1−|z|)dA(z)/(1−|I(z)|)2
is a vanishing Carleson measure. In particular I is in VMOA and hence
I ∈ QA. Note that |G′/I ′| is comparable to (1 − |I|2)−1 ≥ 1 on D and
deduce that G′/I ′ is an outer function. Finally part (b) of Lemma 8 gives
that G′/I ′ belongs to the Hardy space Hs, for any 0 < s < ∞.

□

We notice that the proof of the previous Lemma gives the following fac-
torization for the derivatives of BMOA functions.

Corollary 11. For every F ∈ BMOA there exist G ∈ QA and an function
H ∈ Hq for any q < ∞ with 1/H ∈ H∞ such that F ′ = G′H.

We close this section with two remarks. A. Aleksandrov and V. Peller
proved in [AP96, Theorem 3.4] that for any F ∈ BMOA there exist Gi, Hi ∈
H∞, i = 1, 2, such that F ′ = G′

1H1 + G′
2H2. The second remark concerns

single generated ideals in the space A2
1 of analytic functions F in D such

that

∥F∥2 =
ˆ
D
|F (z)|2(1− |z|2)dA(z) < ∞.

O. Ivrii showed that any single generated invariant subspace of A2
1 can

be generated by the derivative of a bounded function (see Theorem 3.1 of
[Ivr21]).

Corollary 12. Let F ∈ A2
1 and let [F ] denote the closure in A2

1 of polynomial
multiples of F . Then, there exists a function G ∈ QA such that [G′] = [F ].

Proof. It is well known that there exists I ∈ BMOA such that [F ] = [I ′]
(see [HKZ, Theorem 3.3]). Corollary 11 provides G ∈ QA and a function
H ∈ H2 with 1/H ∈ H∞ such that I ′ = G′H. We now verify that [I ′] = [G′].
Let W ∈ [I ′]. Given ε > 0 there exists an analytic polynomial P such that
∥W −PI ′∥ ≤ ε. Consequently, if Hn is the Taylor polynomial of H of degree
n, we have

∥W − PG′Hn∥ ≤ ∥W − PHG′∥+ ∥PHG′ − PG′Hn∥
≤ ∥W − PI ′∥+ C∥G∥2BMO∥P∥∞∥H −Hn∥2,

where C > 0 is an absolute constant. The last estimate follows from the
fact that |G′(z)|2(1−|z|2)dA(z) is a Carleson measure. Therefore W ∈ [G′].
A similar argument using that 1/H ∈ H2, proves the converse inclusion. □
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4.3. Generalized Volterra operators. Given two analytic functions F,G
in D, TG(F ) denotes the generalized Volterra operator with symbolG applied
to F defined as

TG(F )(z) =

ˆ z

0
F (w)G′(w)dw, z ∈ D.

It is clear that if G ∈ BMOA, the operator TG : H∞ → BMOA is continuous
and ∥TG∥ ≲ ∥G∥BMO. As it is expected, TG is compact precisely when the
symbol G ∈ VMOA.

Lemma 13. Let G ∈ BMOA. Then TG : H∞ → BMOA is compact if and
only if G ∈ VMOA.

Proof. Assume first that G is a polynomial. Note that Tg = V ◦ MG′ ,
where MG′ : H∞ → H∞ and V : H∞ → BMOA are respectively the operator
of multiplication by G′ and the classical Volterra operator. By [AJS14,
Theorem 3.5], V acts compactly on H∞. Hence TG is compact.

Consider now an arbitrarily function G ∈ VMOA. Note that there exist
polynomials Pn, such that

lim
n→∞

∥G− Pn∥BMO = 0 .

Thus

lim
n→∞

∥TG − TPn∥ ≲ lim
n→∞

∥G− Pn∥BMO = 0 .

Hence, TG : H∞ → BMOA is compact.
The converse is proved by contradiction. Assume that TG is compact and

that G is not in VMOA. Then there exist a constant M > 0 and a sequence
of arcs {In} in ∂D such that |In| → 0 and

(29)
1

|In|

ˆ
Q(In)

|G′(z)|2(1− |z|2)dA(z) > M, n = 1, 2, . . . .

For n = 1, 2, . . . pick the integer Nn with |In|−1 ≤ Nn < |In|−1 + 1. Then

∥TG(z
Nn)∥2BMO ≥ 1

|In|

ˆ
Q(In)

|z|2Nn |G′(z)|2(1− |z|2)dA(z) ≥ M/4.

Hence TG : H∞ → BMOA is not compact. □

The boundedness from below of the operators TG acting on Hardy and
Bergman spaces has already been studied in [And11] and [Pan22]. The core
of our approach lies in establishing that for G ∈ BMOA, there exists a non
zero function F ∈ VMOA∩TG(H∞).

Proof of Theorem 3. Let H ∈ H∞. Because of Theorem 1, we can find
an outer function E ∈ QA such that |E(z)G′(z)H(z)|2(1 − |z|2)dA(z) is a
vanishing Carleson measure. This implies that F = TG(EH) ∈ VMOA.
Note that

(30) EHG′ = F ′.
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We argue by contradiction. Assume that TG : H∞ → BMOA is bounded
from below or that TG(H∞) is closed in BMOA. Then, since TG is also
bounded, there exists a constant C > 0 such that

(31) C−1∥k∥∞ ≤ ∥TG(k)∥BMO ≤ C∥k∥∞
for every k ∈ H∞. In particular, if kn(z) = E(z)H(z)zn, z ∈ D, applying
(30) we deduce that

∥TG(kn)∥2BMO ∼ sup
I

1

|I|

ˆ
Q(I)

|G′(z)E(z)H(z)|2|z|2n(1− |z|2) dA(z)

= sup
I

1

|I|

ˆ
Q(I)

|F ′(z)|2|z|2n(1− |z|2) dA(z).

Since F ∈ VMOA we deduce that ∥TG(kn)∥BMO → 0 as n → ∞ while ∥kn∥∞
is bounded below.

□

5. Sharpness of Theorem 1

We first show that in the conclusion of Theorem 1, one can not improve
the vanishing Carleson measure condition.

Proposition 14. For any increasing function ω : [0, 1] → [0,+∞) with
ω(0) = 0, there exists a Carleson measure µ such that for any outer function
E ∈ H∞ we have

lim sup
ℓ(Q)→0

´
Q |E(z)|dµ(z)
ℓ(Q)ω(ℓ(Q))

= +∞.

Proof. Pick two sequences {δk} and {hk} of positive numbers such that

(32)

∞∑
k=1

hk
δk

< ∞ and lim
k→∞

hk
δk

log(ω(hk)) = −∞.

We can also assume that Nk = 2π/δk is an integer for any k = 1, 2, . . ..
For any k = 1, 2, . . ., let Λk = {zk,j : j = 1, . . . , Nk} be points uniformly
distributed in the circle {z ∈ D : 1 − |z| = hk}. Then the sequence {zn}
defined as

{zn} =

∞⋃
k=1

Λk

is a Blaschke sequence. Actually

µ =
∑
n

(1− |zn|)δzn ,

is a Carleson measure. We argue by contradiction and assume that there
exists an outer function E ∈ H∞, ∥E∥∞ ≤ 1, such that

(33)

´
Q |E(z)|dµ(z)
ℓ(Q)ω(ℓ(Q))

< 1
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for every Carleson square Q. We pick Carleson squares Qk,j with ℓ(Qk.j) =
hk such that zk,j lies in the top part T (Qk.j) of Qk.j . The assumption (33)
implies that for every k, j

|E(zk,j)|hk ≤ℓ(Qk,j)ω(ℓ(Qk,j)) = hkω(hk),

that is,

(34) |E(zk,j)| ≤ ω(hk), j = 1, . . . , Nk; k = 1, 2, . . . .

Consider the discs Dk,j = {z ∈ D : |z − zk,j | ≤ (1 − |zk,j |)/2}. Harnack’s
inequality applied to the positive harmonic function − log |E| gives that
− log |E(z)| ≳ − log |E(zk,j)| ≥ − logω(hk), z ∈ Dk,j , j = 1, . . . , Nk; k = 1, 2, . . . .

uniformly in k, j. Consequently, by subharmonicity, we have that

log |E(0)| ≤
ˆ
∂D

log |E((1− hk)ξ)|dm(ξ) ≲ log(ω(hk))
hk
δk

→ −∞, as k → ∞.

This is clearly a contradiction and finishes the proof. □

We recall that the disc algebra A(D) is the space of continuous functions
in the closed unit disc which are analytic in D. Our next result says that in
Theorem 1 one can not replace the condition E ∈ QA by E ∈ A(D).

Proposition 15. There exists a Carleson measure µ in D such that there
are no non trivial functions E ∈ A(D) such that |E|µ is a vanishing Carleson
measure.

Proof. Consider a Carleson measure µ such that for any point ξ ∈ ∂D
there exists a sequence of Carleson squares {Qn(ξ)} such that µ(Qn(ξ)) >
ℓ(Qn(ξ)) and

lim
n→∞

ℓ(Qn(ξ)) = 0 , lim
n→∞

dist(ξ,Qn(ξ)) = 0.

For instance one could consider a uniformly separated sequence Λ with ∂D ⊂
Λ and

µ =
∑
z∈Λ

(1− |z|)δz.

Assume that there exists a function E ∈ A(D) such that |E|µ is a vanishing
Carleson measure. Then

lim
n→∞

´
Qn(ξ)

|E|dµ
ℓ(Qn(ξ))

= 0, ξ ∈ ∂D.

Since E is continuous in D, this implies that E vanishes identically. □

Our last remark concerns the sharpness of part (b) of Theorem 1: one can
not replace the condition log |E| ∈ BMO by the stronger one log |E| ∈ VMO.

Proposition 16. There exists a finite positive Borel measure µ in D such
that there are no function E ∈ QA with log |E| ∈ VMO such that |E|µ is a
vanishing Carleson measure.
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Proof. We argue by contradiction. Let G ∈ H2 and consider the measure
µ(z) = |G′(z)|2(1 − |z|2)dA(z). Assume there exists an outer function E ∈
QA such that |E|µ is a vanishing Carleson measure and log |E| ∈ VMO.
Then the function F defined by

F (z) =

ˆ z

0
E(w)G′(w)dw, z ∈ D

belongs to VMOA and satisfies F ′ = G′E. Since log |E| ∈ VMO, we have
1/E ∈ Hp for p > 2. hence we obtain that for any function G ∈ H2 one can
factor G′ = F ′/E ∈ {H ′ : H ∈ Hp} by the result of W.Cohn [Coh99], which
is clearly a contradiction if p > 2. □

As explained in the introduction, the proof of Theorem 1 relies on the fact
that for any finite positive Borel measure µ, the ratio µ(Q)/ℓ(Q) is small
for most Carleson squares Q ⊂ D. Our last result points in this direction.

Proposition 17. Let µ be a finite positive measure. Then

lim
h→0

µ (Q(ξ, h))

h
= 0 ,

for m-almost every ξ ∈ ∂D. Here Q(ξ, h) = Q(I(ξ, h)) where I(ξ, h) is the
arc of ∂D centered at ξ of normalized length h.

Proof. We proceed by contradiction, that is, we assume that

(35) m

{
ξ ∈ ∂D : lim sup

h→0

µ (Q(ξ, h))

h
> 0

}
> 0 .

By the regularity of the Lebesgue measure, there exists a constant η > 0
such that

m

{
ξ ∈ ∂D : lim sup

h→0

µ (Q(ξ, h))

h
> η

}
> 0 .

Let ε > 0 be a small number to be fixed later. Consider a compact set
K ⊂ ∂D wih m(K) > 0 such that for every ξ ∈ K there exists a sequence
{hn(ξ)}n tending to 0 as n → ∞ with 0 < hn(x) < ε and

µ(Q(ξ, hn(ξ))) >
η

2
hn(ξ), n = 1, 2, . . . .

We consider the collection of arcs {I(ξ, hn(ξ)) : n = 1, 2, . . . ; ξ ∈ K}. Using
Vitali’s covering lemma, we extract a family of pairwise disjoint arcs {Ik}
such that K ⊆

⋃
k 5Ik. Note that µ(Q(Ik)) ≥ η|Ik|/2. Consequently

µ ({z ∈ D : 1− ε ≤ |z| < 1}) ≥ µ (∪kQ(Ik)) ≥
η

2

∑
k

|Ik| ≥
η

10
|K| .

However, the last inequality gives a contradiction if ε > 0 is taken sufficiently
small since

lim
ε→0

µ ({z ∈ D : 1− ε ≤ |z| < 1}) = 0 .

□
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Centre de Recerca Matemàtica, 08193 Barcelona, Spain.

Email address: g.stylog@gmail.com
Email address: stylog@math.auth.gr

Department of Mathematics, Aristotle University of Thessaloniki, 54124
Thessaloniki, Greece.


	1. Introduction
	2. Auxiliary Results
	3. Proof of Theorem 1
	4. Applications
	4.1. Theorem A
	4.2. Critical points of functions in Hardy spaces
	4.3. Generalized Volterra operators

	5. Sharpness of Theorem 1
	6. Acknowledgements
	References

