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Abstract. For any simply connected domain Ω, we prove that a Little-

wood type inequality is necessary for boundedness of composition operators

on Hp(Ω), 1 ≤ p < ∞, whenever the symbols are finitely-valent. Moreover,

the corresponding “little-oh” condition is also necessary for the compactness.

Nevertheless, it is shown that such inequality is not sufficient for characterizing

bounded composition operators even induced by univalent symbols. Further-

more, such inequality is no longer necessary if we drop the extra assumption

on the symbol of being finitely-valent. In particular, this solves a question

posed by Shapiro and Smith [12]. Finally, we show a striking link between the

geometry of the underlying domain Ω and the symbol inducing the composi-

tion operator in Hp(Ω), and in this sense, we relate both facts characterizing

bounded and compact composition operators whenever Ω is a Lavrentiev do-

main.

1. Introduction and Preliminaries

Let Ω be a simply connected domain properly contained in the complex plane

C with locally rectifiable boundary ∂Ω. Let τ be a Riemmann map that takes the

open unit disc D onto Ω. For 1 ≤ p < ∞, the Hardy space Hp(Ω) consists of

holomorphic functions F on Ω such that the norm

‖F‖p =

(
1

2π
sup

0<r<1

∫

τ({|z|=r})

|F (w)|p |dw|

)1/p

is finite. Here, |dw| denotes the arc-length measure on ∂Ω.

We note that, although this norm depends on the choice of the Riemann map,

any other Riemann map induces an equivalent norm on Hp(Ω), and therefore, the

Hardy space Hp(Ω) is well defined. As particular instances, we have the classical

Hardy spaces on the unit disc Hp(D) whenever Ω = D and τ is the identity map.

For more about these spaces, we refer the reader to Duren’s book [5].
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If Φ is a holomorphic map on Ω, that takes Ω into itself, then the equation

CΦ F = F ◦ Φ

defines a composition operator CΦ on the space H(Ω) of all holomorphic functions

on Ω. In case that Ω is the open unit disc, Littlewood [8] proved in 1925 that any

composition operator CΦ is bounded on any Hardy space Hp(D); a result known as

Littlewood Subordination Principle. In the eighties, Shapiro [11] characterized the

compactness of CΦ on Hp(D) in terms of the Nevanlinna counting function for Φ,

which is defined by

NΦ(w) =





∑

z∈Φ−1{w}

log
1

|z|
if w ∈ Φ(Ω) \ {Φ(0)}

0 if w /∈ Φ(Ω),

where Φ−1{w} denotes the sequence of the Φ-preimages of w, with each point

written down as many time as its multiplicity.

More recently, Shapiro and Smith [12] have shown that the geometry of the do-

main Ω plays an important role in the boundedness and compactness of CΦ on

Hp(Ω). In particular, they prove that the condition of boundedness for the deriva-

tive of the Riemann map τ and its reciprocal actually characterizes the domains Ω

for wich every composition operator is bounded in Hp(Ω). Moreover, Hp(Ω) sup-

ports a compact composition operator if and only if ∂Ω has finite one-dimensional

Hausdorff measure. They ask for a characterization of boundedness and compact-

ness of composition operators CΦ along the lines of the results in [11].

The aim of this paper is to relate the geometry of the domain Ω to the fact

that boundedness (respectively compactness) of CΦ on Hp(Ω) can be characterized

in terms of a Nevanlinna type condition for Φ in Ω. From this point of view, if

δ(z, ∂Ω) denotes the distance from z to the boundary of Ω, we define the function

ÑΦ,Ω associated to Φ in Ω by

ÑΦ,Ω(w) =





∑

z∈Φ−1{w}

δ(z, ∂Ω) if w ∈ Φ(Ω)

0 if w /∈ Φ(Ω).

Observe that when Ω is the unit disc D, the function ÑΦ,D is closely related to the

Nevanlinna counting function NΦ. Actually, Littlewood’s Subordination Principle

is equivalent to the fact that any holomorphic map Φ taking D into itself and

Φ(0) = 0 satisfies

NΦ,D(w) ≤ log
1

|w|
, (w ∈ D),

(see [11], for instance), or equivalently,

(1) ÑΦ,D(w) . δ(w, ∂D), (w ∈ D).
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Throughout this work, a . b denotes that there exists an independent constant

C such that a ≤ C b. In addition, note that Shapiro’s Compactness Theorem can

be restated saying that the condition ÑΦ,D(w) = o(δ(w, ∂D)) as δ(w, ∂D) → 0

characterizes those symbols Φ taking D into itself inducing compact composition

operators on Hp(D).

We should mention here that given a simply connected domain Ω and ϕ : Ω → Ω

an analytic function, there is a natural way to define the Nevanlinna counting

function for ϕ in Ω in terms of Green’s function of Ω with pole at some point in Ω.

In fact, this definition fairly generalizes the corresponding one in the unit disc D.

Nevertheless, this point of view is closely concerned with those Hardy spaces Hp(Ω)

defined by means of the conformal invariance, that is, if τ is a Riemann map taking

D onto Ω, then F ∈ Hp(Ω) if and only if F ◦τ ∈ Hp(D) for 1 ≤ p <∞. It holds that

the spaces Hp(Ω) and Hp(Ω) coincide if and only if |τ ′| is bounded away from 0 and

∞ (see [5, Chapter 10] for more about this subject). We point out that conformal

invariance techniques reduce those questions about boundedness and compactness

of composition operators on Hp(Ω) to the corresponding ones on the classical Hardy

spaces Hp(D); so already answered.

On the other hand, one of the advantages of considering the function ÑΦ,Ω is

that precisely the geometry of the domain Ω plays a fundamental role to determine

what symbols Φ induce bounded and compact composition operators on Hp(Ω).

Roughly speaking, we will show that whenever the boundary of Ω is, in some sense,

quasi smooth, bounded and compact composition operators on Hp(Ω), 1 ≤ p <∞

are completely characterized with a condition similar to that one in Hp(D).

The paper is organized as follows. In section 2 we show that for any simply

connected domain Ω, under the extra hypotheses that Φ is a finitely-valent symbol,

the Littlewood type inequality

ÑΦ,Ω(w) . δ(w, ∂Ω), (w ∈ Ω)

is necessary for CΦ to be bounded in Hp(Ω), for any 1 ≤ p <∞. Moreover, we also

prove that the corresponding “little-oh” condition is necessary for the compactness

of CΦ on Hp(Ω), 1 ≤ p <∞.

Nevertheless, we show that the Littlewood type inequality does not suffice for

characterizing boundedness of composition operators CΦ, even induced by univalent

symbols. In fact, we exhibit a simply connected domain Ω and a composition

operator CΦ such that the inducing symbol satisfies that ÑΦ,Ω(w) . δ(w, ∂Ω) for

all w ∈ Ω but CΦ does not take Hp(Ω) boundedly into itself.

In section 3, we show that Littlewood type inequality is sufficient, without any

extra assumption on the valence of the symbol Φ, if we impose a geometrical con-

dition on the domain: ∂Ω is a Lavrentiev curve. On the contrary, it is no longer

necessary if we drop the extra assumption on Φ of being finitely-valent. To show
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this, we present an example in section 4 of an infinite-valent symbol Φ not satisfying

Littlewood type inequality, but inducing a bounded composition operator on Hp(Ω).

The key point of both examples in the sections 2 and 4 is a link between the

geometry of the underlying domain Ω and the symbol inducing the composition op-

erator. In this sense, in section 5, we relate both facts, characterizing boundedness

and compactness of composition operators on Hp(Ω), whenever Ω is a Lavrentiev

domain.

Weighted composition operators. For the sake of completeness, we end this

preliminary section relating the composition operator CΦ acting on Hp(Ω) to a

weighted composition operator on the Hardy space Hp(D) (see [12]). Recall that

given holomorphic maps ϕ, ψ on the unit disc D with ϕ(D) ⊂ D, the weighted

composition operator Wϕ,ψ is defined by

Wϕ,ψf(z) = ψ(z) f(ϕ(z)),

for any holomorphic map f on the unit disc. Let τ be a fixed Riemann map that

takes D onto Ω. Taking into account that the map F → (τ ′)1/p(F ◦ τ) is a linear

isometry which takes Hp(Ω) onto Hp(D), it is not difficult to see that CΦ is similar

to the weighted composition operator induced by ϕ(z) = τ−1 ◦ Φ ◦ τ and ψ(z) =

(τ ′(z)/τ ′(ϕ(z)))
1/p

. Observe that ϕ actually takes D into itself and ψ is holomorphic

on D, since τ ′ does not vanish on D. Since boundedness and compactness are

properties invariant under similarities, we will deal with this particular weighted

composition operator. For simplicity of notation, we will denote it by Wϕ, p.

In addition, we remark here that although the results in this paper are stated for

any 1 ≤ p <∞, it is enough to prove them for p = 2. This is a consequence of the

fact that if CΦ is bounded (respectively compact) on Hp(Ω) for some 1 ≤ p < ∞,

then it is bounded (respectively compact) for all p (see [3], for instance). Therefore,

the corresponding weighted composition operator Wϕ, 2 (for abbreviation Wϕ) is

given by the formula

Wϕf = (τ ′(z)/τ ′(ϕ(z)))1/2f(ϕ(z)), f ∈ H2(D).

Finally, we would like to mention that boundedness and compactness of gen-

eral weighted composition operators in Hp(D) were characterized by Contreras and

Hernández-Dı́az [3] in terms of Carleson conditions on pullback measures. Never-

theless, as mentioned before, we are interested in a different aspect of the subject:

the geometry of the underlying domain Ω.

2. Littlewood type inequality and finitely-valent symbols

In this section we begin by showing that Littlewood type inequality is necessary for

boundedness of composition operators on Hp(Ω), 1 ≤ p <∞, whenever the symbol

is, at most, of valence finite. Nevertheless, we will provide an example showing that

the condition is not sufficient even when univalent symbols are considered.
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Theorem 2.1. Let Ω be a simply connected domain properly contained in C. Let

Φ be a holomorphic map, finitely-valent on Ω, such that Φ(Ω) ⊂ Ω. Assume that

CΦ is bounded in Hp(Ω), for some 1 ≤ p <∞. Then

ÑΦ,Ω(w) . δ(w, ∂Ω)

for any w ∈ Ω. Moreover, if CΦ is compact on Hp(Ω) for some 1 ≤ p <∞, then

ÑΦ,Ω(w) = o (δ(w, ∂Ω))

as δ(w, ∂Ω) tends to zero.

A word about notation. Before proceeding further, we should mention that through-

out this paper, we denote a ≈ b whenever there exist two positive universal positive

constants c and C, such that c b ≤ a ≤ C b. In addition, for the sake of simplicity,

C will always denote an independent constant, which can be different from one

display to another.

Proof of Theorem 2.1. We may restrict ourselves to p = 2. First, let us assume

that CΦ is bounded H2(Ω) and the valence of Φ is N , that is, for any w ∈ Ω, the

set {z ∈ Ω : Φ(z) = w} has at most N elements.

We will transform the Littlewood condition into one easier to handle. Fix w ∈ Ω

and let {zj} ⊂ Ω, 1 ≤ j ≤ N , be the sequence (possibly empty) of the Φ-preimages

of w. For each 1 ≤ j ≤ N , let ξj be in D such that τ(ξj) = zj . Let ζ be also in

D such that τ(ζ) = w. Since ϕ = τ ◦ Φ ◦ τ−1, it is clear that ϕ(ξj) = ζ for any

1 ≤ j ≤ N .

Since τ is a conformal mapping, a consequence of Koebe Distortion Theorem

asserts that

1

4
|τ ′(u)| (1 − |u|2) ≤ δ(τ(u), ∂Ω) ≤ |τ ′(u)| (1 − |u|2) (u ∈ D),

(see [9, pp. 9], for instance). Then, we deduce that

ÑΦ,Ω(w)

δ(w, ∂Ω)
=

∑
j δ(zj , ∂Ω)

δ(w, ∂Ω)
≤ 4

∑
j |τ

′(ξj)| (1 − |ξj |
2)

|τ ′(ζ)| (1 − |ζ|2)
.

So, it is enough to show that the quotient in the right hand in the above display

remains bounded. Observe that the sum involved is finite since 1 ≤ j ≤ N .

For each 1 ≤ j ≤ N , let kξj
be the reproducing kernel at ξj in H2(D), that is,

kξj
(u) =

1

1 − ξj u
, (u ∈ D).

If W ∗
ϕ denotes the adjoint of Wϕ, it is not difficult to see (see [12], for instance)

that

W ∗
ϕkξj

(z) =

(
τ ′(ξj)

τ ′(ϕ(ξj))

)1/2

kϕ(ξj)(z).
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If Kξj
= kξj

/‖kξj
‖, we deduce that for any 1 ≤ j ≤ N holds

‖W ∗
ϕKξj

‖2 =

∣∣∣∣
τ ′(ξj)

τ ′(ζ)

∣∣∣∣
1 − |ξj |

2

1 − |ζ|2
≤ ‖W ∗

ϕ‖
2,

since W ∗
ϕ is a bounded operator by hypotheses. Now, summing in the index j, it

follows that

(2)

∑
j |τ

′(ξj)| (1 − |ξj |)

|τ ′(ζ)| (1 − |ζ|)
≤ N ‖W ∗

ϕ‖
2,

where N is the valence of Φ. This proves the first half of Theorem 2.1.

Now, assume that CΦ is compact on H2(Ω). Then, Wϕ is compact on H2(D).

Let w ∈ Ω be fixed and {ξj}
N
j=1 ⊂ D such that Φ(τ(ξj)) = w for j = 1, · · · , N . As

before, we have

ÑΦ,Ω(w)

δ(w, ∂Ω)
≤ C

∑

j

‖W ∗
ϕKξj

‖2,(3)

for some positive universal constant C. Now, since Kξj
converges weakly to zero as

|ξj | → 1− (see [4]), and the sum involved is a finite one, we deduce from (3) that

ÑΦ,Ω(w)

δ(w, ∂Ω)
→ 0

as |ξj | → 1− and hence, as δ(w, ∂Ω) tends to zero. This completes the proof.

Remark 2.2. Observe that the constant in the right hand of (2) depends explicitly

on the valence of Φ. In fact, this is the crucial point which shows, as we see in the

following section, that the proof cannot be generalized to infinite-valent symbols.

2.1. Littlewood type inequality does not suffice. Now, we will exhibit a sim-

ply connected domain Ω and a holomorphic self-map such that Φ is univalent and

satisfies Littlewood type inequality, but the composition operator induced by Φ is

not bounded in any Hp(Ω) any longer.

To describe the required domain Ω, let the boundary ∂Ω be a heart shaped

curve with an inward-pointing cusp in −1, and an outward-pointing cusp in 0 such

that a Riemann map τ : D → Ω with τ(−1) = −1 and τ(1) = 0, behaves in a

neighborhood of 1 like 1/ log(1 − z) (see Figure 1). For the sake of simplicity, we

call such an outward-pointing cusp a logarithmic outward-pointing cusp.

Let Γ ⊂ D be a teardrop shaped curve with Γ ∩ ∂D = {−1} and a logarithmic

outward-pointing cusp in −1. Then, a Riemann map ϕ that takes D onto the simply

connected domain bounded by Γ with ϕ(1) = −1 behaves in a neighborhood of 1

like −1 − 1/ log(1 − z).

Let us consider Φ = τ ◦ ϕ ◦ τ−1. Observe that Φ actually takes Ω into itself.

Under the conditions stated above, we have the following



COMPOSITION OPERATORS ON HARDY SPACES 7

-

ϕD

−11

? ?

0 0
-

Φ

Ω

1

Figure 1

Proposition 2.3. CΦ is not bounded on Hp(Ω) for any 1 ≤ p <∞. Nevertheless,

ÑΦ,Ω(w) . δ(w, ∂Ω) for all w ∈ Ω.

Proof. Again, we restrict ourselves to p = 2. First, we show that CΦ is not bounded

H2(Ω). It suffices to prove that the corresponding weighted composition operator

Wϕf = (τ ′(z)/τ ′(ϕ(z)))1/2f(ϕ(z)), f ∈ H2(D)

is not bounded on H2(D). To this purpose, we show that Wϕ1 /∈ H2(D), i. e., the

integral

(4)

∫ 2π

0

∣∣∣∣
τ ′(eiθ)

τ ′(ϕ(eiθ))

∣∣∣∣ dθ

is not convergent. To check this, firstly we note that τ can be extended to an

homeomorphism on D mapping the boundary ∂D onto ∂Ω. Moreover, since ∂Ω is

Dini-smooth and has an inward-pointing cusp in −1, τ(z) behaves in a neighborhood

of −1 like (z+1)2−1 (see [9, Theorem 3.9]). By assumption, there is a neighborhood

of 1 so that τ(z) behaves like 1/ log(1− z) and ϕ(z) behaves like −1−1/ log(1− z).

Hence, in a neighborhood of 1, we deduce that |τ ′(z)| behaves like
∣∣∣∣

1

(1 − z) log2(1 − z)

∣∣∣∣ ,

and since ϕ(1) = −1, we have that |τ ′(ϕ((z))| behaves like 2|ϕ(z)+1| ≈ 2/| log(1−

z)|. Then, we deduce that the integral

∫ 2π

0

∣∣∣∣∣

1
(1−eiθ) log2(1−eiθ)

2
log(1−eiθ)

∣∣∣∣∣ dθ

diverges, and therefore, Wϕ is not bounded.
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Now, our task is to show that ÑΦ,Ω(w) . δ(w, ∂Ω) for all w ∈ Ω. Since Φ is

univalent, we are reduced to proving that

(5) δ(Φ−1(w), ∂Ω) . δ(w, ∂Ω), (w ∈ Ω).

Let w ∈ Φ(Ω) and z ∈ D be the τ -preimage of Φ−1(w). It is clear that ϕ(z) is the

τ -preimage of w since Φ = τ ◦ ϕ ◦ τ−1. Once again, as a consequence of Koebe

Distortion Theorem, we deduce that

(6)
δ(Φ−1(w), ∂Ω)

δ(w, ∂Ω)
≤ 4

|τ ′(z)| (1 − |z|2)

|τ ′(ϕ(z))| (1 − |ϕ(z)|2)
,

and therefore, it is enough to show that the quotient in the right hand in (6) remains

bounded for z ∈ D.

In order to check this, we observe that it is enough to deal just with those

points z whose image ϕ(z) is close to the boundary ∂D. Because of the choice of

ϕ, it suffices to prove that such a quotient remains bounded when z is close to 1.

Once again, using the behavior of ϕ and τ around 1 and taking into account that

ϕ(D) is contained in a Stolz angle with vertex at −1, we deduce that there exist a

neighborhood U of 1 and a positive constant C such that

1 − |ϕ(z)|2 ≥ C |1 + ϕ(z)|

for z ∈ U , and therefore a little computation shows that

|τ ′(z)| (1 − |z|2)/|τ ′(ϕ(z))| (1 − |ϕ(z)|2)

remains bounded when z is close to 1, which completes the proof.

Remark 2.4. Observe that the composition operator induced by ϕ is not only

bounded, but also compact on the Hardy space H2(D). This is a consequence of

the fact ϕ(D) is contained in a nontangential approach region near −1 (see [4, Ch.

3] for the details to this argument). Nevertheless, CΦ does not inherit from Cϕ

even the property of being bounded.

3. Littlewood type inequality and geometry of the domain Ω

In this section, we show that the Littlewood type inequality suffices, without

any extra assumption on the valence of the symbol Φ, if we impose a geometrical

condition on the domain. Roughly speaking, if we restrict ourselves to domains

Ω where the boundary ∂Ω is, somehow, smooth, we show that CΦ is bounded on

Hp(Ω) for any 1 ≤ p <∞ if Φ satisfies the Littlewood type inequality.

We begin recalling that a Lavrentiev curve Γ in the complex plane C is a recti-

fiable Jordan curve such that there exists a constant M > 0 satisfying

length(Γ(a, b)) ≤M |a− b| for a, b ∈ Γ,
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where Γ(a, b) is the shorter arc of Γ between a and b. In other words, the length

of the arc between a and b is comparable to the chord joining a and b. Lavrentiev

curves are also called chord-arc curves. The inner domain of a closed Lavrentiev

curve is called a Lavrentiev domain. For more about the subject, we refer the reader

to Pommerenke’s book ([9, chapter 7]). We are in position to state our result:

Theorem 3.1. Let Ω be a Lavrentiev domain properly contained in C. Let Φ be

any holomorphic self-map of Ω so that

ÑΦ,Ω(w) . δ(w, ∂Ω)

for all w ∈ Ω. Then CΦ is bounded on Hp(Ω) for any 1 ≤ p <∞. Furthermore, if

ÑΦ,Ω(w) = o(δ(w, ∂Ω))

as δ(w, ∂Ω) → 0, then CΦ is compact on Hp(Ω) for any 1 ≤ p <∞.

Remark 3.2. Observe that we are not assuming any extra condition on the valence

of the symbol Φ in the statement of Theorem 3.1.

Proof of Theorem 3.1. We may consider p = 2. We begin by proving the first part

of the theorem. To this purpose, we observe that since ∂Ω is rectifiable, the norm

in H2(Ω) is equivalent to the one performed by the integral

‖F‖ =

(∫

∂Ω

|F (z)|2 |dz|

)1/2

, (F ∈ H2(Ω)),

(see [5, Chapter 10]). So, in order to prove that CΦ is bounded on H2(Ω), it is

enough to show that there exists a positive constant C such that
∫

∂Ω

|F ◦ Φ(z)|2 |dz| ≤ C

∫

∂Ω

|F (z)|2 |dz|, (F ∈ H2(Ω)).

Let us fix F ∈ H2(Ω). Without loss of generality, we may assume that 0 ∈ Ω. The

key point of the proof relies on the fact that, since ∂Ω is a Lavrentiev curve, given

any holomorphic function F on Ω, it holds that

(7)

∫

∂Ω

|F (z)|2 |dz| ≈ |F (0)|2 +

∫

Ω

|F ′(z)|2δ(z, ∂Ω) dm(z)

(see [1] and [7]). Here m denotes the Lebesgue measure in the complex plane.

With equivalence (7) at hand, the rest of the proof basically follows the lines

of the corresponding proof in H2(D) (see [4, Chapter 3], for instance), although a

careful analysis is required. Firstly, we deduce that
∫

∂Ω

|F ◦ Φ(z)|2 |dz| ≈ |F (Φ(0))|2 +

∫

Ω

|(F ◦ Φ)′(z)|2 δ(z, ∂Ω) dm(z)

= |F (Φ(0))|2 +

∫

Φ(Ω)

|F ′(w)|2



∑

Φ(z)=w

δ(z, ∂Ω)


 dm(w)

= |F (Φ(0))|2 +

∫

Ω

|F ′(w)|2 ÑΦ,Ω(w) dm(w),(8)
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where in the second line the change of variables Φ(z) = w has been performed.

Now, we proceed to show that both terms in the sum in (8) are bounded in terms

of ‖F‖2
H2(Ω). On one hand, we have that

F (Φ(0)) =
1

2πi

∫

∂Ω

F (ξ)

ξ − Φ(0)
dξ

(see [5, Chapter 10]). Then, by mean of Cauchy-Schwarz inequality, we deduce

(9) |F (Φ(0))|2 . ‖F‖2
H2(Ω)

∫

∂Ω

|dξ|

|ξ − Φ(0)|2
.

The key point now is that ∂Ω is a Lavrentiev curve, and therefore, it holds that for

any w ∈ C \ ∂Ω ∫

∂Ω

|dζ|

|ζ − w|2
≈

1

δ(w, ∂Ω)
,

(see [1] and [7]). Thus, from (9) it follows that

(10) |F (Φ(0))|2 .
‖F‖2

H2(Ω)

δ(Φ(0), ∂Ω)
.

On the other hand, since ÑΦ,Ω(w) . δ(w, ∂Ω) for all w ∈ Ω by hypotheses, we

have that ∫

Ω

|F ′(w)|2 ÑΦ,Ω(w) dm(w) .

∫

Ω

|F ′(w)|2δ(w, ∂Ω) dm(w)

. ‖F‖2
H2(Ω).(11)

From (10) and (11), the desired result follows.

Now, assume that ÑΦ,Ω(w) = o(δ(w, ∂Ω)) as δ(w, ∂Ω) → 0. Note that a se-

quence {Fn} ⊂ H2(Ω) converges weakly to zero if it is bounded in H2(Ω) and

Fn → 0 uniformly on compact subsets of Ω. Therefore, relation (7) along with an

argument entirely similar to that one used for the corresponding result in H2(D)

(see [10, Chapter 10], for instance), yields that CΦ is compact on H2(Ω). This

completes the proof of the Theorem 3.1.

We note that Theorem 3.1 along with Theorem 2.1 provides, as an immediate

consequence, the characterization of boundedness (resp. compactness) of composi-

tion operators induce by finite-valent symbols in terms of a big-oh (resp. little-oh)

condition which involves the Littlewood type inequality. We state it as a corollary:

Corollary 3.3. Let Ω be a Lavrentiev domain properly contained in C and Φ a

finite-valent holomorphic self-map of Ω. Then CΦ is bounded on Hp(Ω) for some

1 ≤ p <∞ if and only if

ÑΦ,Ω(w) . δ(w, ∂Ω)

for all w ∈ Ω. Furthermore, CΦ is compact on Hp(Ω) for some 1 ≤ p < ∞ if and

only if

ÑΦ,Ω(w) = o(δ(w, ∂Ω))
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as δ(w, ∂Ω) tends to 0.

Remark 3.4. We point out that the geometrical assumption on the domain Ω in

Corollary 3.3 is necessary. In fact, this is clear from the example of the heart-shaped

domain Ω showed in the previous section, since it is not a Lavrentiev domain.

4. Littlewood type inequality, Lavrentiev domains and

infinitely-valent symbols

In this section, we show that Littlewood type inequality is not necessary for

boundedness of composition operators induced by infinitely-valent symbols, even

assuming that Ω is a Lavrentiev domain. In particular, neither Theorem 2.1 nor

Corollary 3.3 holds if we consider infinitely-valent symbols. We state the result:

Proposition 4.1. There exist a simply connected Lavrentiev domain Ω and a holo-

morphic infinitely-valent self-map Φ on Ω so that CΦ is bounded on Hp(Ω), for any

1 ≤ p <∞, and Φ does not satisfy Littlewood type inequality.

Proof. Let B(z) be the Blaschke product in D whose sequence of zeros is {1− 1
j2 }j≥1,

and ϕ(z) = B(z)/2, that is:

ϕ(z) =
1

2

∞∏

j=1

z − (1 − 1/j2)

1 − (1 − 1/j2)z
, (z ∈ D).

It is clear that ϕ takes the unit disc D into itself. Let τ(z) = 1 − (1 − z)1/4 for

z ∈ D. Then, τ(D) is a teardrop-shaped domain, symmetric about the real axis

whose boundary meets ∂D just at 1, where it makes an angle of π/8 radians with

the unit interval (see Figure 2).

1

-

ϕD

1

-

Φ

1

1

? ?Ω

Figure 2
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Let Ω be the domain τ(D) and Φ = τ ◦ϕ◦τ−1. It is clear that Φ is a holomorphic

self-map of Ω. Moreover, we claim that CΦ is bounded on H2(Ω). To check this,

it is enough to show that the corresponding weighted composition operator Wϕ,

defined in our case by:

Wϕf(z) =

(
1 − ϕ(z)

1 − z

)3/8

f ◦ ϕ(z),

for f ∈ H2(D) and z ∈ D, is bounded in H2(D). Since ϕ has sup-norm strictly

less than one, f ◦ ϕ ∈ H∞(D). This along with the fact that (1 − z)−3/8 ∈ H2(D)

yields that that Wϕ is bounded on H2(D). In general, it holds that whenever ϕ has

sup-norm strictly less than one, Wϕ is bounded on H2(D) if and only if τ ′ ∈ H1(D).

Now, we proceed to show that Φ does not satisfy the Littlewood type inequality,

that is ÑΦ,Ω(w) is not bounded by δ(w,Ω) for some w ∈ Ω.

Let us consider w = τ(0) = 0. Observe that {zj = τ(1−1/j2)}j≥1 is the sequence

of the Φ-preimages of w. We claim that the series

ÑΦ,Ω(0) =

∞∑

j=1

δ(zj , ∂Ω)

is not convergent. In fact, by the Koebe Distortion Theorem, this is equivalent to

show that
∞∑

j=1

|τ ′(1 − 1/j2)|
1

j2

diverges, which is the case since τ ′(z) = 1/4(1 − z)3/4. �

5. Boundedness and compactness of composition operators on

Lavrentiev domains: the complete characterization

In this section, we characterize boundedness and compactness of composition

operators on Hp(Ω) for any 1 ≤ p <∞, whenever Ω is a Lavrentiev domain. As we

have shown in the previous section, boundedness of composition operators induced

by general symbols can not be characterized on Hp(Ω) even when Ω is a Lavrentiev

domain, in terms of the pointwise condition stated by the Littlewood type inequality.

Nevertheless, we show that it is possible to get such a characterization if we consider

Littlewood type inequality “in means”.

Before stating our result, we recall some facts. Let Ω be a simply connected

domain with ∂Ω locally rectifiable. A Carleson disc in Ω is any disc centered at a

point in the boundary ∂Ω. A positive measure µ on Ω is called a Carleson measure

in Ω if

‖µ‖ = sup
ξ∈∂Ω, r>0

µ(B(ξ, r))

r
<∞,
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for any Carleson disc B(ξ, r) in Ω (see [14]). We call Ω is a Carleson domain if

there exists a positive constant C such that for any Carleson measure µ in Ω
∫

Ω

|f(z)| dµ(z) ≤ C‖µ‖

∫

∂Ω

|f(z)| |dz|,

for any f ∈ H1(Ω). It is a well known Theorem due to Carleson [2] that the unit

disc D is a Carleson domain. A characterization of Carleson domains was given

by Zinsmeister [14], showing, in particular, that Lavrentiev domains are Carleson

domains.

Let us suppose that Ω a Lavrentiev domain. Then ∂Ω is a Lavrentiev curve,

and such curves are characterized as the images of the unit circle under bilipschitz

maps from C onto C. Recall that h is a bilipschitz map of a set A into C if there

exists a positive constant c such that

(12) c−1 |z1 − z2| ≤ |h(z1) − h(z2)| ≤ c |z1 − z2|,

for z1, z2 ∈ A. The smallest constant c in (12) is called the Lavrentiev constant of

∂Ω (see [9, chapter 7], for instance).

In what follows, for any set E and any integrable function f , we denote the

integral mean of f over E by

�

∫

E

fdm =
1

m(E)

∫

E

fdm.

We are in position to state our result:

Theorem 5.1. Let Ω be a Lavrentiev domain and Φ a holomorphic map on Ω,

taking Ω into itself. Then CΦ is bounded on Hp(Ω) for any 1 ≤ p <∞ if and only

if for any Carleson disc B(ξ, r) in Ω

�

∫

B(ξ,r)

ÑΦ,Ω dm ≤ C r,

where C is a positive constant just depending on the Lavrentiev constant of ∂Ω.

Furthermore, CΦ is compact on Hp(Ω) for any 1 ≤ p < ∞ if and only if for any

Carleson disc B(ξ, r) in Ω

lim
r→0

1

r
�

∫

B(ξ,r)

ÑΦ,Ω dm = 0.

Proof. Assume that CΦ is bounded on Hp(Ω), for 1 ≤ p < ∞. As usual, we may

restrict ourselves to p = 2.

Let us fix B(ξ0, r) a Carleson disc in Ω. Since ∂Ω is a Lavrentiev curve, there

exists w∗
0 ∈ C \ Ω such that |w∗

0 − ξ0| ≈ δ(w∗
0 , ∂Ω) ≈ r. We claim that the analytic

function on the domain Ω

Kw∗

0
(w) =

(δ(w∗
0 , ∂Ω))

1/2

w − w∗
0

, (w ∈ Ω),
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belongs to H2(Ω). So, let us check that
∫

∂Ω

|Kw∗

0
(w)|2 |dw|

remains bounded. But this holds as a consequence of the following result (also used

in the proof of Theorem 3.1): if Γ is a Lavrentiev curve, then for any w ∈ C \ Γ
∫

Γ

|dζ|

|ζ − w|2
≈

1

δ(w,Γ)
,

(see [1] and [7]). Therefore, Kw∗

0
∈ H2(Ω) and, in particular, ‖Kw∗

0
‖H2(Ω) ≈ 1.

Since CΦ is bounded on H2(Ω), clearly it follows that

(13) ‖CΦKw∗

0
‖H2(Ω) ≤ C,

for some constant C, independent of w∗
0 .

Now, the key point of the proof relies on the fact that given any holomorphic

function F on Ω, it holds

(14)

∫

∂Ω

|F (w)|2 |dw| ≈

∫

Ω

|F ′(w)|2δ(w, ∂Ω) dm(w) + |F (0)|2.

Actually, this follows just because ∂Ω is a Lavrentiev curve (see [1] and [7]). In

particular, for F = CΦKw∗

0
in (14) we get

∫

∂Ω

|CΦKw∗

0
(w)|2 |dw| &

∫

Ω

δ(w∗
0 , ∂Ω)

|Φ(w) − w∗
0 |

4
|Φ′(w)|2δ(w, ∂Ω) dm(w)

=

∫

Φ(Ω)

δ(w∗
0 , ∂Ω)

|ζ − w∗
0 |

4



∑

Φ(w)=ζ

δ(w, ∂Ω)


 dm(ζ)

=

∫

Ω

δ(w∗
0 , ∂Ω)

|ζ − w∗
0 |

4
ÑΦ,Ω(ζ) dm(ζ)

≥

∫

B(ξ0,r)∩Ω

δ(w∗
0 , ∂Ω)

|ζ − w∗
0 |

4
ÑΦ,Ω(ζ) dm(ζ),(15)

where in the second line the change of variables Φ(w) = ζ has been performed.

Now, observe that for any ζ ∈ B(ξ0, r) it holds |ζ − w∗
0 | ≈ δ(w∗

0 , ∂Ω) ≈ r because

of our choice of w∗
0 . Thus, from (15) and the fact that m(B(ξ0, r)) ≈ r2 we get

‖CΦKw∗

0
‖2
H2(Ω) &

1

r
�

∫

B(ξ0,r)

ÑΦ,Ω(ζ) dm(ζ),

which along with (13) shows the first half of the statement of the theorem.

Now, let us assume that for any Carleson disc B(ξ, r) in Ω

�

∫

B(ξ,r)

ÑΦ,Ω dm ≤ C r,

where C is a positive constant just depending on the Lavrentiev constant of ∂Ω. In

order to prove that CΦ is bounded in H2(Ω), it is enough to show that there exists
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a positive constant C such that

(16)

∫

∂Ω

|f ◦ Φ(w)|2 |dw| ≤ C

∫

∂Ω

|f(w)|2 |dw|, (f ∈ H2(Ω)).

Let µ be the pull-back measure of the arc-length measure |dw| under Φ, that is, µ

is the measure defined on the subsets E of Ω as follows:

µ(E) = length (Φ−1(E) ∩ ∂Ω).

Then, expression (16) can be rewritten as

(17)

∫

Ω

|f(w)|2 dµ(w) ≤ C

∫

∂Ω

|f(w)|2 |dw|,

for any f ∈ H2(Ω). Since Ω is a Carleson domain, (17) holds if µ is a Carleson

measure on Ω. We claim the following

Claim: µ is a Carleson measure on Ω if

(18) sup
w∗∈C\Ω

∫

Ω

δ(w∗, ∂Ω)

|ζ − w∗|2
dµ(ζ) <∞.

Assume that the claim is already proved. Then, in order to prove that CΦ is

bounded on H2(Ω) it is enough to show that condition (18) is satisfied.

Let us fix w∗
0 ∈ C \ Ω. Since ∂Ω is a Lavrentiev curve, we deduce that

∫

Ω

δ(w∗
0 , ∂Ω)

|w − w∗
0 |

2
dµ(w) =

∫

∂Ω

δ(w∗
0 , ∂Ω)

|Φ(ζ) − w∗
0 |

2
|dζ|

≈

∫

Ω

δ(w∗
0 , ∂Ω)

|Φ(ζ) − w∗
0 |

4
|Φ′(ζ)|2 δ(ξ, ∂Ω) dm(ζ)

=

∫

Ω

δ(w∗
0 , ∂Ω)

|w − w∗
0 |

4
ÑΦ,Ω(w) dm(w),(19)

where the change of variables Φ(ζ) = w has been accomplished. Let w0 ∈ Ω be a

point such that δ(w0, ∂Ω) ≈ δ(w∗
0 , ∂Ω). Observe that such a point exists since ∂Ω

is a Lavrentiev curve. Let D0 = B(w0, δ(w0, ∂Ω)) and for each n ≥ 1,

Dn =
{
w ∈ Ω : 2n−1 δ(w0, ∂Ω) < |w − w0| < 2n δ(w0, ∂Ω)

}
.

Observe that Ω =
⋃
nDn, so the expression in (19) is equivalent to

∫
⋃

n Dn

δ(w∗
0 , ∂Ω)

|w − w∗
0 |

4
ÑΦ,Ω(w) dm(w) =

∞∑

n=0

∫

Dn

δ(w∗
0 , ∂Ω)

|w − w∗
0 |

4
ÑΦ,Ω(w) dm(w)

≈
∞∑

n=0

1

24n (δ(w0, ∂Ω))3

∫

Dn

ÑΦ,Ω(w) dm(w)(20)
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because for any w ∈ Dn, it holds that |w − w∗
0 | ≈ 2n δ(w0, ∂Ω). In addition, note

that

1

(2n (δ(w0, ∂Ω))2

∫

Dn

ÑΦ,Ω(w) dm(w) . �

∫

{w∈Ω:|w−w0|<2n δ(w0,∂Ω)}

ÑΦ,Ω(w) dm(w)

≈ 2nδ(w0, ∂Ω),

since {w ∈ Ω : |w − w0| < 2n δ(w0, ∂Ω)} is contained in a Carleson disc in Ω

of comparable radius. Therefore, we deduce that the series in (20) is uniformly

bounded by a constant not depending on w0. Thus, from (19) and (20) we have

that

sup
w∗∈C\Ω

∫

Ω

δ(w∗, ∂Ω)

|ζ − w∗|2
dµ(ζ) <∞,

which along with (17) yields the boundedness of CΦ as soon as the Claim is proved.

Proof of Claim. Let us assume that the condition (18) holds and let B(ξ0, r) be a

Carleson disc in Ω. Since ∂Ω is Lavrentiev, we may take w∗
0 ∈ B(ξ0, r) ∩ (C \ Ω)

such that δ(w∗
0 , ∂Ω) ≈ r. Then
∫

Ω

δ(w∗
0 , ∂Ω)

|ζ − w∗
0 |

2
dµ(ζ) ≥

∫

Ω∩B(ξ0,r)

δ(w∗
0 , ∂Ω)

|ζ − w∗
0 |

2
dµ(ζ)

≈
µ(B(ξ0, r))

δ(w∗
0 , ∂Ω)

,

where the second line follows because |ζ − w∗
0 | ≈ δ(w∗

0 , ∂Ω) for any ζ ∈ B(ξ0, r).

This proves the claim, and therefore the first half of the theorem is proved.

Now, we deal with the compact part of the theorem. First, let us assume that

CΦ is compact on on Hp(Ω), for 1 ≤ p <∞. As before, we can fix p = 2.

For w∗ ∈ C \ Ω, let Kw∗ be the analytic function on Ω defined by:

Kw∗(ζ) =
(δ(w∗, ∂Ω))

1/2

ζ − w∗
, (ζ ∈ Ω).

As we proved at the beginning, Kw∗ ∈ H2(Ω). Moreover, note that Kw∗ converges

weakly to zero as δ(w∗, ∂Ω) → 0. Since CΦ is compact, we deduce ‖CΦKw∗‖H2(Ω) →

0 as δ(w∗, ∂Ω) → 0. Proceeding with the estimates as we did before to prove the

boundedness of CΦ, we obtain the desired result.

Now, assume that for any Carleson disc B(ξ, r) in Ω it holds

lim
r→0

1

r
�

∫

B(ξ,r)

ÑΦ,Ω dm = 0.

In order to prove that CΦ is compact on H2(Ω), it is enough to show that for any

{Fn} ⊂ H2(Ω) sequence of functions weakly convergent to zero,

‖CΦFn‖
2 =

∫

∂Ω

|Fn(Φ(w))|2 |dw| → 0, as n→ ∞.
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But this is equivalent to
∫

Ω

|Fn(w)|2 dµ(w) → 0, as n→ ∞,

where µ denotes as before, the pull-back measure under Φ of the arc-length measure

on ∂Ω. Since Ω is a Lavrentiev domain, it is enough to prove that for any Carleson

disc B(ξ, r) in Ω,

(21) lim
r→0

µ(B(ξ, r))

r
= 0.

A similar argument to that used to prove the Claim above, yields that (21) holds if
∫

Ω

δ(w∗, ∂Ω)

|ζ − w∗|2
dµ(ζ) → 0 as δ(w∗, ∂Ω) → 0,

which can be straightforward verified proceeding as before. This completes the

proof of the theorem. �

Remark 5.2. We point out that Theorem 3.1 could be drawn from Theorem 5.1

since the condition stated by the Littlewood type inequality implies the correspond-

ing one“in means”. Nevertheless, in this way, it is shown the role played by the

assumption on the domain Ω to be Lavrentiev. In fact, we conjecture that such

assumption is also necessary in order to get the characterization of bounded com-

position operators in terms of the Littlewood type inequality “in means”.
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