CARLESON MEASURES, VANISHING MEAN
OSCILLATION AND CRITICAL POINTS

CARLO BELLAVITA, ARTUR NICOLAU, AND GEORGIOS STYLOGIANNIS

ABSTRACT. Given a finite positive Borel measure p in the open unit
disc of the complex plane, we construct a bounded outer function F
whose boundary values have vanishing mean oscillation such that |E|u
is a vanishing Carleson measure. As an application it is shown that
given any function in a Hardy space, there exists a bounded analytic
function in the unit disc whose boundary values have vanishing mean
oscillation, with the same critical points and multiplicities.

1. INTRODUCTION

Let D be the open unit disc in the complex plane and let D be the
unit circle. With dA, respectively dm, we denote the normalized Lebesgue
measure in D, respectively in 0. For 0 < p < oo let HP be the Hardy space
of analytic functions F' in D such that

I1Flp = suw [ [FGOPam(©) < o,
0<r<1.JoD

and let H be the space of bounded analytic functions F' in D with ||F||oc =
sup{|F'(z)| : z € D}. Any function F' € HP with 0 < p < oo has radial limit,
denoted by F(&), at m-almost every point £ € 9D and factors as F' = BE
where B is an inner function and F an outer function. We recall that B is
called inner if B € H* and |B(§)| = 1 for m-almost every £ € 9D and that
the outer function F can be written as

B = ([ Hn@dm(©), zeD.

p&—2

where h is an integrable function in the unit circle. Actually log|E(§)| =
h(§) for m-almost every £ € dD. See Chapter II of | .

Given an arc I C 9D of normalized length m(I) = |I|, let Q = Q(I) =
{z€D:|z| >1—|I|,z/|z] € I} be the Carleson square based at I. It is
customary to denote ¢(Q) = |I|. A finite positive Borel measure p in D is
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called a Carleson measure if there exists a constant C > 0 such that
| PP < i,

for any F© € HP. A celebrated result of Carleson says that p is a Car-
leson measure if and only if there exists a constant C; > 0 such that
w(Q) < C14(Q) for any Carleson square ). A Carleson measure p is called
a vanishing Carleson measure if

nQ)
——= = 0as/ — 0.
Q) (@)
The average of an integrable function h over an arc I C 0D, is denoted by
1
h :][hfdmé :/hﬁdmf.
I 1() (&) m(I),() (&)

An integrable function A in 0D is in BMO if

Ihllamo = sup ]{ Ih(€) — hrldm(€) < oo,

where the supremum is taken over all arcs I C dD. The subspace of functions
h € BMO such that

]€|h(§) — hyldm(€) = 0 as m(I) = 0

is denoted by VMO and coincides with the closure in the BMO semi-norm
of the continuous functions on 0. Given an integrable function h in 0D we
denote by h(z) with z € D, its harmonic extension to D. Functions in BMO
and Carleson measures are intimately related. Indeed, an integrable function
h is in BMO, respectively in VMO, if and only if |[VA(2)[?(1—|2|?)dA(z) is a
Carleson, respectively vanishing Carleson, measure. See Chapter VI | ]
for all these well known results.

Our work is inspired by the beautiful article | | of T. Wolff who
considered the algebra QA of bounded analytic functions whose boundary
values are in VMO. He proved the following deep result.

Theorem A. | , Theorem 1] Given any bounded function f in 0D,
there exists an outer function E € QA such that Ef € VMO.

We now state our main result.

Theorem 1. (a) Let u be a Carleson measure in D. Then, there exists
an outer function E € QA with log |E| € VMO such that |E|p is a
vanishing Carleson measure.

(b) Let p be a finite positive Borel measure in D. Then, there exists
an outer function E € QA with log |E| € BMO such that |E|u is a
vanishing Carleson measure.
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Let u be a finite positive Borel measure in . Roughly speaking, for most
Carleson squares @ we have u(Q) < C(Q)¢(Q) where C(Q) — 0 as £(Q) —
0. See Proposition 17. So for most Carleson squares, the contribution from
|E| is not needed. Consequently, |E| only needs to be small on few Carleson
squares, offering the flexibility to construct F € QA such that |E|u is a
vanishing Carleson measure. The proof of Theorem 1 uses a decomposition
of the measure p, stopping time arguments yielding nested families of dyadic
arcs on JD and a construction of certain BMO functions due to J. Garnett
and P. Jones (| D-

Theorem 1 is sharp in several different senses. First, in the conclusion,
the vanishing Carleson measure condition can not be replaced by a stronger
condition of the same sort. Actually for any increasing function w : [0, 1] —
[0,00) with w(0) = 0, there exists a Carleson measure p such that for any
outer function £ € H*>* we have

AL

@0 LQuQ) ~
See Proposition 14. Second, one can not replace QA by the disk algebra
A(D) of analytic functions in D which extend continuously to D. Actually a
Carleson measure p will be constructed for which | E|u fails to be a vanishing
Carleson measure for any non trivial £ € A(D). See Proposition 15. Finally,
in part b) one can not have the sharper condition log|FE| € VMO, as it is in
part a). See Proposition 16.

Theorem 1 has applications in three different contexts. First, using The-
orem 1 one can prove Theorem A of T. Wolff. The second application of
Theorem 1 concerns critical points of functions in Hardy spaces. Let BMOA,
respectively VMOA, be the space of functions F' € H? whose boundary val-
ues F'(¢) with £ € 9D, are in BMO, respectively in VMO. W. Cohn proved
in [ , Theorem 1] that given 0 < p < oo and F € HP, there exists
G € BMOA such that the zeros (and the multiplicities) of F’ and G’ coin-
cide. Later D. Kraus in [ , Theorem 1.1] proved that given 0 < p < oo
and F' € HP, there exists a Blaschke product B such that the zeros (and
the multiplicities) of F’ and B’ coincide. Using Theorem 1 and a beautiful
technique developed by D. Kraus in [ | we prove the following result.

Theorem 2. Let 0 < p < oo and F € HP. Then there exists a function
G € QA such that the zeros (and the multiplicities) of F' and G’ coincide.

Our last application of Theorem 1 concerns generalized Volterra integral
operators. Given an analytic function G in D, the action of the generalized
Volterra operator Tz on the analytic function F' is defined as

Ta(F)(z) = /OZ F(w)G (w)dw, =z e D.

Notice that if G € BMOA, then T : H* — BMOA is continuous, see [ ,
Proposition 1]. As expected Tg: H*® — BMOA is compact if and only if
G € VMOA. We will apply Theorem 1 to obtain the following result.
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Theorem 3. Let G € BMOA be non constant. Then T : H*® — BMOA is
not bounded from below and Tg(H®) is not closed in BMOA.

The rest of the paper is organized as follows. Section 2 contains auxiliary
results that are used in the proof of Theorem 1 which is given in Section
3. In Section 4, Theorem 1 is applied to prove Theorems A, 2 and 3. The
sharpness of Theorem 1 is discussed in the last section.

As usual, the notation A < B means that there exists a universal constant
C > 0 such that A < CB.

It is a pleasure to thank O. Ivrii, D. Kraus and O. Roth for several helpful
discussions.

2. AUXILIARY RESULTS

Our first result states that any finite positive Borel measure in D can be
written as the sum of two measures which have small mass on a certain
sequence of annuli.

Lemma 4. Let p be a finite positive Borel measure in D. Let {e,} be a
decreasing sequence of positive numbers tending to zero. Then there exists

an increasing sequence {rp} with 0 < r, <1, n=0,1,... and two positive
measures pi1, po with p = py + po such that

(1) p{z €D |z > rons1} < €ang1(l — ronta)

and

(2) pa{z €D |z > ron} < eon(l —1a2n),

forn=0,1,.... Moreover {r,} can be chosen of the form r, =1 — 2~ N(®)

for some integer N(n) >0, n=0,1,... and > (1 —ry,) < c0.

Proof. By induction one can define an increasing sequence {r,} with ro =0
and 0 <r, <1,n=1,2,..., such that

wf{z € D |z| >rpp1} <ep(l—mp), n=0,1,2,....

It is clear that {ry,} can be taken as described in the last part of the state-
ment. Let 1,, be the indicator function of the annulus {z € D : r, < |z| <
Tn+1}. Define the two measures 1, 2 as

(o) oo
pr=p Y Loy and py=p Y lonis.
n=0

n=0

We notice that u = pu1 + po. Moreover for n =0, 1,..., we have that
pflz] = rong1} = paf{lz] = rons2} < p{lz] > rons2} < e2ng1 (1 —rony1)
and

wflz| > ron} = po{lz| > rant1} < pflz| > ront1} < eon(l —rap).
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The proof of Theorem 1 uses a beautiful construction due to P. Jones and
J. Garnett (| ]) of certain functions in BMO supported in a given arc
which are large on certain subsets of the arc. A Lipschitz function a: 0D —
R is called B-adapted to the arc I C 0D if the following three conditions
hold: the support of a is contained in the dilated arc 3I; sup|a| < 1 and
|Va;(&)| < B/|I| for any £ € OD.

Lemma 5. | | Let {I;} be a sequence of arcs in OD. Assume that there
exists a constant Cp > 0 such that for any arc I C 0D we have

(3) Gl < Gy,

I]'CI
Let aj be a B-adapted function to the arc I; for j =1,2,.... Then Zj aj €
BMO and
‘Z% <oB.
j BMO
For the proof of Lemma 5, we refer to Lemma 2.1 in | | (see Lemma
3.2 0f | | for a VMO version). The following result may be known but,

since it is not clearly stated in the literature, we provide a short proof based
on an idea in Lemma 1.2 in | ].

Corollary 6. Let {1;} be a sequence of arcs in D with ; [I;| < co. Then,
there exists a positive function f € VMO such that

lim fdm = +o0.

Proof. We use Lemma 2.2 of | ], which says that given a measurable set
E C 0D there exists a positive function h with ||h||pymo < 1 such that
—logm(E) S h(), forall€ekFE.

Moreover, if E is a finite union of arcs, then h may be taken in C'*°(9D).
Since ), [I;] < oo, the collection {I;} can be split as {I;} = Un>1.A, where
A, is a collection of finitely many arcs which satisfies

SIge™, n=12,...
Ie A,

Let f,, be a positive smooth function in 0D satisfying | f|BMmo < 1 and

fn(&) >n3,  forall € e U 1.

Ie A,
We set f =3 fn/n? Then f € VMO and
1
lim — | fdm =00
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Let D denote the family of dyadic arcs of the unit circle. The correspond-
ing family of dyadic Carleson squares is defined as {Q(I) : I € D}. Note
that two dyadic Carleson squares are either disjoint or one is contained into
the other. Given a Carleson square @ = Q(I) where I C 9D is an arc cen-
tered at the point { € 0D, consider zg = (1 — £(Q))&. The next preliminary
result will be needed in the proof of Theorem A.

Lemma 7. Let p be a Carleson measure in D. Given € > 0 consider the

collection A = A(e) of Carleson squares @ such that u(Q) > €€(Q). Let
E € VMOA such that |E|u is a vanishing Carleson measure. Then

lim FE(z =0.
QGM(QHOI (2q)]

Proof. Given a Carleson square @ denote I(Q) = Q@ NJD. Fixed a constant
n > 0 and a Carleson square ) € A(e), consider the family {Q;} of maximal
dyadic Carleson squares contained in @ such that

sup{|E(w) — E(zq)| : w € T(Q;)} = n-

Here T(Q;) = {z € Q; : 1 — |z| > £(Q;)/2} is the top part of Q;. Since
E € VMOA, we have

(@) g(;) S UQy) — 0 as Q) — 0.

Consider the region R = R(Q,n) = Q \ UQ;. Since p is a Carleson measure
and @ € A(e), from (4) we deduce that

(5) k) —1as {(Q)—0.

Q)

Moreover, by construction we have that
sup{|E(w) — E(zq)| : w € R} <.
Hence

[ vz [ (= 505G - met@)

if (Q) is sufficiently small. Since |E|u is a vanishing Carleson measure and
n > 0 can be taken arbitrarily small, we deduce that |E(zq)| — 0 as ¢(Q)
tends to 0. g

Next result will be used in the proof of Theorem 2. It can be understood
as a hyperbolic analogue of the classical fact that a harmonic function u in
D such that |Vu(2)?(1 — |2|?)dA(z) is a Carleson measure, has boundary
values in BMO.

Lemma 8. Let F' be an analytic self-mapping of the unit disc.
(a) Assume that

PR - [2P)
©) Q- [FEP)?

dA(z)
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is a Carleson measure. Then log(1 — |F|?) € BMO.
(b) Assume that

PR - |22)
) 0 [FRPR?

dA(z)

is a vanishing Carleson measure. Then log(1 — |F|?) € VMO and conse-

quently,
dm(§)
sup / - < 00,
o<r<1Jop (1 —[F(r§)])®

for any 0 < s < 0.

Proof. (a) Let u(z) = —log(1— |F(2)|?), z € D. By Schwarz’s Lemma there
exists a constant Cy > 0 such that

(8) sup{|u(z) — u(w)| : z € T(Q),w € T(Q1)} < C1,

for any pair of Carleson squares @1 C @ with £(Q1) = £(Q)/2. Let K be
the Carleson norm of the Carleson measure in (6). Let C > 2C; + 2K be a
large constant to be determined later.

Let I be an arc of the unit circle and consider the dyadic decomposition
of Q(I). We now use a stopping time argument. Let G; be the collection of

maximal dyadic Carleson squares Qg-l) C Q(I) such that

(9) sup{Ju(z) - u(zqu)| : = € T(@Q{)} = C.
The maximality and (8) give that
CcC-C1 < ]u(zQ(_n) — u(zQ([))\ <C+C.
J
We continue by induction. More concretely, assume that the collection
Gpn_1 = {Ql(n_l) : 1 = 1,2,...} has been defined. For each Ql(n_l) €
Gn—1 consider the collection gn(Q,(”‘”) of maximal dyadic Carleson squares
an) - Ql(nfl) such that
(10) sup{Ju(z) — u(zgn)| : 2 € T(Q)")} = C.
The collection G,, is defined as
Gn = U1 Gn(Q" V).
As before the maximality and (8) give that
C-0C1 < ‘U(ZQ§n)) — U(ZQ;n
Observe that

(1) Ju(®) —u(zn) < (C+Cn, €€ T\UQM, n=1,2,....
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Let @Q € G,,—1. Consider the region Q@ = @\ UQg.n), where the union is
taken over all Carleson squares an) € Gn(Q). Note that

F'(2)|?
(12) Au(z) = (1|—|1§()z|)]2)2’ zeD
and
(13) Vu(z))? [F(=) " 2 e D.

< 71 1/ N\ I9\9
T (1= F(R)P)?
These facts follow from direct calculations and have been recently used in
[ I, [ ] and | ]. Since A(u—u(z9))? = 2|Vul? + 2(u — u(zg))Au
and |u(z) — u(zg)| < C for any z € Q, using (12) and (13) we deduce that

2(C+ DIF'(2)]?
(14) A(u(z) - U(ZQ))Q S (1 o ‘F(Z)’2)2

Apply Green’s Formula to the functions (u(z) — u(2g))? and log |z|, Then
the estimate (14) gives

, z€ef.

\/ —u(zg))? Oy log |z|ds(z) — /6(2 log | 2] O (u(2) — u(zg))?ds(2)| <

(C+DIF' ()P - |21%)
N/Q AT A) < 2(C+ DEUQ).

Note that |V(u(z) — u(zg))?| < 2C|Vu(z)| for any z € Q and that (1 —
|2|2)|Vu(z)| < 1 for any z € D. We deduce that

(16) /8 1108|2104 (u(2) — u(zq)*lds(2) 5 CHQ)

Note that 0, log |z| is supported on the circular parts of the boundary of €,
where it has values £1/|z|. Since |u — u(zq)| < Ci on T(Q) and |u(z) —

u(zq)| > C — C; for any z € T(Q§”)), from (15) and (16), we deduce

(17) C* Y UQ") S CKUQ)
J
Fix C sufficiently large such that
”) < K, 1

Iterating this estimate we obtain

(19) Zf <—|I| n=1,2....
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Next we show that v € BMO. Fix A > 2C' and let n be the integer part
of A\/(C + C7). Note that (11) gives that

{e €I fu©) —ulzn)| > A} € QM N I,

Then, estimate (19) gives that
1
m({E € 0D ¢ [ul€) — uzn)| > A)) < 11|

This implies that

m /’u —u(zr)|dm(§) |I|/ m({€ € I :|u(€) —u(zr)| > A})dA

is bounded by a universal constant independent of I. This finishes the proof
of (a).

(b) The proof of (b) only requires minor modifications. Actually one only
needs to observe that if |I| is sufficiently small, the constant K in (17) can
be taken also small. This allows to fix also C' > 0 such that K/C is also
small. Hence given ¢ > 0, if |I| is sufficiently small, one can replace the
factor 1/2 in (18) by . This gives that log(1 — |F|?) € VMO. Last assertion
n (b) follows from the well known fact that v € VMO implies that e*" is
integrable for any s > 0.

(]

3. PROOF OF THEOREM 1

We now prove our main result.

Proof of Theorem 1. The proof is organized in three steps.

1. Splitting the measure. Let u be a finite Borel measure on D. Let
{en} be a decreasing sequence of positive numbers tending to 0. We apply
Lemma 4 to find two measures p1, o which satisfy (1) and (2) respectively.
For n > 0, we pick the maximal dyadic squares {Q} : k = 1,2,...} with
1 —ropys < €(QF) <1 —ropqq such that

Nl(Qk)
(20) n 8Qn—i-l
(Qy)
We notice that if @) is a Carleson square with £(Q) = 1 — ro,+1, then
1 (Q)

qQy =
Indeed, applying (1), we have

m(Q@) o m{zeD: |z >7roni1})

21 (Q) — I —7rony1

< &opt1-
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Since {Q} : k =1,2,...} are pairwise disjoint, equation (20) gives that

S Q) < —
k

pr1({]z] > r2nt1}) <1 —ronq1
€2n+1

and we have
(22) D> UQ < (1 —ran11) < 0.
n k n

We split each arc I} = Q7 N JD into finitely many smaller pairwise disjoint
subarcs {Ji!; 1 j = 1,2,...} such that

‘Jﬁjlzl_r2n+5y j:1,2,...
Due to (22), we have that
D Mkl =2 2 ikl < oo
n,k,j n k

A similar construction is applied to the measure ps.

2. Proof of (a). Fori = 1,2 we will construct an outer function E; € QA
with log | E;| € VMO such that | E;|p; is a vanishing Carleson measure. Once
this is done the result will follow easily. We will explicitly describe Fy. The
function Fs is constructed using the same procedure.

Apply Corollary 6 to find a positive function f € VMO such that

(23) lim fdm = +oc.

J' . |—=0 n
I3 51 T

Consider the outer function E; defined by log|Ei(€)] = —f(&), £ € ID.
Note that [|F1]jec < 1. Since f € VMO we have that E; € QA. Next we
will show that |E7|u is a vanishing Carleson measure.

We first argue with dyadic Carleson squares. Given a dyadic Carleson
square @ fix n such that 1 —rg, 43 < £(Q) < 1—r9,41. If @ is not contained
in any of the {Q} : k =1,2,...}, we have that ;1(Q) < €2,414(Q) and

/Q By (2)[djin (2) < 11(Q) < canp Q).

If Q C Q) for some k, then

/Q By (2) | dpua () = /Q s B ) / B (2)|dpan (2):

QN{lz|<ran+3})

Applying (1), we have
/ |E1(2)]dpa(2) < pa(Q N {]2] > r2n43)) < e2n43(1 — 12n43) < e20430(Q).
QN{|z|>ra2n+3}

Fix z € QN{z € D : |z| < rapn43}. Consider the arc I(z) C JD centered
at z/|z| of length 1 — |z|. Note that |I(z)| > 1 — r2,43. Since Q C Q} we
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deduce that

1(2)]
E gl > .
’ k‘,l’ — 4

iy, Cl(2)

Hence, by (23), given € > 0 we have |F(z)| < ¢ if n is sufficiently large.
Thus

/ B2 ldis () < e (@)
@n{lzl<ranis})

if n is sufficiently large. Hence, given € > 0 there exists § > 0 such that
[ 1Bl < =0(@)
Q

when @ is a dyadic Carleson square with ¢(Q) < §. Since for any Carleson
square () one can find two dyadic Carleson squares (1, Q)2 such that @ C
Q1 U Q2 and £(Q;) < 24(Q), i = 1,2, we deduce that |E1|u is a vanishing
Carleson measure.

We repeat the above construction for us and we find another outer func-
tion Fy with log |E2| € VMO such that |Es|u2 is a vanishing Carleson mea-
sure. Now E = E1FE; € QA satisfies that |E|u is a vanishing Carleson
measure. Moreover log |E| = log |E1| + log | E2| € VMO.

3. Proof of (b). We now prove part (b) of Theorem 1. Let p = pq + o
be the decomposition of Step 1. The Carleson squares Q7 of Step 1 will

now be denoted as QF = QZ’O, k=1,...;,n=1,.... Note that (20) and

the maximality gives that ul(QZ’O) < 2e9n4+14( Z’O). We will now use a
stopping time argument in each QZ’O. Fix n and k£ and pick the maximal

dyadic Carleson squares {Q?’l :7=1,2,...} contained in QZ’O such that

p (@)
0Qr)

Note that the maximality gives that ul(Q?’l) <20- 52n+1€(Q§L’1). We con-
tinue by induction, that is, if ¢ > 1 is an integer and we have constructed
a Carleson square Q;.m_l such that 10°1 -€2n+1€(Q?’2_1) < ,ul(Q?’Z_l) <
2101 52n+1€(Q;’1) , we consider the maximal dyadic Carleson boxes

Q™ :1=1,2,...} contained in Q™" ! such that
l J
n,t
L(%i ) > 10" - e2pt1.
(%
As before, the maximality gives

1 (Q")

L L <2100 egpq1, 1=1,2,....

0@y

> 10 - eop41.
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We denote I} = Q?’i N OD. Since

.o, n,i—1 O n,i—1
el LI

we obtain that

24) >

O n,i—1
I

1 onie
ggu;.“ Y, i=1,2,...:5=1,2,...;n=0,1,....

Consequently, iterating (24), we have that

L1
(25) > \Iﬁﬂggu,’;’% ik=1,2,...;n=0,1,....
Lorten®

For each n,i,l we pick a smooth B-adapted function a?’i to the arc Il"’i
such that a;""(¢) = 1if ¢ € I]"". By Lemma 5 we have || >, a;""|[smo < B/5".

The function
o0 o )
=3 S
i=0 I=1

belongs to BMO and ||h,||pmo S B. Moreover, applying (25), (20) and (1)
we obtain

hnd < n,%
/BD m<6> S0

1=0 [=1

[ee]
1
SRS > m(@y)
k=1

Eon+1 A

<
Eon+1

pi({z eD: |z] > ropg1}) <1 —ropg1.

Let E7 be the outer function given by
log | B4 (€)] = —4-1og(10) ) | hn(€), & € ID.
n=1

Note that [|[F1]|coc < 1. At this point, we verify that |FEq|p; is a vanishing
Carleson measure. We first deal with dyadic Carleson squares. Let @ be a
dyadic Carleson square. Pick the integer n such that 1 — ro,13 < £(Q) <
1 — ropq1. If @ lays outside |J,, QZ’O, then

'u;((QQ)) < Eopt1-

On the other hand, if Q C QZ’i_l\Ul Q?’i for some integeri > 1,k =1,2,...,
then

'L?((QQ)) < 10951 1.
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Note that hy(§) > i for any & € I,?’i_l. Then log |Ei(z)| < —ilog(10) for
n,1—1 .
any z € ;7 and we obtain

Jo 1E1(2)|dpa (2) _im(Q)
ﬁ(Q) <10 K(Q) < €2n+41-

Hence given € > 0 we have proved that

/ Erldy < 0(Q)
Q

if @ is a dyadic Carleson square with ¢(Q) sufficiently small. Since any
Carleson square ( is contained in the union of two dyadic Carleson squares
Q1, Q2 with £(Q;) < 20(Q), i = 1,2, we deduce that |E1|u; is a vanishing
Carleson measure. The same construction applied to us provides an outer
function Fy € H* such that |FEs|us is a vanishing Carleson measure.

We apply part (a) of Theorem 1 to the Carleson measure

| (B1(2)Ba(2)) P(1 = |2*)dA(2)

and find an outer function F' € QA with log|F| € VMO such that the
measure

[F(2)|| (B1(2)Ea(2)) (1 = |2*)dA(2)

is a vanishing Carleson measure. Note that since log |F| € VMO we have
that F1/2 € QA. Consequently, the function E = FY2E|F, is an outer
function in QA such that |E|u is a vanishing Carleson measure.

Finally we show that log|E| € BMO. It is sufficient to prove that
log |E1| € BMO. Since

—1og [E1 (&) =Y (&) =D D > a'(§), &€,
n n i l

it is sufficient to observe that {al"’i}mu are B-adapted functions to the arcs
{I;""} which satisfy the packing condition (3). O

4. APPLICATIONS

4.1. Theorem A. Our first application is a proof of Theorem A of T. Wolff
using Theorem 1.

Proof of Theorem A. Let P,(f) = f(z) denote the harmonic extension of
f to D. We apply case (a) of Theorem 1 to the Carleson measure u(z) =
IVP.(f)|?(1—|z|?)dA(z) to obtain an outer function E € QA with log|E| €
VMO such that |E|u is a vanishing Carleson measure. Let I C D be an
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arc. We have that

f B©)F(€) — E(e1)f(21))dm(€)
f|E Ean)||£(€)ldm(e) f|f F DB (1) dm(€)

< flle f |B(€) — E(=)|dm(€) + |E(zr) f F(€) — F(z)|dm(©),

where z; = (1 — |I])&r and &7 is the center of I. Since E € VMOA, the first
integral tends to 0 as |I| tends to 0 and we only need to show that

(26) lim B2 yjfyf* Fla)|dm(€) = 0.

[]=0

By the Cauchy-Schwarz inequality, we have that
(F15© - reim@) < f15@ ~ rnPam@ 5 [ 1766 5P 0an(e)
oD
e P feP) a-l=P,
< [ 195w L - [ dp(w).

11— zrw|? |1 — zrw|?

where P, is the Poisson kernel at the point z;. We notice that

1—|z]?
T —wz2 ~ 221

(1 —Jz1]?) p(2"QI) \ 2" 'Q(1))
d < .
[t = #5 > 7
Since p is a Carleson measure, for any € > 0 we have that

S mppen\rens Y Lse

n>log(1/¢) n>log(1/e)
and then

w e 2"Q(N\ 2" 'Q(I),n > 1.

Thus

log(1/¢)

n gfl
7[|f f(zr)|dm(€) < ( Z WJFS)I/Z < (M(‘IC‘Q(I))JFE)U%
n=1

We are now going to show (26). Fix ¢ > 0. Let us consider two cases.
Assume first that p (¢7'Q(I)) < e|I|. Then (27) gives that

][!fﬁ FE)ldm(€) < V2

and (26) follows. Assume now that p(e7'Q(I)) > e|I|. Since |E|p is a
vanishing Carleson measure, Lemma 7 applied to the family A(s?) gives
that |E(z(e,I))| < g, if |I| is sufficiently small. Here z(e, I) denotes z.-1;.
Since E € VMOA we have (1 — |z|)|E'(z)] — 0 as |z| — 1. We deduce that
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|E(zr)| < 2e if |I| is sufficiently small. This proves (26) and finishes the
proof
U

As usual LP(0D) denotes the classical Lebesgue spaces on the unit circle,
0<p< oo

Corollary 9. Let f € LP(9D), 0 < p < oo. Then, there exists an outer
function E € QA such that Ef € VMO NL*>®(0D).

Proof. Consider the outer function Ey defined as

Fo(z) = exp <— [ oy |f<5>|d5) . zeD,

It is clear that Ey belongs to H* and Eyf € L>°(9D). We apply Theorem A
twice. First, we find an outer function E; € QA such that F1 Ey € QA. Since
E\Eyf € L*°(0D), another application of Theorem A provides a function
E5 € QA such that EsE1FEyf € QA and one can take ¥ = FyF4 Ey. O

4.2. Critical points of functions in Hardy spaces. Theorem 2 follows
from a convenient variant of a classical result by W. Cohn on factorization
of derivatives of functions in Hardy spaces. Fix 0 < p < co. W. Cohn
proved in [ , Theorem 1] that, given F' € HP, there exist a function
G € BMOA and an outer function H € HP such that F' = G’H. Conversely,
for any G € BMOA and H € HP, the function G'H is the derivative of a
function in HP. See [ ] for a version in the Nevanlinna class. Next we
apply Theorem 1, Lemma 8 and a nice technique of | | to show the
following result which obviously implies Theorem 2.

Lemma 10. Fiz 0 < p < 0o. For every F € HP there exist G € QA and an
outer function H € HY for any q < p such that F' = G'H.

Proof. Let F' € HP. According to Cohn’s result, there exist & € BMOA
and an outer function R € HP such that F/ = ® R. Applying Theorem 1 to
the Carleson measure |®’(2)|?(1 — |2|?)dA(z), one obtains an outer function
E € QA with log|E| € VMO, such that E'/2®' is the derivative of a function
G € VMOA. Consequently

R
El/2°

Since log |E| € VMO, the John-Nirenberg Theorem gives that E~/2 ¢ H"
for every 0 < r < co. Holder’s inequality gives that RE~1/2 € HY for any
0<qg<np.

Note that the function G € VMOA may be unbounded. Next we will
apply the technique in | |. Consider the partial differential equation

(28) Au(z) = 4|G'(2)?e2*3) | 2z eD.

F=c
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Since G is in BMOA the PDE (28) has a solution uy which is bounded on

D (see Remark 3.4 of | ]). By Liouville’s Theorem (see Theorem 3.3 of
[ ]), there exists an analytic self-mapping I of D) such that
1 1I'(2)]

W@ =l (e uem) *< "
Since g is bounded in D, we deduce that |G| is comparable to |I'|/(1— |I|?)
on D. Hence I and G have the same critical points with the same multiplici-
ties. Since G is in VMOA, we deduce that |I'(2)|3(1—|2])dA(2)/(1—|I(2)])?
is a vanishing Carleson measure. In particular I is in VMOA and hence
I € QA. Note that |G’/I| is comparable to (1 — |[I|?)™! > 1 on D and
deduce that G'/I’ is an outer function. Finally part (b) of Lemma 8 gives
that G’/I' belongs to the Hardy space H?, for any 0 < s < 0.

([

We notice that the proof of the previous Lemma gives the following fac-
torization for the derivatives of BMOA functions.

Corollary 11. For every F' € BMOA there exist G € QA and an function
H € H? for any q < oo with 1/H € H*® such that F' = G'H.

We close this section with two remarks. A. Aleksandrov and V. Peller
proved in | , Theorem 3.4] that for any F' € BMOA there exist G;, H; €
H*>, i = 1,2, such that F/ = G| H, + G4Hs. The second remark concerns
single generated ideals in the space A% of analytic functions F in D such
that

1F)* = /D [F(2)P(1 = [2*)dA(2) < oo.

O. Ivrii showed that any single generated invariant subspace of A? can
be generated by the derivative of a bounded function (see Theorem 3.1 of

[fvr21]).

Corollary 12. Let F € A? and let [F)] denote the closure in A3 of polynomial
multiples of F. Then, there exists a function G € QA such that [G'] = [F].

Proof. It is well known that there exists I € BMOA such that [F]| = [I']
(see [ , Theorem 3.3]). Corollary 11 provides G € QA and a function
H € H? with 1/H € H> such that I’ = G'H. We now verify that [I'] = [G"].
Let W € [I']. Given € > 0 there exists an analytic polynomial P such that
|W — PI'|| < e. Consequently, if H,, is the Taylor polynomial of H of degree
n, we have

|W — PG'H,,|| < ||W — PHG'|| + ||PHG' — PG'H,,||
<||W = PI'| + C||Glgmoll Pllsc || H — Hyll2,

where C' > 0 is an absolute constant. The last estimate follows from the
fact that |G’(2)]2(1 — |2|?)dA(z) is a Carleson measure. Therefore W € [G].
A similar argument using that 1/H € H?2, proves the converse inclusion. [
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4.3. Generalized Volterra operators. Given two analytic functions F, G
inD, T (F') denotes the generalized Volterra operator with symbol G applied
to F' defined as

Ta(F)(z) = /OZ F(w)G' (w)dw, z€D.

It is clear that if G € BMOA, the operator T : H* — BMOA is continuous
and || T¢|| < ||GllBmo- As it is expected, T is compact precisely when the
symbol G € VMOA.

Lemma 13. Let G € BMOA. Then Ty : H*® — BMOA is compact if and
only if G € VMOA.

Proof. Assume first that G is a polynomial. Note that Ty, = V o Mg,
where Mg/ : H*® — H* and V: H>*® — BMOA are respectively the operator
of multiplication by G’ and the classical Volterra operator. By | ,
Theorem 3.5], V' acts compactly on H*. Hence T is compact.
Consider now an arbitrarily function G € VMOA. Note that there exist
polynomials P,,, such that
lim ”G - PnHBMO =0.

n—oo

Thus
lim [|[Tg —Tp,|| < lim |G — P,|lsmo =0.
n—oo n—oo
Hence, Tr: H* — BMOA is compact.
The converse is proved by contradiction. Assume that Tz is compact and

that G is not in VMOA. Then there exist a constant M > 0 and a sequence
of arcs {I,} in D such that |I,| — 0 and

1
(29) / G2~ |2P)dA() > M, n=1,2,....
1In| Jo(1,)
For n = 1,2,... pick the integer N,, with |I,|~t < N,, < |I,,|7! + 1. Then
1
ITa(=") o > / 22V G221 — [22)aA(z) > M/A.
1Inl J o)

Hence T : H*® — BMOA is not compact. O

The boundedness from below of the operators T acting on Hardy and
Bergman spaces has already been studied in | | and | ]. The core
of our approach lies in establishing that for G € BMOA, there exists a non
zero function F' € VMOA NT(H™).

Proof of Theorem 3. Let H € H*. Because of Theorem 1, we can find
an outer function £ € QA such that |E(2)G'(2)H(2)|?(1 — |2|?)dA(z) is a
vanishing Carleson measure. This implies that F' = Tg(EH) € VMOA.
Note that

(30) EHG =F'.
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We argue by contradiction. Assume that T : H®® — BMOA is bounded
from below or that Tg(H™) is closed in BMOA. Then, since Tg is also
bounded, there exists a constant C' > 0 such that

(31) C7Ylklloo < 1 Ta(k)lIBmo < Okl

for every k € H*. In particular, if k,(2) = E(2)H(2)z", z € D, applying
(30) we deduce that

I1Te(kn) o ~ Sup ’11| /Q(I) |G'(2) B(2)H (2)"|2]*" (1 — |2]*) dA(2)

1 n
—swp [ PP - [ dAG).
r Ml Jowm

Since F' € VMOA we deduce that ||T¢(kn)|lBMo — 0 as n — oo while ||k, [0
is bounded below.
([

5. SHARPNESS OF THEOREM 1

We first show that in the conclusion of Theorem 1, one can not improve
the vanishing Carleson measure condition.

Proposition 14. For any increasing function w: [0,1] — [0,+00) with
w(0) = 0, there exists a Carleson measure j such that for any outer function

E € H* we have
[ EG)du(z)
limsup —%———— =

2Q)—0 {Q)w((Q))

Proof. Pick two sequences {dx} and {hy} of positive numbers such that

(32) kZ: 5—: < oo and klgxgo 5—: log(w(hg)) = —oo.

We can also assume that Ny = 27 /d; is an integer for any k = 1,2,....
For any k = 1,2,..., let Ay, = {2, : 7 = 1,..., Ny} be points uniformly
distributed in the circle {z € D : 1 — |z| = hi}. Then the sequence {z,}
defined as

{zn} = U A
k=1
is a Blaschke sequence. Actually

=301 [zl

is a Carleson measure. We argue by contradiction and assume that there
exists an outer function E € H*, ||E|« < 1, such that

J |E(2)ldu(z)

(33) QwrQ)
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for every Carleson square Q). We pick Carleson squares Qy, ; with £(Qy ;) =
hi, such that zj ; lies in the top part T(Qk.;) of Q. j. The assumption (33)
implies that for every k, j

|E(2k,5) [hie <UQrj)w(l(Qk.5)) = hiw(hi),
that is,
(34) |E(zk,;) <w(hg), j=1,...,Nisk=1,2,....

Consider the discs Dy ; = {z € D : |z — 2z ;| < (1 — |z;])/2}. Harnack’s
inequality applied to the positive harmonic function — log |E| gives that

—log|E(z)|Zj—log|E(zk,])|2—logw(hk), ZeDk,jv J=1.. N k=12,....

uniformly in k, j. Consequently, by subharmonicity, we have that
h
log |E(0)] < / log [ (1 — I )€)|dm(€) < log(w(hy)) 3= — —oo, ask — co.
oD k

This is clearly a contradiction and finishes the proof. ([

We recall that the disc algebra A(D) is the space of continuous functions
in the closed unit disc which are analytic in . Our next result says that in
Theorem 1 one can not replace the condition E € QA by E € A(D).

Proposition 15. There exists a Carleson measure p in D such that there
are no non trivial functions E € A(D) such that |E|p is a vanishing Carleson
measure.

Proof. Consider a Carleson measure p such that for any point £ € 0D
there exists a sequence of Carleson squares {Q,(£)} such that pu(Q,(&)) >

((@Qn(€)) and
Jgn;o K(Qn(f)) =0, TLILH;O dlSt(& Qn(g)) = 0.
For instance one could consider a uniformly separated sequence A with 9D C
A and
B= Z(l — [2])d:
z€EA

Assume that there exists a function £ € A(D) such that |E|u is a vanishing
Carleson measure. Then

fQ | E|dp
lim 29 =0, &e0b.
Since E is continuous in D, this implies that E vanishes identically. U

Our last remark concerns the sharpness of part (b) of Theorem 1: one can
not replace the condition log | F| € BMO by the stronger one log |E| € VMO.

Proposition 16. There exists a finite positive Borel measure p in D such
that there are no function E € QA with log |E| € VMO such that |E|p is a
vanishing Carleson measure.
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Proof. We argue by contradiction. Let G € H? and consider the measure
w(z) = |G'(2)]2(1 — |2|?)dA(z). Assume there exists an outer function E €
QA such that |E|p is a vanishing Carleson measure and log|E| € VMO.
Then the function F' defined by

F(z) = /OZ E(w)G' (w)dw, z€D

belongs to VMOA and satisfies IV = G'E. Since log|E| € VMO, we have
1/E € HP for p > 2. hence we obtain that for any function G' € H? one can
factor G' = F'/E € {H' : H € HP} by the result of W.Cohn | |, which
is clearly a contradiction if p > 2. (]

As explained in the introduction, the proof of Theorem 1 relies on the fact
that for any finite positive Borel measure p, the ratio u(Q)/4(Q) is small
for most Carleson squares @@ C ID. Our last result points in this direction.

Proposition 17. Let v be a finite positive measure. Then
L Q)
h—0 h

for m-almost every & € OD. Here Q(&,h) = Q(I(&,h)) where 1(&,h) is the
arc of ID centered at & of normalized length h.

=0,

Proof. We proceed by contradiction, that is, we assume that

h
(35) m{fE@]D):limsup'u(Q(g’))>O}>0.
h—0 h
By the regularity of the Lebesgue measure, there exists a constant n > 0
such that .
m{ﬁeaﬂ):limsupu(Q(g’)) >77} >0.
h—0 h

Let € > 0 be a small number to be fixed later. Consider a compact set
K C 0D wih m(K) > 0 such that for every £ € K there exists a sequence
{hn(§)}n tending to 0 as n — oo with 0 < h,(z) < € and

We consider the collection of arcs {I(&,h,(£)) :n=1,2,...;¢ € K}. Using
Vitali’s covering lemma, we extract a family of pairwise disjoint arcs {Ij}
such that K C J, 5I). Note that u(Q(Ix)) > n|lx|/2. Consequently
n n
D:1—-¢e< 1}) > 1)) > = I > —|K]|.
n({ze e <[zl <1}) = p (UrQ( k))_2;|k|_10| |
However, the last inequality gives a contradiction if € > 0 is taken sufficiently

small since
limpu({zeD:1—-e<|z|<1})=0.
e—0
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