FROSTMAN SHIFTS OF INNER FUNCTIONS

By

RAYMOND MORTINI AND ARTUR NICOLAU *

Abstract. In this paper we study the class M of all inner functions whose
non-zero Frostman shifts are Carleson—-Newman Blaschke products. We present
several geometric, measure theoretic and analytic characterizations of M in terms
of level sets, distribution of zeros, and behaviour of pseudohyperbolic derivatives
and observe that M is the set of all functions in H> whose range on the set of
trivial points in the maximal ideal space is dD U {0}.

1 Introduction

Let H* be the algebra of bounded analytic functions in the open unit disc D of
the complex plane and let

w
p(z,w)=]1 i
— w2

, z,weD

be the pseudohyperbolic distance in D. A pseudohyperbolic disc centered at z € D
of radius 0 < 6 < 1is given by D,(z,6) = {w € D : p(w,z) < é}. A sequence of
points (z,) in D is called an interpolating sequence if for any bounded sequence
(wn) of complex numbers, there exists f € H* such that f(z,) = w, foralln € N.
A celebrated result of L. Carleson [Ca] asserts that (z,,) is interpolating if and only
if p(zn,2m) > 6 > 0foralln # mand p = Y00 (1 — |2,/2)d,, is a Carleson
measure (see [Ga]). Recall that u is 2 Carleson measure if there exists a constant
C = C(p) > 0 such that u(Q) < CZ for any box Q of the form

Q=0Q60,8) :={re? :0<1—r <4 |0—6|<E}.
A Blaschke product

2 |2n] zn — 2
B — IZnl %n <
(2) nl;Il 2n 1 -Z,2
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with distinct zeros z, is called an interpolating Blaschke product if (z,) is an
interpolating sequence, or equivalently, if

inf(1 — |2n|®)|B'(2a)] > 0.

Interpolating Blaschke products play a crucial role in the theory of H*°. For
instance, they appear naturally when studying the structure of the maximal ideal
space M (H®) of H*. The pseudohyperbolic distance p can be extended to M ( H>)
by defining

p(m,m) =sup {|f(m)|: f € H, ||fll, <1, f(m) = 0}.

Here, as usual, we are identifying f with its Gelfand transform, that is, f(m) =
m(f). The Gleason part of a point m € M(H®) is defined as

P(m) = {m € M(H®) : p(m, ™) < 1}.

It is a fundamental result of K. Hoftman that either P(m) is a singleton or P(m) is
an analytic disc. Moreover, for every m € M (H®), there exists a continuous map
L., from D onto P(m) with L,,,(0}) = m such that f o L,,, € H® whenever f € H®
([Ho.]). The Hoffman map L,, has the form

where (z,) is any net of points in D converging to m in the weak-*-topology of
M(H®). Hoffman also proved that a point m € M (H) has a nontrivial Gleason
part, that is, P(m) # {m}, if and only if m € D or m lies in the weak-*-closure of
an interpolating sequence in . In that case, L, is a bijection. The set of points in
M(H*>) with nontrivial Gleason part is denoted by G.

A Blaschke product B with zero sequence (z,,) is called a Carleson-Newman
Blaschke product if the measure

v="3Y (1- |26,

n=1

is a Carleson measure or, equivalently, if B is the product of finitely many interpo-
lating Blaschke products (see [MS], [McK]). It is well-known that v is a Carleson
measure if and only if

o0
sup Y (1 —|(zn)[?) < o0,
@ Autl)n_l

where Aut D is the set of all conformal maps of D onto itself (see [Ga]).
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A bounded analytic function I is called inner if for almost all ¢ € 9D,

lim I(re“’)l =1

r—1

An inner function I can be decomposed as I = e BS,,, where B is a Blaschke

product and
suo) =ex (- [ E24ue), zen

is a singular inner function associated with the positive finite singular Borel measure
M.

For o € D, let 7, denote the automorphism of D sending a to 0, defined as
Ta(2) = (@ — 2)/(1 —@z), z € D. Itis clear that 7, o I is inner if [ is inner. Actually,
a result of O. Frostman asserts that 1, o I is a Blaschke product for any a € D
except, possibly, for a set of logarithmic capacity 0 ([Fr] and {Ga]).

Several authors ([To;], [Ni], [Gulz)], [MT]) have studied Carleson-Newman
Blaschke products B for which 7, 0 B is also a Carleson—-Newman Blaschke product
for any o € D. Let us denote this set of functions by P (see [Toz]). Obviously,
every finite Blaschke product is in P. But P is much bigger than that. In fact, let
B be a thin Blaschke product; that is, a Blaschke product with zero sequence (z,,)
satisfying

lim (1 - |2n|2)|B’(zn)| =1

n—oo

It is easy to check that thin Blaschke products are in P. This class P plays
an important role in studying closed subalgebras of L>°(ID) (see [Golz]). Certain
elements of P also appear in the study of almost isometries in the hyperbolic plane
(see [GP]). It is well-known that the elements in P can be characterized in terms
of the distribution of their zeros ([Ni]) or in terms of their behavior on the maximal
ideal space ([To;], [Gulz], [MT]). For example, P is the set of functions in H®
which are unimodular on the set of trivial points in M(H>).

The main purpose of this paper is to study the class M of inner functions I
for which 7, o I is a Carleson-Newman Blaschke product for any a € D\ {0}.
Note that 7 C M. Whereas P only contains Blaschke products, it is easily
seen that the singular inner function S(z) = exp((1 + 2)/(z — 1)), which
corresponds to the Dirac measure at the point 1, is in M. Actually, a straight-
forward calculation shows that for any a € D \ {0}, the zeros of 7, o S form an
interpolating sequence (see [Golz], [Mo]). It follows from Hoffman’s theory that
{m e M(H*) : 0 < |S(m)| < 1} C G. Since this property is preserved by finite
products, we deduce that S,, € M whenever p is a finite linear combination of Dirac
measures. The main goal of this paper is to present some other nontrivial examples
of singular inner functions in M. The construction of some of our examples is
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based on the following characterization of the functions in M, a result which we

prove in Section 3.

Theorem 1. Let I be an inner function. Then the following assertions are

equivalent.

(a) I € M, that is, 1, o I is a Carleson—-Newman Blaschke product for any
a €D\ {0}.

(b) For every 0 < e < 1, there exists ¢ = c(e,I) < 1 such that the set
{z € D:e < |I{z)] < 1=¢€)} does not contain any pseudohyperbolic
disc of radius bigger than c.

(c) For every 0 < € < 1, there exists ) €]0,1[ and § €]0,1] such that for any
2 € Dwithe < |I(2)] < 1—¢, one can find w € D with p(z,w) < 6 such that
(1 = [w)I'(w)] > n.

(d) For any trivial point m € M(H®™), that is P(m) = {m}, one has either
[I(m)| =1orI(m)=0.

(e) For any m € G, either I o L, is an inner function or I o L,, = 0. Here L,,
is the Hoffman map corresponding to m.

A positive measure is called discrete if it is a weighted, finite or countably
infinite sum of point masses. A positive measure y is called continuous if it does
not give any mass to any singleton. A singular inner function S,, is called discrete
(respectively, continuous) if y is a discrete (respectively, continuous) measure.

We use part (b) of Theorem 1 to find examples of nontrivial discrete singular
inner functions in M. We also give examples of both discrete and continuous
singular inner functions not belonging to M. Moreover, we characterize the
compact sets E C 9D for which S, € M for any positive measure p supported
on E. To this end, recall that a compact set E # @ of the unit circle is called
porous if there exists 0 < ¢ < 1 such that for any arc J C 8D with JN E # ¢,
there exists a subarc J C J, |J| > ¢|J|, such that J N E = §. For example, the set
{e2™" : k e N} U {1} is porous for ¢ = (1/4)%, whereas {e* " : k € N} U {1} is
not porous. Moreover, the usual 1/3-Cantor set is porous. Finally, we mention that
any porous subset of 6D has one-dimensional Lebesgue measure zero.

Our result is the following:

Theorem 2. Let E be a compact subset of the unit circle. Then, the following
conditions are equivalent.
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(a) For any positive singular measure p supported on E, the inner function S|,
belongs to M, that is, T, 0 S,, is a Carleson—-Newman Blaschke product for
any a € D\ {0}.

(b) E is porous.

This allows us to give a first example of a continuous singular inner function
in M.

It is well-known that the behaviour of the modulus of an inner function (or,
more generally, an arbitrary bounded analytic function) is related to the behaviour
of the Poisson integral of a certain positive measure ([Bi]). More concretely, given
an inner function I which decomposes as I = B-S,,, where B is a Blaschke product
with zero sequence (b,,), we consider the measure

1
(1.1) p=pr=53 (1= bal)h, +o.

One of our major goals is to characterize the inner functions I in M in terms of the
behaviour of their corresponding measures u;. To state our result, we need some
more notation. Given a point z € D, denote by J(z) the arc centered at e*28 % of
length 2(1 — |z[), by Q(z) the Carleson box Q(e*®'87,1 — |z|) with base J(z), that s,

J(z) = {ew 2|0 —argz| < 1— 2|},
Qz) = {rei”:Ogl-rg1—[z|,|9—argz|$1—|z|},

and by £(Q(z)) := 1 — |z| (respectively £(J(z))) the length of the Carleson box Q(z)
(respectively, its base J(z)). Moreover, for N > 0, NQ(z) is the Carleson box
Q(e*28% N(1 — |z[). Note that NQ(z) = D if N is sufficiently big. Arclength of
an arc J C 0D is denoted by |J|. Finally, P,(w) = (1 — |2|)/|1 — @z|? stands for
the Poisson kernel. Here z € D and w € D.

Theorem 3. Let I be an inner function and p = p; be the measure defined in
(1.1). The following two conditions are equivalent.

(a) I ¢ M, thatis, there exists a € D \ {0} such that 7, o I is not a Carleson—
Newman Blaschke product.

(b) There exist C > 0, z, € D, |2p| = 1, 0 < m, < 1, m,, — 1 and integers
n(N) = oo as N = oo, such that
(b.1)

sup{‘%%% —C‘ :p(2,25) mn} —0

and
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(b.2)

sup sup / P, (w)du(w) —— 0.
n>n(N) 26D, (zn,mn) JDA\NQ(2) N=eo

The proof of Theorem 3 uses several ideas from [Bi]. Condition (b.1) will be
used to construct further examples of continuous singular inner functions in M.
Furthermore, condition (b.1) can aiso be applied to obtain examples of Blaschke
products in M, but not in P.

Corollary 4. Any Blaschke product whose zero set lies in a Stolz angle belongs
to the class M.

The paper is organized as follows. In Section 2, some known results on
Carleson—Newman Blaschke products are collected. Section 3 is devoted to the
proof of Theorem 1, which is applied in Section 4 to present examples of discrete
singular inner functions in M. Theorem 2 is proved in Section 4, and a first
example of a continuous singular inner function in M is given there. Section 5
contains the proof of Theorem 3, which is applied in Section 6 to present other
examples of continuous singular inner functions in M and to prove Corollary 4.
The paper concludes with some observations and questions.

As usual, the letter C denotes an absolute constant whose value may change
from line to line. Also, constants which only depend on a given parameter m are
denoted by C;(m), i =1,2,....

2 Carleson-Newman Blaschke products

We begin with a Lemma on the relation between pseudohyperbolic discs and
Stolz domains.

Lemma 2.1. (a) Let (M) = {z € D: |2| > 1/2,|z2 = 1] < M(1 — 2])} be
a Stolz domain. Then sup{r > 0:3 D,(z,7r) CT(M)} < 1.

(b) Let 0 < r(M) < 1 converge to 1 as M goes to infinity. Then there exist
pseudohyperbolic discs D of radius p(M), p(M) = 1 as M — oo, such that
DCT(M)Nn{zeD:|z| >r(M)}.

Proof. Letusrecall that D,(z,r) coincides with the euclidean disc K centered

2
at I_L;ﬁ;[,z and euclidean radius R = rli_';kfr];p. We may assume that z € [0, 1] and
that r < |z|. Hence, by ([Ga], p. 3), the smallest distance of a point in D,(z,r) to

Ois A= {é%, the biggestis B = ili‘l%
If D,(z,r) C I'(M), then R/(1— B) < tana for some a = a(M) € ]0,7/2[. But

R/(1 - B) = Zi4Hl—. This yields both assertions (a) and (b). O
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One can find in the literature many different descriptions of the Carleson—
Newman Blaschke products. We collect some of them in the following result for
further reference.

Theorem 2.2. [Ho.], [KL], [McK], [GIS], [To;] Let I be an inner function. The
following conditions are equivalent.

(a) I is a Carleson-Newman Blaschke product.

(b) I is a Blaschke product whose zero set is a finite union of interpolating

sequences.

(c) There exist € = €(I) > 0 and 6 = 6(I) < 1 such that the set
{z € D : |I(z)] < €} does not contain any pseudohyperbolic disc of
radius bigger than é.

(d) There existe > 0 and n > 0 such that for any z € D with |1(2)| < €, one can
findz € D, p(Z,2) < 1—¢, such that

1 - 12 @)] > .

(e) The zeros of I on the maximal ideal space M{H™) lie in the set G of

non-trivial points.

Proof. The equivalence between (a) and (b) is due to [McK] and follows from
the observation that if v = 3(1 — |2,|?)d,, is a Carleson measure, there exists a
constant N € N such that any pseudohyperbolic disc of radius 1/2, say, contains at
most N points of the sequence (2,,) (see also [MS]). The equivalence between (b)
and (e) follows from Hoffman’s theory (see [GIS] or [Toz]). The fact that (b) and
(c) are equivalent can be found in [KL]. It remains to show that (d) is equivalent to
(e) . Assume that (e) does not hold. Then there is a trivial point m with I(m) = 0.
By [Ho:], there exists a sequence (z,,) in D such that I o L, tends to zero locally
uniformly in D. Hence, for every § € ]0,1],

2.1) sup (1 —[2|*)|I'(z)] = 0
z2€D, (20 ,8)
as n — 0o0. Thus (d) cannot hold.

On the other hand, if (d) does not hold, then we may choose fore =n=1/na
point z,, with |I(z,)| < 1/nand such that (1—|z(?)|I'(z)] < 1/non D,(z,,1-1/n). In
particular, (2.1) holds. Thus (I o L,;)’ = 0 for any cluster point m of the (z,,). Since
I(m) = 0, we have I o L, =0, and so, for any 0 < 6 < 1, sup,¢p, (., 6 [1(2)] = 0
as n — oo. This contradicts (c), which was shown to be equivalent to (e) . O
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From part (c) of Theorem 2.2, it is obvious that the set a € D for whichr,ol isa
Carleson—-Newman Blaschke product is open. Observe also that as a consequence
of (e), given an inner function I, the set of @ € D for which 7, o I is not a Carleson—
Newman Blaschke product coincides with the intersection of D with the range of

I on the set of trivial points.
It is well-known that Carleson—-Newman Blaschke products cannot have radial

limit 0. Indeed, if
lim [I(re*)| = 0,
r—1

then I(z) tends to 0 whenever z approaches e*® within any Stolz angle
L(M)={z:|z—€’| < MQ-|2|)}.

Fix € > 0. Let 0 < (M) < 1 be such that |I| < € on I'(M) N {|z| > r(M)}. By
Lemma 2.1, I'(M) N {}z| > r(M)} contains pseudohyperbolic discs of radii close
to 1 as M — co. Applying (c) , we would get that [ is not a Carleson—-Newman
Blaschke product.

3 Proof of Theorem 1

We first need some auxiliary results, interesting in their own right. Let d4
denote area measure and let

BMOA = {f € HD) 111 o, =508 [ 110 - Ira(o)?) dd(2) < oo}

be the usual space of analytic functions of bounded mean oscillation. It is well-
known that ||[fo ®f,  ~ =|f |, Whenever & is a conformal automorphism of
D and f € BMOA. Note also that

31 - 101 < [ 1P GPQ-12P) aaG) <115 - SO,

where || f||, is the usual H? norm of f (see [Sh], p. 39).
Lemma 3.1. Let I be a function in BMOA. Givene > 0and 0 < m < 1, there

exists c = c(e,m, |1l g rioa) < 1 such that
sup (1—|w|)[I'(w)| >€ forall|z|<r
weD,(z,m)
implies that r < c.
Moreover, ¢ can be chosen so that for every r, — 1, there exists €, — 0 and
mn =+ 1 satisfying c(en, Mn, ||| gp04) < Tn-
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Proof. Assume that sup,ep,(z,m)(1 — [w){'(w)| > € for all |z| < r. Let m,
be defined by m., = (m + 1/2)/(1 + m/2) . We claim that

3.1) / (1~ ) |1 (w)PdA(w) > C(m)e(1 - |2]),
w€D,(z,m.)

where C(m) can be chosen to be (1 — m)C, for some constant C. To show this,
observe that for any w € D,(z,m.), the quantity (1 - |w|?) is comparable to (1 - |z|);
more precisely, we have

1-m? 1
— 2 > * _ 2 > . _ _ i
L= Jwf? > == (1= o) 2> (1 - m)(1L - |2)
So we only need to show that
3.2) / |I'(w)|2dA(w) > Ci€2.
w€D,(z,m.)

To prove (3.2), let w(z) € D,(z,m) be such that

(1 - [wE@) P (wE)f = sup  (1-|w)I'(w)].
weD,(z,m)

Observe that the definition of m, gives D,(w(z),1/2) C D,(z,m.). Hence,

/ T (w) PdA(w) > / 1T () PdA(w)
weD,(z,m,)

weD, (w(2),1/2)
> ClI'(w(2)I*(1 ~ jw(2)])* > Cie®.

3.3)

Here the second inequality holds because |I'|? is subharmonic and D,(w(z),1/2)
contains an euclidean disc centered at w(z) of euclidean radius comparable to
(1 — [w(2)}]). This proves (3.2) and so (3.1).

Next, we multiply both sides of (3.1) by 1/(1 — |z|)? and integrate with respect
to area measure dA(z) in the disk centered at the origin and radius . Hence

/ / (1= |2))"2(1 - [wP)|I' (w)PdA(w)dA(z)

(34) [z|<r Jw€D,(z,m.)

> é(m)/ €2(1 — |2|) " dA(2) = 27C(m)e? [log(1/(1 — 7)) —r].
|z|<r

Let Z¢ denote the characteristic function of the set E. By Fubini, the left hand
term in (3.4) is bounded above by

(35 /w L I [ /Il Ep, (2 (w)/(1 — |2])?dA(2) | dA(w).
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Using the facts that

1-|z|

1-— le < [02(1 - m")]_l

C‘Z(l - mt) <

whenever z € D,(w,m.), and that the euclidean radius of D,(w, m.) is bounded
above by —2—(1 — |w|), we can further estimate the interior integral by

1-m,

/ (1 - J2)2dA() < (1—_0;—;)—2(1 ~ Jwl)2A(D, (w,m.)) < Clm),

z:iz€D, (w,m.)
where C(m) = C4(1 — m)~* and where A is the euclidean area. Thus the left hand
term in (3.4) is bounded above by

C(m) /| L WP @A) < Cm) My,

Accordingly, we have by (3.4)

(3.6) C(m) ||IH2 > 27rC~'(m)62 (log(1/(1-7)) —r].

BMOA

From this we conclude that r has to be bounded away from 1; thus r <
cle,m,||I||2.,..) < 1. More precisely,

BMOA

1 Cs||I]|2

1 _ BMOA
BT €2(1 —m)s

Note that the function log {1~ — r is strictly increasing to infinity for r — 1. It is
now easy to check that if r,, = 1, then we may chose ¢, — 0 and m,, — 1 such that

Coll1113 0.4
Ml <« -~ Tn.
512;(1 - mn)5 < °8 1- Tn n O

Lemma 3.2. Let f € BMOA and let D, = D,(an,pn) be a sequence of
pseudohyperbolic disks of pseudohyperbolic center a, and pseudohyperbolic
radius pp, p, — 1 as n — oo. Then there exist pseudohyperbolic disks D!, C D, of
pseudohyperbolic radius also tending to 1 such that

3.7 sup‘(l —|w®)|f'(w)| 50 asn— oo.

weD;

Proof. LetD, = D,(an,,), where0 < r,, < 1is defined by 2r,,/(1+72) = p,.
We now apply Lemma 3.1 to the functions f o 7,,, where 7, is the automorphism
of the unit disk interchanging a, and the origin, (r,)~! = 7,,. According to the
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second assertion in Lemma 3.1, we may choose ¢, — 0 and m,, — 1 such that

c(€n, Mn, [|fllBMoA) < Tn. Note that ||f o 7a|lgmoa = ||fllamoa- By Lemma 3.1,
one can find z,, |z,| < Ty, such that

sup (1= w)|(f o) (w)] < €n.
weD,(zn,mn)

Since (1~ |w|})|(f o 7)' (w)| = (1 ~ T (w)|?)] f' (2 (w))| and the pseudohyperbolic
distance is invariant under automorphisms of the disk, we deduce
sup (1= 1EPIF (O] < €n-
€€DP(Tn(zn)vmn)

Choose D}, = D,(7n(2,), min{r,, m,}). We claimthat D}, is contained in D,,. This
follows from the fact that if w € D}, , then

p(w, n(zn)) + p(Tn(2n), an)
1+ p(w, Tn(21))p(Tn(2n), an)

p(w,an,) < < 2rp/(1+712) = p,

because p(1,(2n), 8n) = |2n| < Tp- a

Proof of Theorem 1. (a) = (b) : Let I € M. Assume that (b) does not
hold. Then there exists € > 0 such that the set E = {¢ < |I(z)| < 1 — £} contains
arbitrarily large pseudohyperbolic discs, say D,, = D,(zy,7,) C E, where r, = 1.
By Lemma 3.2, there exist a, € D, and D}, := D(ayn,pn) C Dy, pp — 1, such
that lim,, sup, ¢ p. (1 — {z[*)|I'(2)| = 0. Taking a subsequence, if necessary, we may
assume that I(ay,) — w for some w € D\ {0}. Since

(1= 12 [(rw o I)'(2)] < (1= (2)| =0,

1 — |ul
uniformly on D}, as n - oo, we obtain by Theorem 2.2 (d) that 7, o I cannot be a
Carleson-Newman Blaschke product. This contradicts the assumption that I € M.

(b) => (c) : Letz € D withe < |I(z)] < 1—¢. By (b) applied to £/2, there exist
d =4(e/2)and z € D with p(z,2) < 6 < 1, suchthat [I(Z)| < £/20r |I(2)] > 1—¢/2.
In both cases, we deduce |I(z) — I(Z)| > ¢/2. Let 4 be the hyperbolic geodesic
curve joining z and Z. Since

1)l < (sup(t - W) [ 750

< sup(1 - [w]?)|I' ()] C(6),

() - I(3)] < /

~

there exists w € = so that

[

(1= [wP)IF ()] > 3
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and (c) holds.

(c) = (a) : Leta € D\ {0}. For u = 74 0 I, we show that condition (d)
in Theorem 2.2 holds. Choose € € |0, |a|/2[, to be determined later, sufficiently
small. Then |u(z)] < € implies that
la) + ¢
l1+¢lal”

la| — ¢

1—¢le|
Choose ' > 0 so small that
1ol —af/2 laf +|al/2
By (c), applied to e’\, there exists §’(¢’) > 0 and '(¢’) > 0 such that forany z € )
with €' < |I(z)| < 1 — €', there exists w € I with p(w, z) < §'(¢') and

(1 = [w)I'(w)] > 7' ().

<|I(z)] <

<1l-¢.

This implies that

|o?

(1 = o)l > 221 - W) )l > 7> 0.

If e > 0 is chosen so small that §'(¢’) < 1 — ¢, we see that condition (d) in Theorem
2.2 is fulfilled. Hence u is a Carleson—Newman Blaschke product.

That (a) is equivalent to (d) is easily seen by using Theorem 2.2, (a) <= (e)
and the fact that I(x) = « if and only if (7, o I)(z) = 0 whenever a € D.

It remains to show that (d) is equivalent to (e) . Suppose that (d) does not hold.
Then there exist a trivial point z and o € D \ {0} such that I(z) = a. The inner
function u = 7, o I vanishes at z. By [GM], there exists a nontrivial part P(m)
such that u vanishes identically on P(m). Hence I = a on P(m); and so [ o L, is
the constant function a, which is surely not inner.

To show that (d) implies (e) , let m € G and consider the inner-outer factorization
of f =1IoLm. Then f = uF, where u is inner and F is outer. We may assume that
f is not identically zero. Let z € M(L*). Note that L,,(z) is trivial whenever z is
trivial (see [Bu]). Then f(z) = I(Ln(x)) € {0} USD. Since |u(z)| = 1, we have
F(z) € {0} UOD. Thus, the range R of F on the Shilov boundary 6 H® of H>, is
contained in {0} U 8D. Note that R coincides with the essential range of the L
function F on 8D (see [Ho; ], p. 171). Hence, 0 € R isolated would imply that F
has radial value 0 on a set of positive Lebesgue measure, a contradiction. Thus F
has modulus one everywhere on 8 H* and so is inner, hence a constant. 0

As an immediate consequence of Theorem 1 and Theorem 2.2, we get that an
inner function I (or equivalently a Blaschke product) belongs to P if and only if
for every ¢ €]0,1[ the level set {|I| < €} does not contain arbitrary large pseudo-
hyperbolic discs.
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4 Proof of Theorem 2

We first need two well-known auxiliary results. The second of these is a
comparison between the modulus of an inner function and the Poisson integral of
its corresponding measure. See [Bi]. For the reader’s convenience, we include the
short, elementary proofs. Recall that

1—|z/?

Py(w) = T=wep

is the Poisson kernel and that
P = [ Pw)dutw)

where 4 is a Borel measure on D. Finally, foraset E C D, E # §, let p(z,E) =
inf{p(z,z) : z € E} be the pseudohyperbolic distance of Eto z,z2 ¢ D. If E = §,
then we let p(z, E) = 1.

Lemma 4.1. Ifz and w are in D, then
“.1) [1-wz| <3(1—|[2]) +1—|w|+|argz — argw];

and if |argw — arg z| < m, then

4.2) %l argw — arg 2| < |¢'28% — ¢1%8¥| < |argw — arg 2|
and

4.3) 2z —w| > Izlleiargw _ eiargz|

Moreover,

4.4) eit — 2| > %largz _ ¢

iflargz —t| < 7.

Proof. Inequalities (4.2) and (4.4) are well-known. To prove (4.1), we proceed
as follows:

M-wz|=[(1-22) +Zz - wz[ <1~ |2[° + [z —w] < 2(1 = |2]) + |2 — w]

and

|z = w| < |lz]e**8 2 - |wlet 28 2

+ )lw,eiargz _ ,wleiargw
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< Izl = wl| + 1672787 = €782 | < (1= Jw]) + (1 = |2]) + |e'r5* - eFors®
<(1—|w|) + (1 —|z]) + |arg z — argw|.
To prove (4.3), we note that

,Z _ wl Z Iz“eiargz _eiargwl _ “wl _ Iz” Z lz“eiargw _ eiargz' — IZ_ ,wl

Hence
2|Z—'ll)| zlz”eiargw_eiargzl' O

Lemma 4.2. Let I be an inner function with zero sequence (z,). Let y =

be defined as
1
b= 5 Z(l - lznlz)ézn + o,

n
where o is the measure associated with the singular part of I. Then, for
E = {2z, : n € N} and any z € D, one has

4.5) P.(w) < log 1(2)|* < —(ZIT)QPZ(M,
and
n n—1
c (‘ZES“ + Z = 3(522\2 z))Q( ))) < log|1(2)|
(4.6)

C 1(2"Q(2) \ 271 Q(2))
oz B)? ( z)) + Z 276(2Q(2)) )
Here C > 1 is a universal constant.

Note that when I has no zeros, P,(p) = log |I(2)|}.
Proof. Observe that

log|I(z) Z log

Now, using that 1 — z? € logz~2 < (1 — z?)/z?, which holds for 0 < z < 1, and
the identity

n

+ P,(0).

P (=) - |zl?) _

Z2—zn
1-—
1- 2,2 |1 - Z,2|? =: k(zn, 2),
we deduce
-z, |72 1
k 1 n < )
(Zmz) Og 1 _ ZnZ ~N p(Z,E)2 k(thz)
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Now observe that > k(zn,z) is the Poisson integral of the measure
S°(1 ~ |2,[2)d;,, at the point z. So

P.() < log 1(2)| ™ < =
To prove (4.6), we decompose the integral as

PG)=[ P+ [ P Gwda)
n>1 2\2"1Q(z

and use the fact that there exists a universal constant C > 1 such that

c? C
(47) 1= Izl < Pz(w) < 1—_|2| forw € Q(Z)
and
C_l ¢ n n—1

To prove (4.7) and (4.8), first note that P,(w) < 1—_"’1;[ always holds. To show
the left inequalities, let w € 2"Q(z), n = 0,1,2,.... Then the result follows from
the observations that by Lemma 4.1,

|1~ Wz < (1 ful) + 3(1 - |2]) + |arg z — arg w]

<2M(1—2]) +3(1 - 2]) + 2*(1 - |z).

To show the right inequality in (4.8) (which is trivial for n = 1), note that for
n>2and 2™(1 - |2|) > 1 — |w| > 2""1(1 — |2|), we have

M-z 2 |z—w] > (1-|wl) = (1-]2l) 22" (X = |2]) ~ (1 = [2]) 2 2"72(1 - |zl);
also, for 7 > |argw — arg z| > 2"7!(1 — |2|) and |z| > 1/2, we have by (4.3),
- 1 11,01 n—4
21 - wz| 2 20z — w| 2 |2 —|argz ~ argw| > 5277 (1 - [z]) 2 2" (1 - |z]).

The case |z| < 1/2 offers no problem, since 22Q(z) = D, and so we may restrict
to n < 3. Now (4.6) follows from (4.7) and (4.8) by noticing that £(2"Q(z)) =
2"€Q(z) whenever 2™(1 — |z|) < =, that pu(27Q(z) \ 2"~'Q(z)) = 0 whenever
2"71(1 - |2]) > = and that for no with 2™~1(1 — |2]) < = < 2™ (1 — |z|), we have

that (27Q(2)

1 )
2 < 2m8Q() = O
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As mentioned in the introduction, any singular inner function whose singular
set is finite belongs to the class M. The situation is different when the singular
set is infinite. We first present two ways of constructing discrete singular inner
functions which do not belong to the class M.

For short, let us write [4, 8,] for the arcs {e* : §; < 6 < 6}.

Example 1. Given &, € 9D, &, — 1, one can use E. Decker’s result [De] to
construct a discrete measure g such that

}14111 Su(rén) =1/2, n=1,2,....

Then S, ¢ M because, by the remarks at the end of Section 2, 7,3 0 S, is not a
Carleson-Newman Blaschke product.

Example 2. Let u be a positive singular measure on 8D. Suppose that the
derivative D of 4 at e¥ is strictly positive (and finite). Then S, does not belong
to M.

In fact, if D = lim,_, - u([t,0])/]t — 6] = lim,_, ¢+ ([6,¢])/|t — 6] > O, then, by a
theorem of Fatou (see [Ko], p. 11),

lim P,(w)dpu{w) = 2D

T €T(M) —
r—exp(if) lw]=1

for every Stolz domain I'(M) at §. Hence

zeligg(“) |Su(z)| = exp(=27D).
z—vexp(sd

Since by Lemma 2.1, I'( M) contains with M — oo arbitrary large pseudohyperbolic
discs, we see that by Theorem 1(b) , S, ¢ M.

As a concrete example, we mention p = Y o0 | £,(8,, + 85, ), where a,, = ¢'/"
and ¢, = 1+ — 25. We could replace a,, by any point of the form e*~, 6, > 0,
where 6, is strictly decreasing to 0 and satisfies 6,1, /6,, — 1 and ¢, by 6, — 8,,.
In fact, this implies that the derivative of y at z = 1 is 1. Just note that for ¢ > 0,

there is a unique k € N with 8, <t < 8,. Then

p([0,t])/t < p([0,6k]) /Ok+1 = Ok /041
and
1([0,t])/t > p([0, Or41])/6k = Okt1/6k.

Another concrete example could be built upon the following construction. Let
M. € N tend to infinity and assume that within the arc [5,}”, x| we have M + 1
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equidistant points 8, (including the endpoints). Let ¢, = |0,+1 — 6,]. Note that
€r = 5 My if 560y < 0ny1 <0, < 5. Then the measure

oo
U= Z fn (58.'9,. + (Se—isn )

n=1
has derivative 1 at the point z = 1. Thus the singular inner function associated with
uis not in M.

In contrast with these examples, it is worth mentioning that there exist sequences
an € 0D which converge (fast) to 1 such that any singular inner function whose
singularities lie in {a,} U {1} belong to M. This is a consequence of Theorem 2,
which is proved below.

Proof of Theorem 2. (a) = (b) : Assume that (b) does not hold, that is,
that E is not porous. Then forany ¢,, > 0, e, — 0, there exists an arc J,,, J,NE # 0,
such that for any arc J, C J, with |J,| > €,|Ja|, we have J, N E # @. Let us
call this the np-property. We assume without loss of generality that £,n2 — 0,
€n < 1/4 and that 1/¢,, is an integer. We claim that by taking convenient subarcs,
respectively subsequences, we may assume that the J,, are pairwise disjoint, that
the centers converge monotonically to some point on the circle (hence the lengths
|Jn| converge to zero), that |J,+;| < |J,| < 1 and that

(4-9) diSt(Jn+l»Jn) > IJnI'

To begin the construction, let J, = D. Assume that Ji,...,J, have been
constructed. We now construct J,11. Let el ., = |Jn|/87, €51, = t€1,,1€n41. By
the np-property applied for ¢/, ,,, we obtain an arc I,,11, I,;1 N E # @ such that for
any Inyy C Ingy With |Ioa] > €1 nqs|, we have I,y NE # 0. Let J,y, bea
subarc of I 41 with [Jny1| = €411 Tns1]. Sinceel,,; > €l |, we have J,41NE # 0.
Moreover, |Jpy1] < 27el,,;, < %|J,,|. It is clear that whenever j,.+1 C Jnt1
with |Joy1] > Lenta|Jnia], we have |Jopa| > €21 |Ingi], 50 Japs NE # 0. If
Jn+1 N J, = 0, we skip the next step.

So suppose that J, N Jpy; # 0. Choose J,y C Jnyi1, same centers, with
| Jpt1| = 2|Jnt1]. Since |Jpy1] < |Jnl. there exists J, C J, with J, N J,y1 = 0 and
|Jn| = 1|Ja|. By our construction, J; N E # @ for k = n,n + 1. Now replace J,, by
Jn and J,4; by J,1;. This ends the inductive construction of a preliminary set of
arcs (J,) with the np-property for (¢,/2).

Now choose a monotone subsequence of the centers of the J,. The associated
arcs are again denoted by J,. Note that |J,| — 0. We may suppose that for all n,
the arc J, lies to the left of J, ;. Now suppose that dist(Jp41,Jn) > |Jn| is not



302 R. MORTINI AND A. NICOLAU

satisfied. Then choose as new J, the left half of the old J,,. Clearly, (4.9) is then
satisfied. Of course, we also have that for any arc J, C J, with |jn| > enldnls
J,, N E # 0. This ends the construction of the sequence of arcs (J3,).

Now we split each J,, into €' adjacent subarcs {J(n,k) : k = 1,...,¢,;1} of
length £,|J,|- By assumption, each J(n, k) meets E. Leta(n, k) € ENJ(n, k). Let
A(n, k) be the distance of a{n, k) to a(n, k + 1) and let

-1_3

En 00
Hn = Z A(n, k)‘sa(n,k)’ B= Zﬂn-
k=1 n=1

Note that y is supported on E. We show that S, ¢ M. To this end, by Theorem
I(b), it is sufficient to construct points z, € D such that for constants ¢ > 0 and
C > 0, we have ¢ < P (i) < C on the pseudohyperbolic discs D,(z,,1 — 1/n).

Choose z, € D such that J(z,) = ;- J,. Then 1 — |z,| = |J,|/8n. We claim that
for any z € D,(2p,1 — 1/n) and n large enough, we have

(4.10) J(2) C Jn.

To see this, let p(z, z,) < m,, where m, =1 — 1/n. Note that |z,| > m,. Let

lz,] — my, 1—|z,]
Qz{welﬂ):wz———,arw—arz < —— .
[ | l_lznlmn I 23 g ﬂl ’an—mn
Observe that
[Jn > 1 —{z,] _ [Jn] > |Jn]

7 lzn| —mn 8 —|Jya] 8
We claim that D,(2,, m,) C Q. In fact, by ([Ga), p. 3), p(z, z,) < m,, implies that
|z] > Lz=l=ma_ Moreover, if (without loss of generality) z,, is positive, and

1—|za|mn
_ 1-—
A= l2n| = mn exp <z 2] ),
1 |zp|m, |2n] — mp

then for n large enough, the imaginary part of A is bigger than the euclidean radius
R of D,(zp,my), where

_ 1—|z,|?

k= mnl —m2|za)?

Hence D,(z,,m,) C Q. Thus we have found an estimate of the arguments for the
elements in D,(z,,m,). Since for every z € D,(z,, my),

| Jn]

n| n 1- n 1 n 1-
enl = 1= lenl (At ma)A=eal) | Pl gy,

_— + -—_
1—|2nlm,  |2n| — ma 1-m, 7

1 1 1
= (§+7) 1 < 31l
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we conclude that J{z) C J, (see Figurel).

/ Jn x{)

Q(z)

Figure 1.

Next we show that for large » and every 2 € D,(2,,m,), the number of points
a(n, k) within the arc J(z) tends to infinity with n —+ oco. In fact, for these z, we
have by ([Ga), p. 3),

[2n| + mp - (1 =mup)(1 —|za])
1+ my|2,| 1+ my|2,|
|In

1
> —n(l —lzl) = ny?

W@l =1-1]21 21~

4.11)

Since e,n? — 0, we see that the number of intervals J(n, k) (which have length
€n|Jn|) belonging to J(z) tends to infinity as n — oco. This yields the assertion
above.

Next we claim that for 2z € D,(z,, m,),

(4.12) lim #nJ(2)

e I

in other words, p,, looks like linear measure at J(z). To see this, we note that at
most.two of the arcs J(n, k) which meet J(z) are not entirely contained in J(z).
Hence

pn(J@) = 3 MmE) 2 Y Amk) 2 J(2)] - 2enlnl

k:a(n,k)eJ(z) k:J(n,k)CJ(2)
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Thus, by (4.11),

pn(J(2)) 24| Jn| 32e,|J,|n? 9
>1- >1l— ——— =1-32e,n“ = 1.
[J(2)| ~ [J(=)| ~ |Jn]

By the same argument, we also see that

pn(J(2))
|7 (2)|

This proves (4.12). Applying Lemma 4.2, we obtain that

<1+432,n%>1.

P,(1) 2 P:(pn) > C71/2

whenever n is large and 2 € D,(z,, my,).
On the other hand, if p € N, as above, we see that

1 (220(2)
277 <2

whenever n is large and z € D,(z,,m,). Observe that 2¢J(2) = 8D and
|2PJ(2)| > 2P|J(z)| whenever p is big. Hence, by Lemma 4.2,

u,, (2PJ(z
C,;) Pl <40

We next estimate the contribution coming from 2 ktn Bk Let 2 € Dp(zq,my).
Since pi(Jy) < |Jx|, we have

@13) Y Pu) = k#n/ = 'z‘d €(6) < ZK |2|Jk|—1

k#£n

where &; is the point in J; closest to 2.
Now

1 — |22
/ lﬁ—lzlz de =i I||2|Jkl for some e = k() € Ji-
k

We show that for 2 € D,(z,, m,) and k # n, we have

(4.14) e =2 g
€k — 2
In fact, if we assume that A := |argz — arg&| < /2 and notice that J(2) C Jy,
then by (4.9)
Ik — 2| _ |k~ &l + |k — 2| [ J|
< <147
€k — 2| €k — 2| €k — 2|
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el g 1l |J&l mJel
|z| — e8] = [sinA| = A 2dist (J,, Ji)

But by (4.9), dist(Jn, Jx) > dist(Jes1, J&) > |[Jil if k& < n and dist(J, Jx) >
dist(Jp11,Jn) > |Jr) if k > n. Thus, since |Ji| < |Jn| if £ > n, we obtain

<1+ 1+% <1+

|k — 2|
<1 + <3
& — 2|
Ifn/2 <A <, then|{ — 2| > 1,and so
e — 2|
1€ — 2] ~
Hence, in both cases,
(4.15) 1<3Z/ _z|2d§<67r<20

k#n

We conclude that for any z € D,(2,, my),
4C+20 > P,(p) > C1/2.

Since m,, = 1—1/n — 1, we deduce that property (b) of Theorem 1 is not satisfied
and therefore S, ¢ M.

(b) = (a) : Suppose that E is e-porous. Let u be a positive singular measure
supported in E. Fix 0 < 5 < 1/2. Consider the set

L={zeD:n<|Su(z)]<1-n}

We show that this level set does not contain arbitrary large pseudohyperbolic discs.
Thus, by Theorem 1(b) , S, € M.

First we claim that there exists a constant C = C(¢) suchthat forany z € L, there
exists Z € D with p(z,2) < C(e) < 1suchthat JZ)NE = 0. If J(2) N E = 0, then
weletz = z. If J(z)NE # 0, there exists by (b) anarc J C J(2), |J| > €| J(z)|, with
JNE =@. Choose z € Dsuchthat J(z) = J. Note that 1—|z| > 1— |Z] > e(1—|z|).
Hence we get by Lemma 4.1,

(112 - |2%)
11— zz2

1- pz(z"";) =

e(1 - |z|)? €

> .
T B -2l + (1~ |3]) + |argz —arg2])” T 25

Thus p(2,2) < /1 —-¢/25=:C(e)

v
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If |S,(Z)] < por|S,(2)] > 1~ n, then we are done, since the disc D,(z,C(¢))
is then not contained in {w : < |Sy(w)| < 1 —7n}. So we may suppose that
[S.(2)] > n. We now construct z* := re'®8% with p(z*,z) < C(g,n) for which
{Su(z*)] > 1-1n. Let

Note that § < 1/2. Choose r €]0,1[suchthat 1 —r = §(1 — |2|) and let 2* = re'ar8 2,
Thus 1 - |2] > 1 - |2*]| =4(1 - |Z]).
By Lemma 4.1, we have
1 -1z% -2
[1— 222

1-p%(3,2%) =

S 51~ |z))?
- - ~ 2
[3(1 - 12) + (1 - [2*]) + |arg Z ~ arg z*|]
Thus p(2*,2) < \/1-6/16 =: C(n). Combining this with p(z, %) < C(e), we see
that p(z,2*) < C(e,n).
Now we evaluate S, at z*. Note that for e € 8D\ J(Z), |e* — 2| is comparable

to e — 2*|; more precisely, since arg 7 = arg z* and 1 — |z*| = §(1 — ||), we have
by (4.4),

é
> —.
— 16

e R Gy R D e | Y LB )
'ett — znl lett — zll ;largz; — t[
1 s
<1+ _(_lJM <l+n<5.
+(1—12))
Hence
- 1|22
log 5,7 = [ S )
# teiteamnJ(z) € — 2*|2
- J2] | e* = 5P
<2 12l 1 le du(t)
teiteo\J(z) € — Z[? []e*t — 27|
1312
< 506 Bl A

t:eit oD Ieit - 2[2

= 50481og|S,(2)|™! < 506log% = log N i e

Thus we have found a point z* with p(z, 2*) < C(e, n) suchthat |S,(2*)] > 1—-1.
Therefore, the level set L does not contain any hyperbolic disc of radius larger than
or equal to C(g,n). Hence condition (b) in Theorem 1 is satisfied. Therefore,
Sy € M. a



FROSTMAN SHIFTS OF INNER FUNCTIONS 307

We remark that if the set E C 0D contains a sequence (a,) converging to a
such that

4.16) —aﬂ———rl asn — 0o,
Qnt1 — &
then it is quite easy to find a subset F of E and a singular inner function supported
on F which does not belong to M (see the following paragraph). In particular,
such a set is not porous. Trivial examples are sets containing a continuum.
To construct F, we may assume that o = 1 and that arga,, > 0 for all n. Put

F = {a, : n € N} U{1}. Let ¢, be the length of the arc [a,1,an]. Let p be the

measure
o0 oo
p=3 lnba, + > luds,.
n=1 n=1

Since the derivative of p at 1 is 1, by Example 2, we see that the associated
singular inner function S, ¢ M. Now S, = S5;5,, where S, is associated to
p1 = Yoor, £nd,,. Obviously, u is supported on E and Sy(z) = S1(Z). Since
I(z) € M < I(z) € M, we obtain that §; & M.

Let us also mention that there exist compact sets which are, roughly speaking,
*“§-porous at every point” (the § depending on the point), but which are not porous.
In fact, let 6, = 1/22k and consider the points fi , = 0 +1/(1+1/k)" forn > n(k).
Then for all k, the sets Ey, = {ePx~ : n > n(k)} U {e*®*} are §;-porous, but since
8 = 0, E = Jz=, Ex is not porous.

This example also shows that there exist nonporous sets which do not have
property (4.16).

On the other hand, we have the following result.

Proposition 4.3. Ler E C R be a compact set. Suppose there exist § > 0 and
SJor every 8 € E some ¢ = €(8) > 0 such that for every (z,y) € E? with z # y,
O0<|y—8 <eand 0 < |z — 6| < &, we have

-0
y—0

4.17)

- 1' > 6.
Then E is CS-porous for some universal constant C > 0.

Proof. By a compactness argument, it is easily seen that we have only to test
open arcs J containing a given § € E and of length less than £(6).

So let J be such an arc with J N E # 0. If J contains only one point of E, then
there trivially exists J' C J with [J'| = 1|J| such that J' N E = §. Without loss
of generality, we may assume that § < §' = sup{z : £ € EN J} and that @ lies in
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the left half of J. If |§ — 6’| < %|J], then there exists J' C J with J'N E = § and
1) = 11

Solet |6 — 6’| > 1]|J]. We shall construct J' C J; := [§,8'] with J'N E = § and
|7’ > 38]41] > gé|J].

Note that J; C J implies that |J,| < £(f). By (4.17), we have for every
Jo=1[8,¢] C J; withp € E and ¢ < ¢’ that

1]
— = 1| > 4.
(2| g
Thus |J;| — |J2| > 8|J2|, and hence
|1
< —.
2l < 1775

Hence, for the supremum of those ¢, Jp,8'[ NE = 0. Let J' =|p,6'[. Then
|J'[ = |J1] = | T2l > 8| Ja|. If |Jo| > §|4], then |J'| > 26|J1]; if |Jo| < 1]J1], then
IJII > %IJ]I(SiﬂCC Ji =J2UJ’). O

Example 3. Using Theorem 2 and the fact that the usual 1/3-Cantor set E
is porous, we obtain a continuous singular inner function S, € M. Just take for
p the singular measure given by the Cantor-function associated to E (this is a
continuous, weakly increasing function on [0, 1] which has zero-derivative at each
point of [0,1] \ E).

At the end of Section 6, we give an example of a continuous singular inner
function in M whose support is not porous.

It would be interesting to know a characterization of those non-porous sets E
for which there exists a singular inner function in M whose set of singularities is
E. We guess that for every compact set E C 8D, there is a singular inner function
S whose set of singularities equals E and which belongs to M.

S Proof of Theorem 3

Proof. (a) = (b) : Let a € D\ {0} be such that 7, o I is not a Carleson—
Newman Blaschke product. Then, by Theorem 2.2, there exist z,, € D, |z,| — 1,
and 0 < m}, < 1, m}, — 1 such that

G.b sup {|1(2) = @] : p(z, zn) < My} —— 0.

In particular, I has no zeros on {z : p(z, z,) < m},} if n is sufficiently large. Then,
considering m, = m}, — (1 — m})!/2, one can check that

p(DP(Zn’Thn),D \ Dp(zn7m:;)) m 1.
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Hence
(5.2) P(Dy(zn, ), {z € D2 I(z) = 0}) —— 1.
Therefore, applying (4.5) and (5.1), one obtains

1 p(z,25) € ﬁzn} — 0.

n—00

(53)  sup { ' | P-wduw) - loglal ™

The constant C in part (b) of the statement will be C = (log|a~!|)/m and m,,
will be chosen such that m,, < i, but still with m,, — 1.

We first show that (b.2) holds. For N > 0 and 2 € D, let us consider z(N) =
(1 - N1 - |z]))exp(i Argz). Then if N > 0 is fixed and z is sufficiently close
to the unit circle, 2(N) € D. Moreover, z(N) and z lie on the same radius and
1-]z(N)}| = N(1 — |2|). Fix N > 0. We claim that p(z,2(N)) < 1- 1/N. In fact,
since z(IV) and z have the same argument, 1 — 1/N < |z] and |z(N)| < |z|, we have

- M) (1= () = (1= J2])
PN = Tl = 11610 - N = =)

(N =DA-|z2]) _N-1 _ N-1 _N-I
C1-lz|+]z|[N(1—]z]) " 1+ Nz| T1+N1-%) N

Choose i, such that

=1

1
L

27y
1+ m2
There exists n(N) such that 7a,, > 1 — 1/N for every n > n(N). Hence, for every
z € Dy(zn, M),

= Mmy,.

p(N),2) +plzza) _ 1=1/N+mha _ 2,
PN)20) S TGN el zn) = TH (= 1Ny, ~ T+ 7l

IN

My
Thus
54 z(N) € Dy(zn,y) whenever 2 € D,(z,,7,) and n > n(N).

Next we claim that if w ¢ 2NQ(z), then

(5.5) 1—Zw| 2 |l — 2(N)w|,

where c is an absolute constant.
In fact, observe that by (4.1) we have for N > 3,

[1—2(N)z[ < (1 - [2(N)]) +3(1 - [2]) + | arg 2 — arg z(N))

(5.6)
S (N +3)(1 - Jz]) < 2N(1 - [2).
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Hence, if 1 — |w] > 2N(1 — |2|), we obtain
|1~ 2(M)z] < 2N(1 - |2) < 1 = ] < [1 - Zw].
On the other hand, if 7/2 > |6] := |argz — argw| > 2N(1 — |z|), then
2101 < sing] = Jim (= ~ Jew])] < e ~ow]] < 1 - e¥lellul| = |1 - Zuf;
and if 7/2 < |6] < =, then

11— Zw| = e - lzw|] > V]zwl? +12>1>

Hence, in both cases (by (5.6)),

1> —|argz — argw|.

3 |-
3|

1 —2(N)z| <2N(1-|z|) < |argz — argw| < 7|1 — Zw|.

Therefore

1 —2(N)w| <1 - 2(N)z| +|z2(N) — 2(N)w| < 7)1 — Zw| + |z ~ w|

(5.7) _
<l - 7w+ 22 s < a1 - 7w,
11— Zw|

This finishes the proof of (5.5).

It follows immediately from (5.5) that
C .
P.(w) < 'NP:(N) (w) ifw¢ 2NQ(2).
Thus
C
B P (w)dp(w) < ¥ | P, vy (w)du(w)
D\2NQ(z) D\2NQ(2)

c
<N . P vy (w)dp(w).

Now, if p(z, z,) < M, and n > n(N), then by (5.4) we have p(z(N), z,) < 7irg; this
means that we may apply (5.3) to obtain

/[_) Py (w)du(w) < logla]™ +1,

if n is sufficiently large. Therefore, for n > n(N) sufficiently large, and any 2 € D
with p(z, z,,) € h,,, we have

Lo P(dutu) < toglal™ +1)
D\2NQ(2)



FROSTMAN SHIFTS OF INNER FUNCTIONS 311

which gives (b.2).

We now prove (b.1). Lete > 0. Choose, according to (b.2), aninteger N = N(¢)
such that
(5.8) sup / Py, (&)du(€) <e

wED,(2n,1hn) Y D\NQ(w)
for all n > n(N). Define m,, by

2m,
14+ m2

= TMin.

Let , = 1 — m2. We may assume that i, < 1/25. For every z € D,(z,,m,,), let
T = r(z) satisfy
11-r(2)

(5.9) Bl =

In particular, 1 — |r(2)| < 1 — |z|. For each z € D, with p(z, 2,,) < m,, consider the

arc
L(z) = {r(2)e” : 16 — arg 2| < (1 - 8)(1 — |)},

where § = 4(z) > 0 is chosen so that
(5.10) NQ(w) C Q(z) ifw e L(z)

and z € D,(z,,m,).
To show that this is possible, observe that if ¥ € NQ(w), w € L(z), we have

|6 —arg 2| < |6 — argw| + |argw — arg z|
SN = |wl) + (1 =) (1 = |z]) = N(1 = r(2)) + (1 - 6)(1 — |2]),

which is smaller than 1 — |z| because

if § = §(z) is chosen so that

N1 -r(2))
W <é.

So (5.10) holds.
We claim that the choice of r(z) implies that for every z € D,(z,,,m,) we have

(5.11) L(z) C {w: p(w, z,) < 1itn}



312 R. MORTINI AND A. NICOLAU

(see Figure 2).

D(zp.mp)

Figure 2. The set L(z).
To see this, we first compute for w € L(z) the distance p(w, z) using (4.1):

- w2 > (1= |21 = )
T (= L2+ 3(1 = [w]) + | argz — arg w)

> (1- ]2 - |r(2)]) _11-r(2)
(A~ 430~ ) +1-2)* 25 112
Hence p(w, 2) < /T =1, = m,,. We conclude that

2

= Tn-

p(waz) +P(Zn, Z) Mp + My
w,2,) < <
P 2n) S o 2Yp(emr2) = 14 manme

By (5.8), (5.10) and (5.11), we obtain

= Ty

(5.12) sup / P, (€)dule) <e.

welL(z) /B\Q(z)

By (5.3), (5.11) and the fact that m,, < 7, < h,,, we see thatforz € D,{(zn, my),

/ﬁ Py (£)du(&) — logla] ™

sup
weL(z)

<é€

for n sufficiently large. Hence, for every z € D,(2,,m,), (5.12) yields

(5.13) sup
welL(z)

Py()du(é) —logla| ™| < 2¢

Q(=)
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for n sufficiently large.

Let |dw| be the usual linear measure (arc-length) on L(z). We integrate (5.13)
along L(z) to obtain

1
|L(2)] Jqez) JL(z)

(5.14) Py (§)|dwldp(€) — log o] 7| < 2¢

forall z € D,(2,,mp).
LetJ = J(z) = {6 : |8 —argz| < (1-6(2)){1—|z])}. Observe that for w € L(z),

_ 1-17(2)?
.Ln&“mﬂ‘ly«ﬂ-&uw“”“

Oy CLLC L

T 1= r(22[€l? Joes le¥ — Er(2)P?

By (5.2) and (5.11), we get that

(5.15)

(5.16) p(L(2),{z*€D:I(2*)=0}) 1 asn— oo

uniformly in z € D,(zn, m,).
To obtain a lower estimate in (5.15), we first need to show that (5.16) implies
that for fixed ¢t > 0 and £ € (1 -~ ¢)Q(z) N suppg,
1-r(2) _
1—r(z)[¢]

(5.17) lim 1 uniformly for z € D,(z,,m,) as n = oc.

To show this, we make two observations. First, we note that if p € Q(z) satisfies
1—17(z) <1-|p| <1~ |z|, where z € Dy(zn,m,), then p € D,(zn,70,). In fact,
|argp — arg z| < 1 — |2|; hence by (4.1),

(1 - [P — |2[)

1 - p%(z,
p*(z,p) > (1—1pl + 301 —|2|) +|argp-argzl)2
1-r(z) _
> 25(1 — lzl) Tn =1 m?n

and therefore

p(p, 2) + p(z, 2n) 2m. N
n) < < =My n-
B o) S ol (e 20) < Trmg ~ T <
Since by (5.2), {z : I(z) = 0} N Dy(2,,m,) = @, every point £ € Q(z) N suppu
then has modulus bigger than r(z), provided n is sufficiently large.
Next observe that with r = r(2),
1-r 1
T=rlg] = 14 rl
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To show (5.17), assume that 1—_1§i does not tend to 0, say 1 > 1—_151 >n > 0. Then
we choose w € L(z) with argw = argé&, where £ € (1 — t)Q(z) n suppu. Here we
have used that §(z) — 0 as |z| — 1. Since |w| = r(z) < |¢|, we obtain, by (4.1),

(1 - Jwl)(1 — €))
(1= |wl) +3(1 — [¢]) + |argw — arg£])”

_ 2
S n(1 = |w|) _ n ST 50

T (- fwl) + 301~ 1E)® i +3:15L]2 64

1-r(z)

- pz(w’ 5) Z

But the left hand side of this inequality tends to zero by (5.16). Thus (5.17) is
proved.

Our next step to prove a lower estimate of the Poisson integral will be to show
that for £ € (1 —#)Q(z) Nsuppyu we have r(z)¢ € @(z). Indeed, by (5.17) and (5.9),

L-rlg] _1—rfg 17
T—|z]  1-r 1-[z|
asn — oo. Hence 1 - r|§] < 1 — |z|. Since r is real we get that r§ € Q(z).

Finally, in our last step, we show that |e?® — 2|/|e*® — r] is bounded by a
constant depending only on t whenever z € D,(2,,my,), £ € (1 — t)Q(z) N suppy
and 8 € [0,2#[\J. We proceed as follows. Choose n so large, and hence |z| so
closeto 1, that 1 — t/2 < 1 — §(z). Hence, for § € [0, 2n[\J, we have

21x0=0

€9~ &rl > 210 ~ argel 2 2(t ~ 6(:))(1 ~ I2l) > 21~ |2).

Since r£ € Q(z), we get

€9~ 2] _|e®=rél+ire=2l _ IrE-2

5.18) e €] = 1P —rd e = 7¢]
’ diam Q(z) 4(1 - |2])

§1+t(1_l‘) 1+t(1 ll)<1+47r/t

We are now able to prove that we can take 2n — ¢ as a lower bound of
L (2) P, (¢}|dw| whenever n is large. More precisely, we claim that for fixed t > 0
and ¢ € (1 - t)Q(z) N suppy, the integral |, 1(z) Pw(€)|dw| converges uniformly for
2 € D,(2,,my) to 2rr whenever n goes to infinity. This can been seen as follows.

First, we see that by (5.17),

2

d — 2 zﬂde_
/M_, (©)ldw] =y |re|2/02,[ (%) = 2 oen IEP 2

asn — oo. On the other hand, whenever z € D,(z,,m5,), £ € (1 — t)Q(z) N suppu
and w = re*, we obtain by (5.9) and (5.18),

1-r

Pugrass<z T
/[o.zn[\J (0.2x[\J € — 7€
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<50 / (A= Lzl 17 =2 4 oy, /a PO = 260t
[

o2n[\s € —z|* |e¥ —r¢]?
Since 1, — 0, we finally get that [ L(z) P, (&)|dw] converges uniformly to 27 for

z € Dy(2n,my) and £ € (1 — t)Q(z) N suppp as n — oo.
Hence, by (5.14), (5.15) and the preceding paragraph,

mQ(z ) |
o ,L(Z)f IL(Z)[ -/Q(z) /I:(z &)|dw|du(€) > log|a|™! — 2¢;

and for fixed ¢t > 0,

#((1 - H)Q(2)) 1 / 1
2r —¢€ < P (&)|dw|du(§) <log|a]™ + 2¢
uniformly for z € D,(z,,m,) if n is sufficiently large.

The second estimate applied to a point z* = z(t) such that (1 — ¢)Q(z*) = Q(2)

reads HQE)
|L(2*)|
By the continuity of the functions r(z(t)) and §(z(t)) within a fixed disc D,(z,,, m,.),
we have |L(2(t))| — |L(z)| if t — 0. We deduce

Q=)
SR ATIETI

(2r —¢) < loglal™! + 2.

<logla|™! +2¢

if z € D,(z,,my) and n is sufficiently large.
Since |L(z)| = 2r(2)(1 - (2))(1 — |2]) = 2r(2)(1 — 6(2))€(Q(2)) and 6(z) — 0,
respectively r(z) — 1, as |z| — 1, we obtain

- 2 _
5 [loglal™" - 2] < ‘Z((g((:)))) < 5 [loglal ™ + 2¢]

for z € D,(z,,my,) and n sufficiently large. Since ¢ > 0 is arbitrary, we finally

obtain -1
sup #Q)) _loglal™ | | 0 asn— oo.

2€D,(zn,mn) Z(Q(Z)) ™
This finishes the proof of (b.1).

(b) = (a) : We show that for any 0 < m < 1, one has
(5.19) sup {|log|1(2)|™! - 7C| : p(z,20) < m} —— 0.
n—o0

This implies that for any ¢ > 0, the set

{z € D:exp(—nC —¢€) < |I(z)| < exp(~7C +¢)}
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contains arbitrarily large pseudohyperbolic discs. Applying part (b) of Theorem 1
we deduce that I ¢ M.

Observe that condition (b.1) implies that yx cannot have a point mass on
{z: p(z, zn) < my,} for large n. In fact, suppose that

sup  [u(@Q(2))/(1~|2]) - C| < b <1,
2€D,(z2n,my)
where 0 < § <« C is a small number to be fixed later, and that y has point mass at b
with p(b, z,) < m,. Note that u(b) = (1 — |b2)/2. Choose a € D,(zp,m,), a # b,
such that arga = argband 1 — |b| > 1 — |a| > (1 - §)(1 - |b]). Let R = Q(b) \ {b}.
Then Q(a) C Q(b) implies

#Q®) , mR) | wQ@))1-d > (C - §)(1 - §).

_ 5>
(5.20) C+é2 1—1o] “1—1b]= 1—=la] 1 [}

Since
pQE) _ p(R) | 1+
1-1b 1-1b 2’
we get a contradiction to (C + 8) — (C — 8)(1 — &) < 1/2if é is sufficiently small.
We deduce that for fixed 0 < m < 1,

p({z:p(z,2n) <m},{2:I(z) =0}) > 1 asn— oo.

In order to prove (5.19), it is therefore sufficient, by (4.5), to show

(5.2 sup{ sp(2,2) € m} — 0.
n—oo

/ﬁ P.(w)dp(w) - C

The proof proceeds by discretizing the Poisson integral of u. Given e > 0, apply
(b.2) to obtain N = N(e) and n(e) := n(N) such that for all n > n(e),

<eg

(5.22) ’ /5 P, (w)dp(w) - /N RO

uniformly in z € D,(z,, m,). For sucha 2, given a small number § > 0 (to be fixed
later and depending only on ¢ > 0) such that N/§ is an integer, we split the arc
NJ(z) into N/4 disjoint subarcs {J; : k = 1,..., N/&} of length |Ji| = 6]J(z)|. We
denote by Q = {re : € € Ji, 1 —r < £(J;)} the Carleson box which meets the
unit circle at the arc J;. We claim that » has no mass on S,, := NQ(z) \ U Qx for
p(2z,zn) < m and n big. To see this, note that

Sn={weD:6(1-]z]) <1-|w| < N1~ [z]), |largw — arg z| < N(1 - |2])}.
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Hence, for w € S,, we have by (4.1) that 1 — p?(z,w) > §/(2N + 3)%; and so
plw,2z) < ¢=C(N,d) < 1. Thus

pw,2) +p(z,20)  ctm
< <
p(w,zn) =7 +p(’w,2)P(Z)z") “1l4+cm

S My
whenever n is large, since m, — 1. Since x has no mass on D,(z,,m,), we get
(5.23) p(NQ@\[J@w) =0.
Next we claim that
(5.24) |P;(w) — P.(w)| < COP;(w) if w,wy € Q.

To see this, note that |w — wx| < diam Qg, hence |w — wi| < 46(1 — |2]).
Therefore,

Il — Wez| < |1 — Wz| + |wWz — W 2|

45(1 — |2|)

5.25 <1+ =1+ 46.
(5.25) |1-wz| — |1 — we| - 1-—|z2]
Hence

1—|z|? 1—- 2% |1 - wez|?

P,(w) = < (14 46)° P, (wy).

T =22 T |1 — wkz|? |1 — we|?

From this it is easy to conclude that |P,(w) — P,(w)| < C8P,(w), which is
(5.24).

From (5.24) and (5.23), we deduce that for z € D,(z,,m), n large,
N/é

(5.26) /N oo, PoH) - ’Z;Pk(wk)u(@k)

<Cé / P, (w)du{w).
NQ(z)

Here wy, is any point in Q. Later we take wy € @y so that Q(wi) = Qk.
We want to show that the right side term of (5.26) is small if § > 0 is small. We
use the standard estimates of the Poisson kernel given in Lemma 4.2 to show

o~ _u(2*Q(2)
= 2k0(2+Q(2))
Here M = [log, N] + 1 and, without loss of generality, N(1 — |z|) < 1/4, so that
£(25Q(2)) = 2*¢(Q(2))-

Let z(k) € Dbe defined sothat Q(2(k)) = 2¥Q(z). Notethat 1 —|z;| = 2¥(1—|z|).
Hence p(2(k), z) < /1 — (1/16)(1/2F). Since k < M = [log, N]+1, which is fixed,
and p(z,2,) < m < 1, we have

(5.27) » /N oo, P < €

p(z(k), 2) + p(2, z,)
p(z(k), z) < T+ plz, 2)p(z(k). 2) < C(N,m) < 1.
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Hence p(z(k), z,) < m,, if n is large. Thus (b.1) gives
p(2*Q(2))
e o+, k=0,...,M,
€(2%Q(2))
and (5.27) yields
| Pwdutw) <26:(C + 1)
NQ(z)

Hence (5.26) gives

N/§

(5.28) '/ P; (w)dp(w) - ZR(wk)ﬂ (Qx)| < 26C1(C +1)C

uniformly on D,(z,,m) for n sufficiently large. Now is the time to specify 4; fix
6§ €]0,1/4] so that 26C; (C + 1)C < e. Choose wy so that Q(wy) = Qi. Observe
that

1z 21— |wi] = €(Qi) = €(Jk) = 86(J(2)) = 8(1 - |2))

and that |arg wy — arg z{ < N(1 — |z|). Hence p(wy,2) < /1-6/(4 + N)2.
We conclude that for z € D,(z,,m),

p(wk, 2) + p(z, 2n)
< C(4, N, 1
1+ p(z, 2,)p(wr, 2) €, Nym) <

p(wka Zn) S

which is smaller than m,, if n is sufficiently large. Thus (b.1) gives

Q) _
'E(Qk) —C‘<6, k=1,...,N/é

if n is sufficiently large. Therefore, for all z such that p(z,2,) < m

N/§ N/§ N/§
(5.29) ZP- (we)p(Qk) — CZP(wk YUQr)| <€D Pu(wi)l(Qu).
k=1

To further estimate the Poisson sums, we have to show that for every £, € Qx,

1 - €z
1 — 7z

(5.30) 1-46< <1+46.

Indeed,

- L ) .
L-gel  [L-7al -z —8el ) Kg=ml o, diamQ o
1= 7] 2 11— 7z 1~ 7] 1-|z|

The upper estimate was proven in (5.25).
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Now applying this to the upper and lower Riemann-Darboux sums of the
Poisson integral given by

N/§ N/§ 122

_ZIE |2|Jk| and L= ZI z|2"°|

where (&,mx) € Ji x Ji, we obtain by (5.30),

N/6 N/§ N/6

2
R:= ZP (wg) [Jkl Z |1 IZIzlgl Jl < Z |77 zlz‘ kl l77k z’|2

<Q +45) L <2n(l+46)*<32

as well as
R > (1 —46)2U > 2x(1 — 46)%.
Hence
(5.31) |R — 27| < 4876 < 200.

Note that this holds for all z such that p(z, z,) < m and n sufficiently large.
Thus, since £(Q) = %!Jkl, (5.22), (5.28), (5.29) and (5.31) show

/;P:(w)dp(w) -7nC| <
D

w)dp(w) - /N o P

N/S

d P, (

+ [ o P2 00) = S P
N/§ N/a
ZP (wen(Qk) = C S Po(we)8(Qx)
. N/J k=1

+o gpz(wk)u,,] -2

2
<e+e+ 37&‘-{-%2006:0'5

for all z € D,(zn, m) if n is sufficiently large. This yields (5.21). a

6 Continuous singular inner functions and Blaschke
products in M

6.1 Continuous singular inner functions. It is easy to exhibit contin-
uous singular inner functions not belonging to the class M. One way to do this
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is again to use results of E. Decker [De], who constructed continuous singular
measures u for which lim,_,; S,(r) = 1/2, for example. Another way is to use a
result of K. Stephenson on covering maps. For instance, if 0 € K is a compact
subset of the disc of logarithmic capacity zero, the covering map Il : D —» D\ K
is a singular inner function. If a € K, 7, o Il is also singular. So if cardK > 1,
IT ¢ M. Moreover, II is a continuous singular inner function if 0 is a limit point of
K ([St]).

The construction of continuous singular inner functions in the class M whose
support set is the whole circle, thus not porous, uses the singular measures given
in the following result. We first introduce the dyadic decomposition of the unit
circle.

Fork =1,2,..., let F; be the collection of the 2* pairwise disjoint (half-open)
arcs of the unit circle of length 2727%. So, given J € %y, there are two arcs
J1, J2 € Fry1 such that J = J; U J,. The arcs in Fi are called the dyadic arcs of
the unit circle of generation k.

Proposition 6.1. For 2 > \ > 1 let u be a positive measure on the unit circle
such that for any dyadic arcs J, J,,J; in 8D with J = Jy U Jp and £(J;) = €(J)/2,
i =1,2, one has

p(Ji) ()
> a8
i ]

fori =1o0ri=2 Then pis singular with respect Lebesgue measure, and its

corresponding singular inner function S,, belongs to the class M.

Proof. The fact that x must be singular is well known. Actually, u is
concentrated on a set of Hausdorff dimension h())/ log 2, where

A 2 A 2
A== - -— —
h(X) 2log()‘)-{~(1 2)log<2_l\).
See [He], where a more general result is proved. To show that S, € M, observe

that by hypothesis, u(J)/[J| and p(J;)/|Ji| can never be close simultaneously to
any given number, because

(Tl = ()11 > (A = 1))/ 1] .

This contradicts condition (b.1) in Theorem 3. Note that p(z,z;) < /1 —2/81
whenever z and z; are taken such that J(z;) = J; and J(2) = J. a

Construction of . This is well-known; we sketch it for the convenience of the
reader. We define the probability measure x by induction. Put p(8D) = 1, and
assume that the mass of 1 has been defined on all of the generation k. If J is such
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an arc and J = J; U J; its decomposition in two disjoint arcs of length ¢(J)}/2, we
define

w(J1) = (A 2)u(J) and  u(J2) = (1 - A/2)u(J).
So the mass of x on arcs of generation k + 1 is defined. Iterating this construction,
we obtain a probability measure x on 8 such that for the dyadic arc J, () of the
n-th generation containing €',

p(J,.(B)) = (,\/2)!/(11,9)(1 _ /\/2)n—v(n,0)’

where v(n,6) is the number of dyadic arcs of length bigger than 2~ containing
e'® whose p-mass is /2 times the p mass of its predecessor. The Law of Large
Numbers tells us that

v(n,8)

lim =22 =)/2, foru-ae.e? € dD.
n—roe n
> log[u(J, (8))]
lim BT 0 for pae. e € OD,
n—oo n
where

-3 ) (=32

(see [He]). We deduce that 4 is absolutely continuous with respect to Hausdorff
measure Hg if 3 < h(A)/log 2 and singular with respect to Hausdorff measure H,,
if v > h(A}/log2. In particular, u is singular with respect to linear measure.

6.2 Blaschke products. As mentioned in the Introduction, we now use
Theorem 3 to show that any Blaschke product B having its zeros in a Stolz angle
I" belongs to M. Since M is closed under multiplication, this extends to Blaschke
products whose zero sets lie in finitely many Stolz angles. Let us also mention a
related result due to D. Marshall and D. Sarason, which states that if A € D is not
a cluster point of B|r and if A is not in the set {B(a) : B'(a) = 0}, then 7 o B is an
interpolating Blaschke product (see [L)).

Proof of Corollary 4. Let B be a Blaschke product whose zeros lie in a
Stolz angle. We may assume that its vertex is the point 1 and thus

{z€D:B(z) =0} C{zeD:|2| >1/2,]1 — 2| < M(1 — |2|)} =: T(M)

for some fixed M > 1. Let u be the measure associated to B in Theorem 3. We
will check that condition (b.1) in Theorem 3 does not hold. Let z € D satisfy

#(Q(2))

e > 0.

HQ(2)
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Then Q(z) NIT'(M) # @. We show that there exists a constant C = C(M) < 1
such that for every z € T'(M), there exists 2 € D with p(z,Z) < C such that
Q(EZ)NTIT(M) = 0. Assuming this has been done, it follows immediately that
1(Q(2)) = 0, since p has its support at the zeros of B, but those lie in the cone
I'(M). Thus condition (b.1) in Theorem 3 does not hold, and so B € M.

To show the existence of the constant C, consider the cone

| arg w| T
. _ : <24 M.
r {wED lwl>1/2’1_(w|— *3
Since 1 2
M> |1 —z| > (2/m)| arg 2| whenever z € I'(M),
1—|z] 11z

we see that I'(M) C I'*, the inclusion being strict. Now choose z € D satisfying

N

arg
1|2

=2+%M and 1-|z]=1-|3].

To show that Q(%) does not meet I'(M), it is sufficient to prove that the left corner
g of Q(2) does not belong to I'( M). Indeed,

q = |z|exp (i(arg z — (1 — |2]))).

If § = argq, then

zg[mgz —1] >3(1+£M)—3=M.
T T 2 T

Hence ¢ ¢ I'(M). In order to finish the proof, it remains to observe that, by
4.1),

(1)) > 1

1-p%(z,2) > )
p(52) 2 (4(1 — |2]) + |argz —arg 2|)® T (4+2M T +2)?

Hence p(2,2) < C(M). a

We conclude with some observations and open questions.

As a special case of Corollary 4, we mention the following: let B be an
interpolating Blaschke product having its zeros in a cone; then B € P. For
example, if z,, €]0, 1] is any separated sequence (this means that p(z,,, z,,) > 6 > 0
for n # m), then the associated Blaschke product b is interpolating, hence in
P. Taking r, = 1 -27", we get that p(z,,2n41) — 1/3. Thus, by Schwarz’s
lemma, |b] < 1/2 on the radius [ry,1]. Hence the pseudohyperbolic diameter of
this level set is 1 (although it does not contain arbitrary large pseudohyperbolic
discs). Thus b ¢ (Ns), a class of functions studied by Nestoridis ([Ne]) and
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Tolokonnikov ([Tos]) and defined as the set of all inner functions I such that for
every i €]0, 1] the pseudohyperbolic diameters of the connected components of the
set {z € D : |I(z)] < n} are less than §(1,n) < 1. According to [To.], the space
(Ns) is a subset of P; therefore, (Ns) is actually a proper subset of P.

We also note that Corollary 4 cannot be generalized to convex domains tangent
to the unit circle. In fact, the interpolating Blaschke product

5-1/2

b= 108

where S(z) = exp[—(1+2)/(1 - )] is the atomic inner function, is, by the definition
of M, not in M; but its zeros are located on the horocycle ;f_—%}; =1/2.

The atomic inner function plays another important role in the representation of
functions in M.

Lemma 6.2. Let S, be a singular inner function in M and let S be the atomic
inner function S(z) = exp[—(1 + 2)/(1 — z)]. Then there exists a Blaschke product
b € P such that

Sy=S80b.

Moreover,

6.1 {z € M(H™®):8,(x) =0} C {z € M(H®) : b(z) = 1}.

Proof. Following [St] and [GLMR], the function

_logS, +1
" logS, -1

is inner and S, = S ob. Let x be a trivial point. Suppose that |b(z)| < 1. Then,
by [Ho,], we have S, (z) = (S o b)(z) = S(b(z)) € D. Since S has no zeros in D,
we get a contradiction to the fact that S, does not take any value in D \ {0} on the
set of trivial points. Thus b € P. In particular, b is a Carleson-Newman Blaschke
product.

To prove (6.1), take £ € M(H>) with b(z) # 1. By the Corona Theorem, there
exists a net (z,) in D with 2, — z, and 50 b(z,) — b(z). Hence S(b(z4)) — Su(z)
and, by the analyticity of S outside {1}, we also have S(b(z,)) = S(b(z)). But
S(b{z)) #0. O

It would be interesting to give a characterization of those b € P for which
Sobe M.

We have the following question. Let p = Y7 | 5485, be a discrete measure.
Assume that 6, — 8 and that 377 | s, /| — 6i| converges. By a result of Cargo
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[C], we know that the singular inner function S,, associated with x (and each of
its subfactors) has a radial limit of modulus one in e*. Is S, € M? This class
of singular inner functions is the analogue of the so-called Frostman Blaschke
products (see [To.]). For example, it is known that whenever

N A
sup Z —— <00,
a€dD ] |1 — azn)

then the Blaschke product B with zeros (z,,) is in P (see [To,]).

In general, M is not closed under taking subfactors, nor under composition.
For example, So S ¢ M, where S is the atomic inner function. In fact, S(z) =0
for some trivial point z, so by [Ho.], (S o S)(z) = S(0) € D\ {0}.

Now let B € P. Suppose that B(0) # 0. Then, for the same reason as above,
BoS ¢ M. But, as we are going to show,

I:B(L__B-iie
1-B(0)BoS

In fact, B € P implies that B := (r, o 7p(g)) o B is a Carleson-Newman Blaschke
product for every a € D. Obviously B(0) # 0, if a # 0. By [Mo], we know that
bo S is an interpolating Blaschke product whenever b is an interpolating Blaschke
product which does not vanish at the origin. Hence, for everya € D, a # 0,

Teol = (1507800 B)oS

is a Carleson—-Newman Blaschke product. Thus I € M. Noticing that Tpo) © B
vanishes at the origin, we can write it in the form 75() o B = 2C for some C € P.
Then we get that I = S(C 0 S). Clearly C o S ¢ M.

In this connection, we may ask whether for every inner function I there exists
a second inner function I'* such that I I* € M?

Let us also point out that for every inner function I € M, there exists a Blaschke
product B € M such that

{z € M(H®)\D: I(z) =0} = {z € M(H®)\D: B(z) = 0}

and
{z e M(H®): |I(z)| =1} = {z € M(H™) : |B(z)| = 1}.

This is an immediate consequence of a result of Guillory and Sarason [GS] which
says that any inner function is codivisible in H* + C with a Blaschke product.
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