CARLESON MEASURES, VANISHING MEAN OSCILLATION AND CRITICAL POINTS

CARLO BELLAVITA, ARTUR NICOLAU, AND GEORGIOS STYLOGIANNIS

ABSTRACT. Given a finite positive Borel measure μ in the open unit disc of the complex plane, we construct a bounded outer function E whose boundary values have vanishing mean oscillation such that $|E|\mu$ is a vanishing Carleson measure. As an application it is shown that given any function in a Hardy space, there exists a bounded analytic function in the unit disc whose boundary values have vanishing mean oscillation, with the same critical points and multiplicities.

1. Introduction

Let \mathbb{D} be the open unit disc in the complex plane and let $\partial \mathbb{D}$ be the unit circle. With dA, respectively dm, we denote the normalized Lebesgue measure in \mathbb{D} , respectively in $\partial \mathbb{D}$. For $0 let <math>\mathbb{H}^p$ be the Hardy space of analytic functions F in \mathbb{D} such that

$$||F||_p^p = \sup_{0 < r < 1} \int_{\partial \mathbb{D}} |F(r\xi)|^p dm(\xi) < \infty,$$

and let \mathbb{H}^{∞} be the space of bounded analytic functions F in \mathbb{D} with $||F||_{\infty} = \sup\{|F(z)|: z \in \mathbb{D}\}$. Any function $F \in \mathbb{H}^p$ with $0 has radial limit, denoted by <math>F(\xi)$, at m-almost every point $\xi \in \partial \mathbb{D}$ and factors as F = BE where B is an inner function and E an outer function. We recall that B is called inner if $B \in \mathbb{H}^{\infty}$ and $|B(\xi)| = 1$ for m-almost every $\xi \in \partial \mathbb{D}$ and that the outer function E can be written as

$$E(z) = \exp\Big(\int_{\partial \mathbb{D}} \frac{\xi + z}{\xi - z} h(\xi) dm(\xi)\Big), \quad z \in \mathbb{D},$$

where h is an integrable function in the unit circle. Actually $\log |E(\xi)| = h(\xi)$ for m-almost every $\xi \in \partial \mathbb{D}$. See Chapter II of [Gar06].

Given an arc $I \subset \partial \mathbb{D}$ of normalized length m(I) = |I|, let $Q = Q(I) = \{z \in \mathbb{D} : |z| \ge 1 - |I|, z/|z| \in I\}$ be the Carleson square based at I. It is customary to denote $\ell(Q) = |I|$. A finite positive Borel measure μ in \mathbb{D} is

²⁰²⁰ Mathematics Subject Classification. Primary: 30H35; Secondary: 30H10, 30H20, 30H50, 47G10.

Key words and phrases. Carleson measures, Critical points, Generalized Volterra integral operators.

called a Carleson measure if there exists a constant C > 0 such that

$$\int_{\mathbb{D}} |F(z)|^p d\mu(z) \le C \|F\|_p^p,$$

for any $F \in \mathbb{H}^p$. A celebrated result of Carleson says that μ is a Carleson measure if and only if there exists a constant $C_1 > 0$ such that $\mu(Q) \leq C_1 \ell(Q)$ for any Carleson square Q. A Carleson measure μ is called a vanishing Carleson measure if

$$\frac{\mu(Q)}{\ell(Q)} \to 0 \text{ as } \ell(Q) \to 0.$$

The average of an integrable function h over an arc $I \subset \partial \mathbb{D}$, is denoted by

$$h_I = \int_I h(\xi) dm(\xi) = \frac{1}{m(I)} \int_I h(\xi) dm(\xi).$$

An integrable function h in $\partial \mathbb{D}$ is in BMO if

$$||h||_{\text{BMO}} = \sup \int_I |h(\xi) - h_I| dm(\xi) < \infty,$$

where the supremum is taken over all arcs $I \subset \partial \mathbb{D}$. The subspace of functions $h \in \text{BMO}$ such that

$$\int_I |h(\xi) - h_I| dm(\xi) \to 0 \text{ as } m(I) \to 0$$

is denoted by VMO and coincides with the closure in the BMO semi-norm of the continuous functions on $\partial \mathbb{D}$. Given an integrable function h in $\partial \mathbb{D}$ we denote by h(z) with $z \in \mathbb{D}$, its harmonic extension to \mathbb{D} . Functions in BMO and Carleson measures are intimately related. Indeed, an integrable function h is in BMO, respectively in VMO, if and only if $|\nabla h(z)|^2(1-|z|^2)dA(z)$ is a Carleson, respectively vanishing Carleson, measure. See Chapter VI [Gar06] for all these well known results.

Our work is inspired by the beautiful article [Wol82] of T. Wolff who considered the algebra QA of bounded analytic functions whose boundary values are in VMO. He proved the following deep result.

Theorem A. [Wol82, Theorem 1] Given any bounded function f in $\partial \mathbb{D}$, there exists an outer function $E \in \mathrm{QA}$ such that $Ef \in \mathrm{VMO}$.

We now state our main result.

- **Theorem 1.** (a) Let μ be a Carleson measure in \mathbb{D} . Then, there exists an outer function $E \in \mathrm{QA}$ with $\log |E| \in \mathrm{VMO}$ such that $|E|\mu$ is a vanishing Carleson measure.
 - (b) Let μ be a finite positive Borel measure in \mathbb{D} . Then, there exists an outer function $E \in \mathrm{QA}$ with $\log |E| \in \mathrm{BMO}$ such that $|E|\mu$ is a vanishing Carleson measure.

Let μ be a finite positive Borel measure in \mathbb{D} . Roughly speaking, for most Carleson squares Q we have $\mu(Q) < C(Q)\ell(Q)$ where $C(Q) \to 0$ as $\ell(Q) \to 0$. See Proposition 17. So for most Carleson squares, the contribution from |E| is not needed. Consequently, |E| only needs to be small on few Carleson squares, offering the flexibility to construct $E \in QA$ such that $|E|\mu$ is a vanishing Carleson measure. The proof of Theorem 1 uses a decomposition of the measure μ , stopping time arguments yielding nested families of dyadic arcs on $\partial \mathbb{D}$ and a construction of certain BMO functions due to J. Garnett and P. Jones ([GJ78]).

Theorem 1 is sharp in several different senses. First, in the conclusion, the vanishing Carleson measure condition can not be replaced by a stronger condition of the same sort. Actually for any increasing function $\omega:[0,1]\to [0,\infty)$ with $\omega(0)=0$, there exists a Carleson measure μ such that for any outer function $E\in H^{\infty}$ we have

$$\limsup_{\ell(Q) \to 0} \frac{\int_Q |E(z)| d\mu(z)}{\ell(Q) \omega(\ell(Q))} = \infty.$$

See Proposition 14. Second, one can not replace QA by the disk algebra $A(\mathbb{D})$ of analytic functions in \mathbb{D} which extend continuously to $\overline{\mathbb{D}}$. Actually a Carleson measure μ will be constructed for which $|E|\mu$ fails to be a vanishing Carleson measure for any non trivial $E \in A(\mathbb{D})$. See Proposition 15. Finally, in part b) one can not have the sharper condition $\log |E| \in VMO$, as it is in part a). See Proposition 16.

Theorem 1 has applications in three different contexts. First, using Theorem 1 one can prove Theorem A of T. Wolff. The second application of Theorem 1 concerns critical points of functions in Hardy spaces. Let BMOA, respectively VMOA, be the space of functions $F \in \mathbb{H}^2$ whose boundary values $F(\xi)$ with $\xi \in \partial \mathbb{D}$, are in BMO, respectively in VMO. W. Cohn proved in [Coh99, Theorem 1] that given $0 and <math>F \in \mathbb{H}^p$, there exists $G \in \text{BMOA}$ such that the zeros (and the multiplicities) of F' and G' coincide. Later D. Kraus in [Kra13, Theorem 1.1] proved that given $0 and <math>F \in \mathbb{H}^p$, there exists a Blaschke product B such that the zeros (and the multiplicities) of F' and B' coincide. Using Theorem 1 and a beautiful technique developed by D. Kraus in [Kra13] we prove the following result.

Theorem 2. Let $0 and <math>F \in \mathbb{H}^p$. Then there exists a function $G \in QA$ such that the zeros (and the multiplicities) of F' and G' coincide.

Our last application of Theorem 1 concerns generalized Volterra integral operators. Given an analytic function G in \mathbb{D} , the action of the generalized Volterra operator T_G on the analytic function F is defined as

$$T_G(F)(z) = \int_0^z F(w)G'(w)dw, \quad z \in \mathbb{D}.$$

Notice that if $G \in BMOA$, then $T_G : \mathbb{H}^{\infty} \to BMOA$ is continuous, see [AS95, Proposition 1]. As expected $T_G : \mathbb{H}^{\infty} \to BMOA$ is compact if and only if $G \in VMOA$. We will apply Theorem 1 to obtain the following result.

Theorem 3. Let $G \in BMOA$ be non constant. Then $T_G : \mathbb{H}^{\infty} \to BMOA$ is not bounded from below and $T_G(\mathbb{H}^{\infty})$ is not closed in BMOA.

The rest of the paper is organized as follows. Section 2 contains auxiliary results that are used in the proof of Theorem 1 which is given in Section 3. In Section 4, Theorem 1 is applied to prove Theorems A, 2 and 3. The sharpness of Theorem 1 is discussed in the last section.

As usual, the notation $A \lesssim B$ means that there exists a universal constant C > 0 such that $A \leq CB$.

It is a pleasure to thank O. Ivrii, D. Kraus and O. Roth for several helpful discussions.

2. Auxiliary Results

Our first result states that any finite positive Borel measure in \mathbb{D} can be written as the sum of two measures which have small mass on a certain sequence of annuli.

Lemma 4. Let μ be a finite positive Borel measure in \mathbb{D} . Let $\{\varepsilon_n\}$ be a decreasing sequence of positive numbers tending to zero. Then there exists an increasing sequence $\{r_n\}$ with $0 \le r_n < 1$, $n = 0, 1, \ldots$ and two positive measures μ_1 , μ_2 with $\mu = \mu_1 + \mu_2$ such that

(1)
$$\mu_1 \{ z \in \mathbb{D} : |z| > r_{2n+1} \} \le \varepsilon_{2n+1} (1 - r_{2n+1})$$

and

(2)
$$\mu_2 \{ z \in \mathbb{D} : |z| > r_{2n} \} \le \varepsilon_{2n} (1 - r_{2n}),$$

for $n = 0, 1, \ldots$ Moreover $\{r_n\}$ can be chosen of the form $r_n = 1 - 2^{-N(n)}$ for some integer $N(n) \ge 0$, $n = 0, 1, \ldots$ and $\sum (1 - r_n) < \infty$.

Proof. By induction one can define an increasing sequence $\{r_n\}$ with $r_0 = 0$ and $0 \le r_n < 1, n = 1, 2, \ldots$, such that

$$\mu\{z \in \mathbb{D}: |z| \ge r_{n+1}\} \le \varepsilon_n(1-r_n), \quad n = 0, 1, 2, \dots$$

It is clear that $\{r_n\}$ can be taken as described in the last part of the statement. Let $\mathbb{1}_n$ be the indicator function of the annulus $\{z \in \mathbb{D} : r_n \leq |z| < r_{n+1}\}$. Define the two measures μ_1, μ_2 as

$$\mu_1 = \mu \sum_{n=0}^{\infty} \mathbb{1}_{2n} \text{ and } \mu_2 = \mu \sum_{n=0}^{\infty} \mathbb{1}_{2n+1}.$$

We notice that $\mu = \mu_1 + \mu_2$. Moreover for n = 0, 1, ..., we have that

$$\mu_1\{|z| \ge r_{2n+1}\} = \mu_1\{|z| \ge r_{2n+2}\} \le \mu\{|z| \ge r_{2n+2}\} \le \varepsilon_{2n+1}(1 - r_{2n+1})$$
 and

$$\mu_2\{|z| \ge r_{2n}\} = \mu_2\{|z| \ge r_{2n+1}\} \le \mu\{|z| \ge r_{2n+1}\} \le \varepsilon_{2n}(1 - r_{2n}).$$

The proof of Theorem 1 uses a beautiful construction due to P. Jones and J. Garnett ([GJ78]) of certain functions in BMO supported in a given arc which are large on certain subsets of the arc. A Lipschitz function $a: \partial \mathbb{D} \to \mathbb{R}$ is called B-adapted to the arc $I \subset \partial \mathbb{D}$ if the following three conditions hold: the support of a is contained in the dilated arc 3I; sup $|a| \leq 1$ and $|\nabla a_i(\xi)| \leq B/|I|$ for any $\xi \in \partial \mathbb{D}$.

Lemma 5. [GJ78] Let $\{I_j\}$ be a sequence of arcs in $\partial \mathbb{D}$. Assume that there exists a constant $C_1 > 0$ such that for any arc $I \subseteq \partial \mathbb{D}$ we have

$$(3) \sum_{I_j \subset I} |I_j| \le C_1 |I|.$$

Let a_j be a B-adapted function to the arc I_j for $j=1,2,\ldots$. Then $\sum_j a_j \in BMO$ and

$$\left\| \sum_{j} a_{j} \right\|_{\text{BMO}} \lesssim C_{1} B.$$

For the proof of Lemma 5, we refer to Lemma 2.1 in [GJ78] (see Lemma 3.2 of [NO00] for a VMO version). The following result may be known but, since it is not clearly stated in the literature, we provide a short proof based on an idea in Lemma 1.2 in [Wol82].

Corollary 6. Let $\{I_j\}$ be a sequence of arcs in $\partial \mathbb{D}$ with $\sum_j |I_j| < \infty$. Then, there exists a positive function $f \in \text{VMO}$ such that

$$\lim_{j \to \infty} \int_{I_j} f dm = +\infty.$$

Proof. We use Lemma 2.2 of [GJ78], which says that given a measurable set $E \subset \partial \mathbb{D}$ there exists a positive function h with $||h||_{BMO} < 1$ such that

$$-\log m(E) \lesssim h(\xi)$$
, for all $\xi \in E$.

Moreover, if E is a finite union of arcs, then h may be taken in $C^{\infty}(\partial \mathbb{D})$. Since $\sum_{j} |I_{j}| < \infty$, the collection $\{I_{j}\}$ can be split as $\{I_{j}\} = \bigcup_{n \geq 1} \mathcal{A}_{n}$ where \mathcal{A}_{n} is a collection of finitely many arcs which satisfies

$$\sum_{I \in \mathcal{A}_n} |I| \lesssim e^{-n^3}, \quad n = 1, 2, \dots$$

Let f_n be a positive smooth function in $\partial \mathbb{D}$ satisfying $||f_n||_{\text{BMO}} \lesssim 1$ and

$$f_n(\xi) \ge n^3$$
, for all $\xi \in \bigcup_{I \in \mathcal{A}_n} I$.

We set $f = \sum_{n} f_n/n^2$. Then $f \in VMO$ and

$$\lim_{j\to\infty}\frac{1}{|I_j|}\int_{I_j}fdm=\infty.$$

Let \mathcal{D} denote the family of dyadic arcs of the unit circle. The corresponding family of dyadic Carleson squares is defined as $\{Q(I): I \in \mathcal{D}\}$. Note that two dyadic Carleson squares are either disjoint or one is contained into the other. Given a Carleson square Q = Q(I) where $I \subset \partial \mathbb{D}$ is an arc centered at the point $\xi \in \partial \mathbb{D}$, consider $z_Q = (1 - \ell(Q))\xi$. The next preliminary result will be needed in the proof of Theorem A.

Lemma 7. Let μ be a Carleson measure in \mathbb{D} . Given $\varepsilon > 0$ consider the collection $\mathcal{A} = \mathcal{A}(\varepsilon)$ of Carleson squares Q such that $\mu(Q) \geq \varepsilon \ell(Q)$. Let $E \in \text{VMOA}$ such that $|E|\mu$ is a vanishing Carleson measure. Then

$$\lim_{Q \in \mathcal{A}, \, \ell(Q) \to 0} |E(z_Q)| = 0.$$

Proof. Given a Carleson square Q denote $I(Q) = \overline{Q} \cap \partial \mathbb{D}$. Fixed a constant $\eta > 0$ and a Carleson square $Q \in \mathcal{A}(\varepsilon)$, consider the family $\{Q_j\}$ of maximal dyadic Carleson squares contained in Q such that

$$\sup\{|E(w) - E(z_Q)| : w \in T(Q_j)\} \ge \eta.$$

Here $T(Q_j) = \{z \in Q_j : 1 - |z| \ge \ell(Q_j)/2\}$ is the top part of Q_j . Since $E \in VMOA$, we have

(4)
$$\frac{1}{\ell(Q)} \sum \ell(Q_j) \to 0 \text{ as } \ell(Q) \to 0.$$

Consider the region $R = R(Q, \eta) = Q \setminus \bigcup Q_j$. Since μ is a Carleson measure and $Q \in \mathcal{A}(\varepsilon)$, from (4) we deduce that

(5)
$$\frac{\mu(R)}{\mu(Q)} \to 1 \text{ as } \ell(Q) \to 0.$$

Moreover, by construction we have that

$$\sup\{|E(w) - E(z_Q)| : w \in R\} \le \eta.$$

Hence

$$\int_{Q} |E| d\mu \ge \int_{R} |E| d\mu \ge \frac{1}{2} (|E(z_{Q})| - \eta) \varepsilon \ell(Q),$$

if $\ell(Q)$ is sufficiently small. Since $|E|\mu$ is a vanishing Carleson measure and $\eta > 0$ can be taken arbitrarily small, we deduce that $|E(z_Q)| \to 0$ as $\ell(Q)$ tends to 0.

Next result will be used in the proof of Theorem 2. It can be understood as a hyperbolic analogue of the classical fact that a harmonic function u in \mathbb{D} such that $|\nabla u(z)|^2(1-|z|^2)dA(z)$ is a Carleson measure, has boundary values in BMO.

Lemma 8. Let F be an analytic self-mapping of the unit disc.

(a) Assume that

(6)
$$\frac{|F'(z)|^2(1-|z|^2)}{(1-|F(z)|^2)^2} dA(z)$$

is a Carleson measure. Then $\log(1-|F|^2) \in BMO$.

(b) Assume that

(7)
$$\frac{|F'(z)|^2(1-|z|^2)}{(1-|F(z)|^2)^2} dA(z)$$

is a vanishing Carleson measure. Then $\log(1-|F|^2) \in VMO$ and consequently,

$$\sup_{0 < r < 1} \int_{\partial \mathbb{D}} \frac{dm(\xi)}{(1 - |F(r\xi)|)^s} < \infty,$$

for any $0 < s < \infty$.

Proof. (a) Let $u(z) = -\log(1-|F(z)|^2)$, $z \in \mathbb{D}$. By Schwarz's Lemma there exists a constant $C_1 > 0$ such that

(8)
$$\sup\{|u(z) - u(w)| : z \in T(Q), w \in T(Q_1)\} \le C_1,$$

for any pair of Carleson squares $Q_1 \subset Q$ with $\ell(Q_1) = \ell(Q)/2$. Let K be the Carleson norm of the Carleson measure in (6). Let $C > 2C_1 + 2K$ be a large constant to be determined later.

Let I be an arc of the unit circle and consider the dyadic decomposition of Q(I). We now use a stopping time argument. Let \mathcal{G}_1 be the collection of maximal dyadic Carleson squares $Q_i^{(1)} \subset Q(I)$ such that

(9)
$$\sup\{|u(z) - u(z_{Q(I)})| : z \in T(Q_i^{(1)})\} \ge C.$$

The maximality and (8) give that

$$C - C_1 \le |u(z_{Q_i^{(1)}}) - u(z_{Q(I)})| \le C + C_1.$$

We continue by induction. More concretely, assume that the collection $\mathcal{G}_{n-1}=\{Q_l^{(n-1)}: l=1,2,\ldots\}$ has been defined. For each $Q_l^{(n-1)}\in\mathcal{G}_{n-1}$ consider the collection $\mathcal{G}_n(Q_l^{(n-1)})$ of maximal dyadic Carleson squares $Q_j^{(n)}\subset Q_l^{(n-1)}$ such that

(10)
$$\sup\{|u(z) - u(z_{Q_j^{(n-1)}})| : z \in T(Q_j^{(n)})\} \ge C.$$

The collection \mathcal{G}_n is defined as

$$\mathcal{G}_n = \bigcup_l \mathcal{G}_n(Q_l^{(n-1)}).$$

As before the maximality and (8) give that

$$C - C_1 \le |u(z_{Q_j^{(n)}}) - u(z_{Q_j^{(n-1)}})| \le C + C_1.$$

Observe that

(11)
$$|u(\xi) - u(z_I)| \le (C + C_1)n, \quad \xi \in I \setminus \bigcup_j \overline{Q_j^{(n)}}, \quad n = 1, 2, \dots$$

Let $Q \in \mathcal{G}_{n-1}$. Consider the region $\Omega = Q \setminus \bigcup Q_j^{(n)}$, where the union is taken over all Carleson squares $Q_j^{(n)} \in \mathcal{G}_n(Q)$. Note that

(12)
$$\Delta u(z) = \frac{|F'(z)|^2}{(1 - |F(z)|^2)^2}, \quad z \in \mathbb{D}$$

and

(13)
$$|\nabla u(z)|^2 \le \frac{|F'(z)|^2}{(1 - |F(z)|^2)^2}, \quad z \in \mathbb{D}.$$

These facts follow from direct calculations and have been recently used in [IN24], [BN25] and [IN25]. Since $\Delta(u-u(z_Q))^2=2|\nabla u|^2+2(u-u(z_Q))\Delta u$ and $|u(z)-u(z_Q)|\leq C$ for any $z\in\Omega$, using (12) and (13) we deduce that

(14)
$$\Delta(u(z) - u(z_Q))^2 \le \frac{2(C+1)|F'(z)|^2}{(1-|F(z)|^2)^2}, \quad z \in \Omega.$$

Apply Green's Formula to the functions $(u(z) - u(z_Q))^2$ and $\log |z|$, Then the estimate (14) gives

(15)
$$|\int_{\partial\Omega} (u(z) - u(z_Q))^2 \, \partial_n \log |z| ds(z) - \int_{\partial\Omega} \log |z| \, \partial_n (u(z) - u(z_Q))^2 ds(z)| \lesssim$$

$$\lesssim \int_{\Omega} \frac{2(C+1)|F'(z)|^2 (1-|z|^2)}{(1-|F(z)|^2)^2} dA(z) \leq 2(C+1)K\ell(Q).$$

Note that $|\nabla (u(z) - u(z_Q))^2| \leq 2C|\nabla u(z)|$ for any $z \in \Omega$ and that $(1 - |z|^2)|\nabla u(z)| \leq 1$ for any $z \in \mathbb{D}$. We deduce that

(16)
$$\int_{\partial \Omega} |\log |z| \, \partial_n (u(z) - u(z_Q))^2 |ds(z)| \lesssim C\ell(Q).$$

Note that $\partial_n \log |z|$ is supported on the circular parts of the boundary of Ω , where it has values $\pm 1/|z|$. Since $|u - u(z_Q)| \leq C_1$ on T(Q) and $|u(z) - u(z_Q)| > C - C_1$ for any $z \in T(Q_j^{(n)})$, from (15) and (16), we deduce

(17)
$$C^2 \sum_{j} \ell(Q_j^{(n)}) \lesssim CK\ell(Q)$$

Fix C sufficiently large such that

(18)
$$\sum_{j} \ell(Q_{j}^{(n)}) \lesssim \frac{K}{C} \ell(Q) \leq \frac{1}{2} \ell(Q).$$

Iterating this estimate we obtain

(19)
$$\sum_{i} \ell(Q_{j}^{(n)}) \lesssim \frac{1}{2^{n}} |I|, \quad n = 1, 2, \dots.$$

Next we show that $u \in BMO$. Fix $\lambda > 2C$ and let n be the integer part of $\lambda/(C + C_1)$. Note that (11) gives that

$$\{\xi \in I : |u(\xi) - u(z_I)| > \lambda\} \subset \cup_j \overline{Q_j^{(n)}} \cap I.$$

Then, estimate (19) gives that

$$m(\{\xi \in \partial \mathbb{D} : |u(\xi) - u(z_I)| > \lambda\}) \le \frac{1}{2n}|I|.$$

This implies that

$$\frac{1}{|I|} \int_{I} |u(\xi) - u(z_I)| dm(\xi) = \frac{1}{|I|} \int_{0}^{\infty} m(\{\xi \in I : |u(\xi) - u(z_I)| > \lambda\}) d\lambda$$

is bounded by a universal constant independent of I. This finishes the proof of (a).

(b) The proof of (b) only requires minor modifications. Actually one only needs to observe that if |I| is sufficiently small, the constant K in (17) can be taken also small. This allows to fix also C>0 such that K/C is also small. Hence given $\varepsilon>0$, if |I| is sufficiently small, one can replace the factor 1/2 in (18) by ε . This gives that $\log(1-|F|^2) \in \text{VMO}$. Last assertion in (b) follows from the well known fact that $u \in \text{VMO}$ implies that e^{su} is integrable for any s>0.

3. Proof of Theorem 1

We now prove our main result.

Proof of Theorem 1. The proof is organized in three steps.

1. Splitting the measure. Let μ be a finite Borel measure on \mathbb{D} . Let $\{\varepsilon_n\}$ be a decreasing sequence of positive numbers tending to 0. We apply Lemma 4 to find two measures μ_1, μ_2 which satisfy (1) and (2) respectively. For $n \geq 0$, we pick the maximal dyadic squares $\{Q_k^n : k = 1, 2, \ldots\}$ with $1 - r_{2n+3} < \ell(Q_k^n) \leq 1 - r_{2n+1}$ such that

(20)
$$\frac{\mu_1(Q_k^n)}{\ell(Q_k^n)} \ge \varepsilon_{2n+1}.$$

We notice that if Q is a Carleson square with $\ell(Q) = 1 - r_{2n+1}$, then

$$\frac{\mu_1(Q)}{\ell(Q)} < \varepsilon_{2n+1}.$$

Indeed, applying (1), we have

(21)
$$\frac{\mu_1(Q)}{\ell(Q)} \le \frac{\mu_1(\{z \in \mathbb{D} \colon |z| \ge r_{2n+1}\})}{1 - r_{2n+1}} \le \varepsilon_{2n+1}.$$

Since $\{Q_k^n: k=1,2,\ldots\}$ are pairwise disjoint, equation (20) gives that

$$\sum_{k} \ell(Q_k^n) \le \frac{1}{\varepsilon_{2n+1}} \mu_1(\{|z| \ge r_{2n+1}\}) \le 1 - r_{2n+1}$$

and we have

(22)
$$\sum_{n} \sum_{k} \ell(Q_{k}^{n}) \leq \sum_{n} (1 - r_{2n+1}) < \infty.$$

We split each arc $I_k^n=\overline{Q_k^n}\cap\partial\mathbb{D}$ into finitely many smaller pairwise disjoint subarcs $\{J_{k,j}^n:j=1,2,\ldots\}$ such that

$$|J_{k,j}^n| = 1 - r_{2n+5}, \quad j = 1, 2, \dots$$

Due to (22), we have that

$$\sum_{n,k,j} |J_{k,j}^n| = \sum_n \sum_k |I_k^n| < \infty.$$

A similar construction is applied to the measure μ_2 .

2. Proof of (a). For i = 1, 2 we will construct an outer function $E_i \in QA$ with $\log |E_i| \in VMO$ such that $|E_i|\mu_i$ is a vanishing Carleson measure. Once this is done the result will follow easily. We will explicitly describe E_1 . The function E_2 is constructed using the same procedure.

Apply Corollary 6 to find a positive function $f \in VMO$ such that

(23)
$$\lim_{|J_{k,j}^n|\to 0} \int_{J_{k,j}^n} f dm = +\infty.$$

Consider the outer function E_1 defined by $\log |E_1(\xi)| = -f(\xi)$, $\xi \in \partial \mathbb{D}$. Note that $||E_1||_{\infty} \leq 1$. Since $f \in \text{VMO}$ we have that $E_1 \in \text{QA}$. Next we will show that $|E_1|\mu_1$ is a vanishing Carleson measure.

We first argue with dyadic Carleson squares. Given a dyadic Carleson square Q fix n such that $1-r_{2n+3} < \ell(Q) \le 1-r_{2n+1}$. If Q is not contained in any of the $\{Q_k^n : k=1,2,\ldots\}$, we have that $\mu_1(Q) \le \varepsilon_{2n+1}\ell(Q)$ and

$$\int_{Q} |E_1(z)| d\mu_1(z) \le \mu_1(Q) \le \varepsilon_{2n+1} \ell(Q).$$

If $Q \subset Q_k^n$ for some k, then

$$\int_{Q} |E_{1}(z)| d\mu_{1}(z) = \int_{Q \cap \{|z| > r_{2n+3}\}} |E_{1}(z)| d\mu_{1}(z) + \int_{Q \cap \{|z| < r_{2n+3}\})} |E_{1}(z)| d\mu_{1}(z).$$

Applying (1), we have

$$\int_{Q \cap \{|z| \ge r_{2n+3}\}} |E_1(z)| d\mu_1(z) \le \mu_1(Q \cap \{|z| \ge r_{2n+3}\}) \le \varepsilon_{2n+3}(1 - r_{2n+3}) \le \varepsilon_{2n+3}\ell(Q).$$

Fix $z \in Q \cap \{z \in \mathbb{D} : |z| < r_{2n+3}\}$. Consider the arc $I(z) \subset \partial \mathbb{D}$ centered at z/|z| of length 1-|z|. Note that $|I(z)| \geq 1 - r_{2n+3}$. Since $Q \subset Q_k^n$ we

deduce that

$$\sum_{i:J^n_{k,i}\subset I(z)}|J^n_{k,i}|\geq \frac{|I(z)|}{4}.$$

Hence, by (23), given $\varepsilon > 0$ we have $|E_1(z)| < \varepsilon$ if n is sufficiently large. Thus

$$\int_{Q \cap \{|z| < r_{2n+3}\})} |E_1(z)| d\mu_1(z) \le \varepsilon \mu_1(Q),$$

if n is sufficiently large. Hence, given $\varepsilon > 0$ there exists $\delta > 0$ such that

$$\int_{Q} |E_1| d\mu_1 \le \varepsilon \ell(Q)$$

when Q is a dyadic Carleson square with $\ell(Q) < \delta$. Since for any Carleson square Q one can find two dyadic Carleson squares Q_1, Q_2 such that $Q \subset Q_1 \cup Q_2$ and $\ell(Q_i) \leq 2\ell(Q)$, i = 1, 2, we deduce that $|E_1|\mu_1$ is a vanishing Carleson measure.

We repeat the above construction for μ_2 and we find another outer function E_2 with $\log |E_2| \in \text{VMO}$ such that $|E_2|\mu_2$ is a vanishing Carleson measure. Now $E = E_1 E_2 \in \text{QA}$ satisfies that $|E|\mu$ is a vanishing Carleson measure. Moreover $\log |E| = \log |E_1| + \log |E_2| \in \text{VMO}$.

3. Proof of (b). We now prove part (b) of Theorem 1. Let $\mu = \mu_1 + \mu_2$ be the decomposition of Step 1. The Carleson squares Q_k^n of Step 1 will now be denoted as $Q_k^n = Q_k^{n,0}$, $k = 1, \ldots, n = 1, \ldots$ Note that (20) and the maximality gives that $\mu_1(Q_k^{n,0}) \leq 2\varepsilon_{2n+1}\ell(Q_k^{n,0})$. We will now use a stopping time argument in each $Q_k^{n,0}$. Fix n and k and pick the maximal dyadic Carleson squares $\{Q_j^{n,1}: j=1,2,\ldots\}$ contained in $Q_k^{n,0}$ such that

$$\frac{\mu_1(Q_j^{n,1})}{\ell(Q_i^{n,1})} \ge 10 \cdot \varepsilon_{2n+1}.$$

Note that the maximality gives that $\mu_1(Q_j^{n,1}) \leq 20 \cdot \varepsilon_{2n+1} \ell(Q_j^{n,1})$. We continue by induction, that is, if i>1 is an integer and we have constructed a Carleson square $Q_j^{n,i-1}$ such that $10^{i-1} \cdot \varepsilon_{2n+1} \ell(Q_j^{n,i-1}) \leq \mu_1(Q_j^{n,i-1}) \leq 2 \cdot 10^{i-1} \cdot \varepsilon_{2n+1} \ell(Q_j^{n,1})$, we consider the maximal dyadic Carleson boxes $\{Q_l^{n,i}: l=1,2,\ldots\}$ contained in $Q_j^{n,i-1}$ such that

$$\frac{\mu_1(Q_l^{n,i})}{\ell(Q_l^{n,i})} \ge 10^i \cdot \varepsilon_{2n+1}.$$

As before, the maximality gives

$$\frac{\mu_1(Q_l^{n,i})}{\ell(Q_l^{n,i})} \le 2 \cdot 10^i \cdot \varepsilon_{2n+1}, \quad l = 1, 2, \dots$$

We denote $I_l^{n,i} = \overline{Q_l^{n,i}} \cap \partial \mathbb{D}$. Since

$$\sum_{l:\ I_l^{n,i}\subset I_j^{n,i-1}} |I_l^{n,i}| \leq \frac{1}{10^i \cdot \varepsilon_{2n+1}} \sum_{l:\ I_l^{n,i}\subset I_j^{n,i-1}} \mu_1(Q_l^{n,i}) \leq \frac{\mu_1(Q_j^{n,i-1})}{10^i \cdot \varepsilon_{2n+1}} \leq \frac{1}{5} \ell(Q_j^{n,i-1}),$$

we obtain that

$$(24) \sum_{l:\ I_l^{n,i}\subset I_j^{n,i-1}} |I_k^{n,i}| \leq \frac{1}{5} |I_j^{n,i-1}|, \quad i=1,2,\ldots; j=1,2,\ldots; n=0,1,\ldots.$$

Consequently, iterating (24), we have that

(25)
$$\sum_{l: I_l^{n,i} \subset I_l^{n,0}} |I_l^{n,i}| \le \frac{1}{5^i} |I_k^{n,0}|, \quad i,k = 1, 2, \dots; n = 0, 1, \dots.$$

For each n,i,l we pick a smooth B-adapted function $a_l^{n,i}$ to the arc $I_l^{n,i}$ such that $a_l^{n,i}(\xi)=1$ if $\xi\in I_l^{n,i}$. By Lemma 5 we have $\|\sum_l a_l^{n,i}\|_{\mathrm{BMO}}\lesssim B/5^i$. The function

$$h_n = \sum_{i=0}^{\infty} \sum_{l=1}^{\infty} a_l^{n,i}$$

belongs to BMO and $||h_n||_{\text{BMO}} \lesssim B$. Moreover, applying (25), (20) and (1) we obtain

$$\int_{\partial \mathbb{D}} h_n dm \lesssim 6 \sum_{i=0}^{\infty} \sum_{l=1}^{\infty} |I_l^{n,i}| \lesssim \sum_{k=1}^{\infty} |I_k^{n,0}| \lesssim \frac{1}{\varepsilon_{2n+1}} \sum_k \mu_1(Q_k^{n,0})$$

$$\leq \frac{1}{\varepsilon_{2n+1}} \mu_1(\{z \in \mathbb{D} \colon |z| \geq r_{2n+1}\}) \leq 1 - r_{2n+1}.$$

Let E_1 be the outer function given by

$$\log |E_1(\xi)| = -4 \cdot \log(10) \sum_{n=1}^{\infty} h_n(\xi), \quad \xi \in \partial \mathbb{D}.$$

Note that $||E_1||_{\infty} \leq 1$. At this point, we verify that $|E_1|\mu_1$ is a vanishing Carleson measure. We first deal with dyadic Carleson squares. Let Q be a dyadic Carleson square. Pick the integer n such that $1 - r_{2n+3} < \ell(Q) \leq 1 - r_{2n+1}$. If Q lays outside $\bigcup_k Q_k^{n,0}$, then

$$\frac{\mu_1(Q)}{\ell(Q)} \le \varepsilon_{2n+1}.$$

On the other hand, if $Q \subset Q_k^{n,i-1} \setminus \bigcup_l Q_l^{n,i}$ for some integer $i \geq 1, k = 1, 2, ...$, then

$$\frac{\mu_1(Q)}{\ell(Q)} \le 10^i \varepsilon_{2n+1}.$$

Note that $h_n(\xi) \geq i$ for any $\xi \in I_k^{n,i-1}$. Then $\log |E_1(z)| \leq -i \log(10)$ for any $z \in Q_k^{n,i-1}$ and we obtain

$$\frac{\int_{Q} |E_{1}(z)| d\mu_{1}(z)}{\ell(Q)} \le 10^{-i} \frac{\mu_{1}(Q)}{\ell(Q)} \le \varepsilon_{2n+1}.$$

Hence given $\varepsilon > 0$ we have proved that

$$\int_{Q} |E_1| d\mu_1 \le \varepsilon \ell(Q)$$

if Q is a dyadic Carleson square with $\ell(Q)$ sufficiently small. Since any Carleson square Q is contained in the union of two dyadic Carleson squares Q_1, Q_2 with $\ell(Q_i) \leq 2\ell(Q)$, i = 1, 2, we deduce that $|E_1|\mu_1$ is a vanishing Carleson measure. The same construction applied to μ_2 provides an outer function $E_2 \in H^{\infty}$ such that $|E_2|\mu_2$ is a vanishing Carleson measure.

We apply part (a) of Theorem 1 to the Carleson measure

$$|(E_1(z)E_2(z))'|^2(1-|z|^2)dA(z)$$

and find an outer function $F \in QA$ with $\log |F| \in VMO$ such that the measure

$$|F(z)||(E_1(z)E_2(z))'|^2(1-|z|^2)dA(z)$$

is a vanishing Carleson measure. Note that since $\log |F| \in \text{VMO}$ we have that $F^{1/2} \in \text{QA}$. Consequently, the function $E = F^{1/2}E_1E_2$ is an outer function in QA such that $|E|\mu$ is a vanishing Carleson measure.

Finally we show that $\log |E| \in BMO$. It is sufficient to prove that $\log |E_1| \in BMO$. Since

$$-\log|E_1(\xi)| = \sum_n h_n(\xi) = \sum_n \sum_i \sum_l a_l^{n,i}(\xi), \quad \xi \in \partial \mathbb{D},$$

it is sufficient to observe that $\{a_l^{n,i}\}_{n,i,l}$ are *B*-adapted functions to the arcs $\{I_l^{n,i}\}$ which satisfy the packing condition (3).

4. Applications

4.1. **Theorem A.** Our first application is a proof of Theorem A of T. Wolff using Theorem 1.

Proof of Theorem A. Let $P_z(f) = f(z)$ denote the harmonic extension of f to \mathbb{D} . We apply case (a) of Theorem 1 to the Carleson measure $\mu(z) = |\nabla P_z(f)|^2 (1-|z|^2) dA(z)$ to obtain an outer function $E \in \mathrm{QA}$ with $\log |E| \in \mathrm{VMO}$ such that $|E|\mu$ is a vanishing Carleson measure. Let $I \subset \partial \mathbb{D}$ be an

arc. We have that

$$\begin{split} & \oint_{I} |E(\xi)f(\xi) - E(z_{I})f(z_{I})| dm(\xi) \\ & \leq \oint_{I} |E(\xi) - E(z_{I})||f(\xi)| dm(\xi) + \oint_{I} |f(\xi) - f(z_{I})||E(z_{I})| dm(\xi) \\ & \leq ||f||_{\infty} \oint_{I} |E(\xi) - E(z_{I})| dm(\xi) + |E(z_{I})| \oint_{I} |f(\xi) - f(z_{I})| dm(\xi), \end{split}$$

where $z_I = (1 - |I|)\xi_I$ and ξ_I is the center of I. Since $E \in VMOA$, the first integral tends to 0 as |I| tends to 0 and we only need to show that

(26)
$$\lim_{|I| \to 0} |E(z_I)| \oint_I |f(\xi) - f(z_I)| dm(\xi) = 0.$$

By the Cauchy-Schwarz inequality, we have that

$$\left(\int_{I} |f(\xi) - f(z_{I})| dm(\xi) \right)^{2} \leq \int_{I} |f(\xi) - f(z_{I})|^{2} dm(\xi) \lesssim \int_{\partial \mathbb{D}} |f(\xi) - f(z_{I})|^{2} P_{z_{I}}(t) dm(\xi)
\leq \int_{\mathbb{D}} |\nabla f(w)|^{2} \frac{(1 - |z_{I}|^{2})(1 - |w|^{2})}{|1 - \overline{z_{I}}w|^{2}} dA(w) = \int_{\mathbb{D}} \frac{(1 - |z_{I}|^{2})}{|1 - \overline{z_{I}}w|^{2}} d\mu(w),$$

where P_{z_I} is the Poisson kernel at the point z_I . We notice that

$$\frac{1 - |z_I|^2}{|1 - \overline{w}z_I|^2} \lesssim \frac{1}{2^{2n}|I|}, \quad w \in 2^n Q(I) \setminus 2^{n-1} Q(I), n \ge 1.$$

Thus

$$\int_{\mathbb{D}} \frac{(1-|z_I|^2)}{|1-\overline{z_I}w|^2} d\mu(w) \lesssim \frac{\mu(Q(I))}{|I|} + \sum_{n \geq 1} \frac{\mu(2^nQ(I) \setminus 2^{n-1}Q(I))}{2^{2n}|I|}.$$

Since μ is a Carleson measure, for any $\varepsilon > 0$ we have that

$$\sum_{n \geq \log(1/\varepsilon)} \frac{1}{2^{2n}|I|} \mu(2^n Q(I) \setminus 2^{n-1} Q(I)) \lesssim \sum_{n \geq \log(1/\varepsilon)} \frac{1}{2^n} \leq \varepsilon$$

and then

(27)

$$\oint_{I} |f(\xi) - f(z_{I})| dm(\xi) \lesssim \left(\sum_{n=1}^{\log(1/\varepsilon)} \frac{\mu(2^{n}Q(I))}{2^{2n}|I|} + \varepsilon \right)^{1/2} \leq \left(\frac{\mu(\varepsilon^{-1}Q(I))}{|I|} + \varepsilon \right)^{1/2}.$$

We are now going to show (26). Fix $\varepsilon > 0$. Let us consider two cases. Assume first that $\mu\left(\varepsilon^{-1}Q(I)\right) \leq \varepsilon |I|$. Then (27) gives that

$$\oint_{I} |f(\xi) - f(z_I)| dm(\xi) \lesssim \varepsilon^{1/2}$$

and (26) follows. Assume now that $\mu\left(\varepsilon^{-1}Q(I)\right) > \varepsilon|I|$. Since $|E|\mu$ is a vanishing Carleson measure, Lemma 7 applied to the family $\mathcal{A}(\varepsilon^2)$ gives that $|E(z(\varepsilon,I))| \leq \varepsilon$, if |I| is sufficiently small. Here $z(\varepsilon,I)$ denotes $z_{\varepsilon^{-1}I}$. Since $E \in \text{VMOA}$ we have $(1-|z|)|E'(z)| \to 0$ as $|z| \to 1$. We deduce that

 $|E(z_I)| < 2\varepsilon$ if |I| is sufficiently small. This proves (26) and finishes the proof

As usual $L^p(\partial \mathbb{D})$ denotes the classical Lebesgue spaces on the unit circle, 0 .

Corollary 9. Let $f \in L^p(\partial \mathbb{D})$, $0 . Then, there exists an outer function <math>E \in QA$ such that $Ef \in VMO \cap L^{\infty}(\partial \mathbb{D})$.

Proof. Consider the outer function E_0 defined as

$$E_0(z) = \exp\left(-\int_{\partial \mathbb{D}} \frac{\xi + z}{\xi - z} \log^+ |f(\xi)| d\xi\right), \quad z \in \mathbb{D}.$$

It is clear that E_0 belongs to \mathbb{H}^{∞} and $E_0 f \in L^{\infty}(\partial \mathbb{D})$. We apply Theorem A twice. First, we find an outer function $E_1 \in \mathrm{QA}$ such that $E_1 E_0 \in \mathrm{QA}$. Since $E_1 E_0 f \in L^{\infty}(\partial \mathbb{D})$, another application of Theorem A provides a function $E_2 \in \mathrm{QA}$ such that $E_2 E_1 E_0 f \in \mathrm{QA}$ and one can take $E = E_2 E_1 E_0$. \square

4.2. Critical points of functions in Hardy spaces. Theorem 2 follows from a convenient variant of a classical result by W. Cohn on factorization of derivatives of functions in Hardy spaces. Fix $0 . W. Cohn proved in [Coh99, Theorem 1] that, given <math>F \in \mathbb{H}^p$, there exist a function $G \in BMOA$ and an outer function $H \in \mathbb{H}^p$ such that F' = G'H. Conversely, for any $G \in BMOA$ and $H \in \mathbb{H}^p$, the function G'H is the derivative of a function in \mathbb{H}^p . See [Dya12] for a version in the Nevanlinna class. Next we apply Theorem 1, Lemma 8 and a nice technique of [Kra13] to show the following result which obviously implies Theorem 2.

Lemma 10. Fix $0 . For every <math>F \in \mathbb{H}^p$ there exist $G \in QA$ and an outer function $H \in \mathbb{H}^q$ for any q < p such that F' = G'H.

Proof. Let $F \in \mathbb{H}^p$. According to Cohn's result, there exist $\Phi \in BMOA$ and an outer function $R \in \mathbb{H}^p$ such that $F' = \Phi'R$. Applying Theorem 1 to the Carleson measure $|\Phi'(z)|^2(1-|z|^2)dA(z)$, one obtains an outer function $E \in QA$ with $\log |E| \in VMO$, such that $E^{1/2}\Phi'$ is the derivative of a function $G \in VMOA$. Consequently

$$F' = G' \frac{R}{E^{1/2}}.$$

Since $\log |E| \in \text{VMO}$, the John-Nirenberg Theorem gives that $E^{-1/2} \in \mathbb{H}^r$ for every $0 < r < \infty$. Holder's inequality gives that $RE^{-1/2} \in \mathbb{H}^q$ for any 0 < q < p.

Note that the function $G \in VMOA$ may be unbounded. Next we will apply the technique in [Kra13]. Consider the partial differential equation

(28)
$$\Delta u(z) = 4|G'(z)|^2 e^{2u(z)}, \quad z \in \mathbb{D}.$$

Since G is in BMOA the PDE (28) has a solution u_0 which is bounded on \mathbb{D} (see Remark 3.4 of [Kra13]). By Liouville's Theorem (see Theorem 3.3 of [KR08]), there exists an analytic self-mapping I of \mathbb{D} such that

$$u_0(z)=\log\big(\frac{1}{|G'(z)|}\frac{|I'(z)|}{(1-|I(z)|^2)}\big),\quad z\in\mathbb{D}.$$

Since u_0 is bounded in \mathbb{D} , we deduce that |G'| is comparable to $|I'|/(1-|I|^2)$ on \mathbb{D} . Hence I and G have the same critical points with the same multiplicities. Since G is in VMOA, we deduce that $|I'(z)|^2(1-|z|)dA(z)/(1-|I(z)|)^2$ is a vanishing Carleson measure. In particular I is in VMOA and hence $I \in \mathrm{QA}$. Note that |G'/I'| is comparable to $(1-|I|^2)^{-1} \geq 1$ on \mathbb{D} and deduce that G'/I' is an outer function. Finally part (b) of Lemma 8 gives that G'/I' belongs to the Hardy space \mathbb{H}^s , for any $0 < s < \infty$.

We notice that the proof of the previous Lemma gives the following factorization for the derivatives of BMOA functions.

Corollary 11. For every $F \in BMOA$ there exist $G \in QA$ and an function $H \in \mathbb{H}^q$ for any $q < \infty$ with $1/H \in \mathbb{H}^\infty$ such that F' = G'H.

We close this section with two remarks. A. Aleksandrov and V. Peller proved in [AP96, Theorem 3.4] that for any $F \in BMOA$ there exist $G_i, H_i \in \mathbb{H}^{\infty}$, i = 1, 2, such that $F' = G'_1H_1 + G'_2H_2$. The second remark concerns single generated ideals in the space A_1^2 of analytic functions F in \mathbb{D} such that

$$||F||^2 = \int_{\mathbb{D}} |F(z)|^2 (1 - |z|^2) dA(z) < \infty.$$

O. Ivrii showed that any single generated invariant subspace of A_1^2 can be generated by the derivative of a bounded function (see Theorem 3.1 of [Ivr21]).

Corollary 12. Let $F \in A_1^2$ and let [F] denote the closure in A_1^2 of polynomial multiples of F. Then, there exists a function $G \in QA$ such that [G'] = [F].

Proof. It is well known that there exists $I \in BMOA$ such that [F] = [I'] (see [HKZ, Theorem 3.3]). Corollary 11 provides $G \in QA$ and a function $H \in \mathbb{H}^2$ with $1/H \in \mathbb{H}^\infty$ such that I' = G'H. We now verify that [I'] = [G']. Let $W \in [I']$. Given $\varepsilon > 0$ there exists an analytic polynomial P such that $||W - PI'|| \le \varepsilon$. Consequently, if H_n is the Taylor polynomial of H of degree n, we have

$$||W - PG'H_n|| \le ||W - PHG'|| + ||PHG' - PG'H_n||$$

$$\le ||W - PI'|| + C||G||_{BMO}^2 ||P||_{\infty} ||H - H_n||_2,$$

where C > 0 is an absolute constant. The last estimate follows from the fact that $|G'(z)|^2(1-|z|^2)dA(z)$ is a Carleson measure. Therefore $W \in [G']$. A similar argument using that $1/H \in \mathbb{H}^2$, proves the converse inclusion. \square

4.3. **Generalized Volterra operators.** Given two analytic functions F, G in $\mathbb{D}, T_G(F)$ denotes the generalized Volterra operator with symbol G applied to F defined as

$$T_G(F)(z) = \int_0^z F(w)G'(w)dw, \quad z \in \mathbb{D}.$$

It is clear that if $G \in BMOA$, the operator $T_G : \mathbb{H}^{\infty} \to BMOA$ is continuous and $||T_G|| \lesssim ||G||_{BMO}$. As it is expected, T_G is compact precisely when the symbol $G \in VMOA$.

Lemma 13. Let $G \in BMOA$. Then $T_G : \mathbb{H}^{\infty} \to BMOA$ is compact if and only if $G \in VMOA$.

Proof. Assume first that G is a polynomial. Note that $T_g = V \circ M_{G'}$, where $M_{G'} \colon \mathbb{H}^{\infty} \to \mathbb{H}^{\infty}$ and $V \colon \mathbb{H}^{\infty} \to \text{BMOA}$ are respectively the operator of multiplication by G' and the classical Volterra operator. By [AJS14, Theorem 3.5], V acts compactly on \mathbb{H}^{∞} . Hence T_G is compact.

Consider now an arbitrarily function $G \in VMOA$. Note that there exist polynomials P_n , such that

$$\lim_{n\to\infty} \|G - P_n\|_{\text{BMO}} = 0.$$

Thus

$$\lim_{n \to \infty} ||T_G - T_{P_n}|| \lesssim \lim_{n \to \infty} ||G - P_n||_{\text{BMO}} = 0.$$

Hence, $T_G : \mathbb{H}^{\infty} \to BMOA$ is compact.

The converse is proved by contradiction. Assume that T_G is compact and that G is not in VMOA. Then there exist a constant M>0 and a sequence of arcs $\{I_n\}$ in $\partial \mathbb{D}$ such that $|I_n|\to 0$ and

(29)
$$\frac{1}{|I_n|} \int_{Q(I_n)} |G'(z)|^2 (1 - |z|^2) dA(z) > M, \quad n = 1, 2, \dots$$

For n = 1, 2, ... pick the integer N_n with $|I_n|^{-1} \le N_n < |I_n|^{-1} + 1$. Then

$$||T_G(z^{N_n})||_{\text{BMO}}^2 \ge \frac{1}{|I_n|} \int_{Q(I_n)} |z|^{2N_n} |G'(z)|^2 (1-|z|^2) dA(z) \ge M/4.$$

Hence $T_G: \mathbb{H}^{\infty} \to BMOA$ is not compact.

The boundedness from below of the operators T_G acting on Hardy and Bergman spaces has already been studied in [And11] and [Pan22]. The core of our approach lies in establishing that for $G \in BMOA$, there exists a non zero function $F \in VMOA \cap T_G(\mathbb{H}^{\infty})$.

Proof of Theorem 3. Let $H \in \mathbb{H}^{\infty}$. Because of Theorem 1, we can find an outer function $E \in \mathrm{QA}$ such that $|E(z)G'(z)H(z)|^2(1-|z|^2)dA(z)$ is a vanishing Carleson measure. This implies that $F = T_G(EH) \in \mathrm{VMOA}$. Note that

$$(30) EHG' = F'.$$

We argue by contradiction. Assume that $T_G : \mathbb{H}^{\infty} \to BMOA$ is bounded from below or that $T_G(\mathbb{H}^{\infty})$ is closed in BMOA. Then, since T_G is also bounded, there exists a constant C > 0 such that

(31)
$$C^{-1} ||k||_{\infty} \le ||T_G(k)||_{\text{BMO}} \le C ||k||_{\infty}$$

for every $k \in \mathbb{H}^{\infty}$. In particular, if $k_n(z) = E(z)H(z)z^n$, $z \in \mathbb{D}$, applying (30) we deduce that

$$||T_G(k_n)||^2_{\text{BMO}} \sim \sup_{I} \frac{1}{|I|} \int_{Q(I)} |G'(z)E(z)H(z)|^2 |z|^{2n} (1 - |z|^2) dA(z)$$

$$= \sup_{I} \frac{1}{|I|} \int_{Q(I)} |F'(z)|^2 |z|^{2n} (1 - |z|^2) dA(z).$$

Since $F \in VMOA$ we deduce that $||T_G(k_n)||_{BMO} \to 0$ as $n \to \infty$ while $||k_n||_{\infty}$ is bounded below.

5. Sharpness of Theorem 1

We first show that in the conclusion of Theorem 1, one can not improve the vanishing Carleson measure condition.

Proposition 14. For any increasing function $\omega \colon [0,1] \to [0,+\infty)$ with $\omega(0) = 0$, there exists a Carleson measure μ such that for any outer function $E \in \mathbb{H}^{\infty}$ we have

$$\lim_{\ell(Q)\to 0} \sup_{\ell(Q)\to 0} \frac{\int_Q |E(z)| d\mu(z)}{\ell(Q)\omega(\ell(Q))} = +\infty.$$

Proof. Pick two sequences $\{\delta_k\}$ and $\{h_k\}$ of positive numbers such that

(32)
$$\sum_{k=1}^{\infty} \frac{h_k}{\delta_k} < \infty \quad \text{and} \quad \lim_{k \to \infty} \frac{h_k}{\delta_k} \log(\omega(h_k)) = -\infty.$$

We can also assume that $N_k = 2\pi/\delta_k$ is an integer for any k = 1, 2, For any k = 1, 2, ..., let $\Lambda_k = \{z_{k,j} : j = 1, ..., N_k\}$ be points uniformly distributed in the circle $\{z \in \mathbb{D} : 1 - |z| = h_k\}$. Then the sequence $\{z_n\}$ defined as

$$\{z_n\} = \bigcup_{k=1}^{\infty} \Lambda_k$$

is a Blaschke sequence. Actually

$$\mu = \sum_{n} (1 - |z_n|) \delta_{z_n},$$

is a Carleson measure. We argue by contradiction and assume that there exists an outer function $E \in \mathbb{H}^{\infty}$, $||E||_{\infty} \leq 1$, such that

(33)
$$\frac{\int_{Q} |E(z)| d\mu(z)}{\ell(Q)\omega(\ell(Q))} < 1$$

for every Carleson square Q. We pick Carleson squares $Q_{k,j}$ with $\ell(Q_{k,j}) = h_k$ such that $z_{k,j}$ lies in the top part $T(Q_{k,j})$ of $Q_{k,j}$. The assumption (33) implies that for every k, j

$$|E(z_{k,j})|h_k \le \ell(Q_{k,j})\omega(\ell(Q_{k,j})) = h_k\omega(h_k),$$

that is,

(34)
$$|E(z_{k,j})| \le \omega(h_k), \quad j = 1, \dots, N_k; \ k = 1, 2, \dots$$

Consider the discs $D_{k,j} = \{z \in \mathbb{D} : |z - z_{k,j}| \le (1 - |z_{k,j}|)/2\}$. Harnack's inequality applied to the positive harmonic function $-\log |E|$ gives that

$$-\log |E(z)| \gtrsim -\log |E(z_{k,j})| \ge -\log \omega(h_k), \quad z \in D_{k,j}, \quad j = 1, \dots, N_k; \ k = 1, 2, \dots$$

uniformly in k, j. Consequently, by subharmonicity, we have that

$$\log |E(0)| \leq \int_{\partial \mathbb{D}} \log |E((1-h_k)\xi)| dm(\xi) \lesssim \log(\omega(h_k)) \frac{h_k}{\delta_k} \to -\infty, \text{ as } k \to \infty.$$

This is clearly a contradiction and finishes the proof.

We recall that the disc algebra $A(\mathbb{D})$ is the space of continuous functions in the closed unit disc which are analytic in \mathbb{D} . Our next result says that in Theorem 1 one can not replace the condition $E \in QA$ by $E \in A(\mathbb{D})$.

Proposition 15. There exists a Carleson measure μ in \mathbb{D} such that there are no non trivial functions $E \in A(\mathbb{D})$ such that $|E|\mu$ is a vanishing Carleson measure.

Proof. Consider a Carleson measure μ such that for any point $\xi \in \partial \mathbb{D}$ there exists a sequence of Carleson squares $\{Q_n(\xi)\}$ such that $\mu(Q_n(\xi)) > \ell(Q_n(\xi))$ and

$$\lim_{n \to \infty} \ell(Q_n(\xi)) = 0, \lim_{n \to \infty} \operatorname{dist}(\xi, Q_n(\xi)) = 0.$$

For instance one could consider a uniformly separated sequence Λ with $\partial\mathbb{D}\subset\overline{\Lambda}$ and

$$\mu = \sum_{z \in \Lambda} (1 - |z|) \delta_z.$$

Assume that there exists a function $E \in \mathcal{A}(\mathbb{D})$ such that $|E|\mu$ is a vanishing Carleson measure. Then

$$\lim_{n \to \infty} \frac{\int_{Q_n(\xi)} |E| d\mu}{\ell(Q_n(\xi))} = 0, \quad \xi \in \partial \mathbb{D}.$$

Since E is continuous in $\overline{\mathbb{D}}$, this implies that E vanishes identically.

Our last remark concerns the sharpness of part (b) of Theorem 1: one can not replace the condition $\log |E| \in BMO$ by the stronger one $\log |E| \in VMO$.

Proposition 16. There exists a finite positive Borel measure μ in \mathbb{D} such that there are no function $E \in \mathrm{QA}$ with $\log |E| \in \mathrm{VMO}$ such that $|E|\mu$ is a vanishing Carleson measure.

Proof. We argue by contradiction. Let $G \in \mathbb{H}^2$ and consider the measure $\mu(z) = |G'(z)|^2 (1 - |z|^2) dA(z)$. Assume there exists an outer function $E \in \mathrm{QA}$ such that $|E|\mu$ is a vanishing Carleson measure and $\log |E| \in \mathrm{VMO}$. Then the function F defined by

$$F(z) = \int_0^z E(w)G'(w)dw, \quad z \in \mathbb{D}$$

belongs to VMOA and satisfies F' = G'E. Since $\log |E| \in VMO$, we have $1/E \in \mathbb{H}^p$ for p > 2. hence we obtain that for any function $G \in \mathbb{H}^2$ one can factor $G' = F'/E \in \{H' : H \in \mathbb{H}^p\}$ by the result of W.Cohn [Coh99], which is clearly a contradiction if p > 2.

As explained in the introduction, the proof of Theorem 1 relies on the fact that for any finite positive Borel measure μ , the ratio $\mu(Q)/\ell(Q)$ is small for most Carleson squares $Q \subset \mathbb{D}$. Our last result points in this direction.

Proposition 17. Let μ be a finite positive measure. Then

$$\lim_{h\to 0}\frac{\mu\left(Q(\xi,h)\right)}{h}=0\,,$$

for m-almost every $\xi \in \partial \mathbb{D}$. Here $Q(\xi,h) = Q(I(\xi,h))$ where $I(\xi,h)$ is the arc of $\partial \mathbb{D}$ centered at ξ of normalized length h.

Proof. We proceed by contradiction, that is, we assume that

(35)
$$m\left\{\xi \in \partial \mathbb{D} : \limsup_{h \to 0} \frac{\mu\left(Q(\xi, h)\right)}{h} > 0\right\} > 0.$$

By the regularity of the Lebesgue measure, there exists a constant $\eta > 0$ such that

$$m\left\{\xi\in\partial\mathbb{D}: \limsup_{h\to 0}\frac{\mu\left(Q(\xi,h)\right)}{h}>\eta\right\}>0\,.$$

Let $\varepsilon > 0$ be a small number to be fixed later. Consider a compact set $K \subset \partial \mathbb{D}$ wih m(K) > 0 such that for every $\xi \in K$ there exists a sequence $\{h_n(\xi)\}_n$ tending to 0 as $n \to \infty$ with $0 < h_n(x) < \varepsilon$ and

$$\mu(Q(\xi, h_n(\xi))) > \frac{\eta}{2} h_n(\xi), \quad n = 1, 2, \dots$$

We consider the collection of arcs $\{I(\xi, h_n(\xi)) : n = 1, 2, ...; \xi \in K\}$. Using Vitali's covering lemma, we extract a family of pairwise disjoint arcs $\{I_k\}$ such that $K \subseteq \bigcup_k 5I_k$. Note that $\mu(Q(I_k)) \ge \eta |I_k|/2$. Consequently

$$\mu\left(\left\{z\in\mathbb{D}:1-\varepsilon\leq|z|<1\right\}\right)\geq\mu\left(\cup_{k}Q(I_{k})\right)\geq\frac{\eta}{2}\sum_{k}|I_{k}|\geq\frac{\eta}{10}|K|.$$

However, the last inequality gives a contradiction if $\varepsilon > 0$ is taken sufficiently small since

$$\lim_{\varepsilon \to 0} \mu\left(\left\{z \in \mathbb{D} : 1 - \varepsilon \le |z| < 1\right\}\right) = 0.$$

6. Acknowledgements

The first author is member of Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of Istituto Nazionale di Alta Matematica (INdAM) and he was supported by PID2021-123405NB-I00 by the Ministerio de Ciencia e Innovación.

The second author is supported in part by the Generalitat de Catalunya (grant 2021 SGR 00071), the Spanish Ministerio de Ciencia e Innovación (project PID2021-123151NB-I00) and the Spanish Research Agency (María de Maeztu Program CEX2020-001084-M).

The third author was partially supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the '2nd Call for H.F.R.I. Research Projects to support Faculty Members & Researchers' (Project Number: 4662).

References

- [AJS14] A. Anderson, M. Jovovic, and W. Smith. Some integral operators acting on H^{∞} . Integral Equations and Operator Theory, 80(2):275 291, 2014.
- [And11] A. Anderson. Some closed range integral operators on spaces of analytic functions. Integral Equations and Operator Theory, 69:87 – 99, 2011.
- [AP96] A.B. Aleksandrov and V.V. Peller. Hankel operators and similarity to a contraction. *International Mathematics Research Notices*, 1996(6):263–275, 01 1996.
- [AS95] A. Aleman and A. Siskakis. An integral operator on H^p. Complex Variables, Theory and Application: An International Journal, 28(2):149–158, 1995.
- [BN25] K. Bampouras and A. Nicolau. Inner functions, Möbius distortion and angular derivatives. arXiv:2503.03414, 2025.
- [Coh99] W.S. Cohn. A factorization theorem for the derivative of a function in H^p . Proceedings of the American Mathematical Society, 127(2):509–517, 1999.
- [Dya12] K.M. Dyakonov. Factoring derivatives of functions in the Nevanlinna and Smirnov classes. *Annales Fennici Mathematici*, 37(2):407 413, 2012.
- [Gar06] J.B. Garnett. Bounded analytic functions, volume 236. Springer Science & Business Media, 2006.
- [GJ78] J.B. Garnett and P.W. Jones. The distance in BMO to L^{∞} . Annals of Mathematics, 108(2):373–393, 1978.
- [HKZ] H. Hedenmalm, B. Korenblum, and K. Zhu. Theory of Bergman Spaces, volume 199. Graduate Texts in Mathematics.
- [IN24] O. Ivrii and A. Nicolau. Analytic mappings of the unit disk which almost preserve hyperbolic area. Proceedings of the London Mathematical Society, 129(5):e70001, 2024.
- [IN25] O. Ivrii and A. Nicolau. Analytic mappings of the unit disk with bounded compression. arXiv:2507.15200, 2025.
- [Ivr21] O. Ivrii. Critical structures of inner functions. Journal of Functional Analysis, 281(8):109138, 2021.
- [KR08] D. Kraus and O. Roth. Critical points of inner functions, nonlinear partial differential equations, and an extension of Liouville's theorem. J. Lond. Math. Soc. (2), 77(1):183–202, 2008.
- [Kra13] D. Kraus. Critical sets of bounded analytic functions, zero sets of Bergman spaces and nonpositive curvature. Proceedings of the London Mathematical Society, 106(3):931–956, November 2013.

- [NO00] A. Nicolau and J. Orobitg. Joint approximation in BMO. *Journal of Functional Analysis*, 173(1):21–48, 2000.
- [Pan22] K. Panteris. Closed range integral operators on Hardy, BMOA and Besov spaces. Complex Variables and Elliptic Equations, 67(8):2011 – 2029, 2022.
- [Wol82] T.H. Wolff. Two algebras of bounded functions. Duke Mathematical Journal, $49(2):321-328,\ 1982.$

Email address: carlo.bellavita@gmail.com
Email address: carlobellavita@ub.edu

DEPARTAMENT DE MATEMÀTICA I INFORMÀTICA, UNIVERSITAT DE BARCELONA, GRAN VIA 585, 08007 BARCELONA, SPAIN.

CURRENT ADDRESS: DIPARTIMENTO DI MATEMATICA, UNIVERSITÁ DEGLI STUDI DI MILANO, VIA C. SALDINI 50, 20133, MILANO, ITALY

 $Email\ address: {\tt artur.nicolau@uab.cat}$

DEPARTAMENT DE MATEMÀTIQUES, UNIVERSITAT AUTÒNOMA DE BARCELONA AND CENTRE DE RECERCA MATEMÀTICA, 08193 BARCELONA, SPAIN.

Email address: g.stylog@gmail.com Email address: stylog@math.auth.gr

Department of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.