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1. Introduction4

Let D be the open unit disc of the complex plane and let g : D → D be an analytic5

mapping with g(0) = 0 which is not a rotation. On one hand, the classical Denjoy-Wolff6

Theorem tells us that the iterates gn = g ◦ . . . ◦ g converge to 0 uniformly on compact7

subsets of D (see e.g. [CG93, p. 79]). On the other hand, let m denote the normalised8

Lebesgue measure on the unit circle ∂D. An analytic self-mapping g of D is called inner9

if10

ĝ(eiθ) ..= lim
r↗1

g(reiθ)

exists and has modulus one for m-almost every point eiθ ∈ ∂D. In this case, one can11

investigate the dynamics of the measurable boundary self-map ĝ : ∂D → ∂D, which is12

actually defined at almost every point of ∂D. If g is an inner function fixing the origin,13

Lowner’s Lemma tells us that m is invariant under ĝ, that is, m(ĝ−1(E)) = m(E) for any14

measurable set E ⊂ ∂D. If, furthermore, g is not a rotation, it is well known that the15

mapping ĝ is exact and hence, mixing (i.e. m(A)m(g−n(B)) → m(A)m(B) as n → ∞16

for any measurable sets A,B ⊂ ∂D) and ergodic (i.e. any measurable set A ⊂ ∂D with17

A = g−1(A) satisfiesm(A)m(∂D\A) = 0). In fact, dynamical properties of the boundary18

map of an inner function have been extensively studied after the pioneering papers of19

Aaranson, Pommerenke, Crazier, and Doering and Mañé [Aar78, Pom81, Cra91, DM91].20

Mapping and distortion properties of inner functions have been studied in [Ale86, Ale87,21

FP92, FPR96, FMP07] and the surveys [PS06, Sak07], and several stochastic properties22

can be found in [NSiG22, Nic22, IU23, AN23]. In many ways, these papers highlight23

the beautiful interplay between the dynamical properties of an inner function as a self-24

mapping of ∂D and those as a self-mapping of D.25

The main purpose of this paper is to study ergodic and mixing properties of non-26

autonomous dynamics of inner functions fixing the origin. This concerns compositions27
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of the form Gn
..= gn ◦ gn−1 ◦ · · · ◦ g1, where each gn, n ∈ N, is an inner function with1

gn(0) = 0. Non-autonomous dynamics of inner functions appear naturally in complex2

dynamics when studying simply connected wandering domains of entire functions – see3

e.g. [BEF+22, Section 2] or [Fer24, Lemma 3.2]. As introduced in [BEF+24a], a sequence4

{gn}n∈N of inner functions fixing the origin is called contracting if Gn → 0 uniformly5

on compact subsets of D as n → ∞. The behaviour of Gn in D has been studied in6

[BEF+22, Section 2] and [Fer23], where the following dichotomy has been proved.7

Theorem A ([BEF+22] and [Fer23]). Let gn : D → D be inner functions fixing the8

origin, and let Gn
..= gn ◦ · · · ◦ g1, n ∈ N.9

(a) The sequence {gn}n∈N is contracting if and only if
∑

n≥1(1− |g′n(0)|) = ∞.10

(b) Assume {gn}n∈N is not contracting. Then any (pointwise) limit function in D of11

a subsequence of {Gn}n∈N is a non-constant inner function fixing the origin, and12

any two limit functions H1 and H2 satisfy H1 = λ ·H2 for some λ ∈ ∂D.13

Much less has been said about non-autonomous dynamics of inner functions in the unit14

circle. In this paper, we focus on ergodic and mixing properties of non-autonomous dy-15

namics of inner functions fixing the origin (for the “opposite” case where Gn(0) tends to16

∂D, see [BEF+24a, BEF+24b] for recurrence properties of such non-autonomous sys-17

tems). In the non-autonomous setting, there exist measure-preserving sequences of18

transformations which are mixing in the usual sense, but such that time averages do19

not converge to the space average almost everywhere (see e.g. [BS01]). In order to pre-20

serve the “mixing implies ergodicity” and the “mixing is equivalent to ergodicity of any21

subsequence” maxims and properly generalise the relevant concepts, we use the follow-22

ing definitions due to Berend and Bergelson [BB84]. For (X,A, µ) a probability space,23

we (here and henceforth) denote by L2(µ) the standard Hilbert space of complex valued24

measurable functions φ defined on X such that25

∥φ∥22 =
∫
X

|φ|2dµ <∞.

Definition 1.1. Let (X,A, µ) be a probability space. Let fn : X → X be measurable,26

measure-preserving transformations and let Tn ..= fn ◦ · · · ◦ f1, n ∈ N. We say that the27

sequence {Tn}n∈N is ergodic if28

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

φ ◦ Tn −
∫
X

φdµ

∥∥∥∥∥
2

= 0,

for every φ ∈ L2(µ).29

The sequence {Tn}n∈N is called mixing if all its subsequences are ergodic.30

It is not hard to show that if {Tn}n∈N is ergodic in this sense, then there exist no31

non-trivial completely invariant sets. Similarly, if {Tn}n∈N is mixing in the sense of the32

above definition, then it is also mixing in the usual sense, that is, µ (A ∩ T−1
n (B)) →33

µ(A)µ(B) as n → ∞, for any pair of measurable sets A,B ⊂ X. Notice that the34

converse statements do not hold, as evidenced by the examples in [BS01]. Moreover, the35

conditions given in Definition 1.1 properly generalise the usual ones – more specifically,36

if Tn = fn for some measure-preserving map f : X → X, then the sequence {Tn}n∈N is37

ergodic (resp. mixing) if and only if f is ergodic (resp. mixing); see [BB84].38
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We now fix some notation. Given inner functions gn fixing the origin, n ≥ 1, we1

consider the inner functions2

Gn
..= gn ◦ · · · ◦ g1, Gn

m
..= gn ◦ · · · ◦ gm+1, n > m ≥ 0. (1)

Notice that Gn
0 = Gn and Gn

n−1 = gn for any n ≥ 1. We say that the sequence {Ĝn}n∈N3

is ergodic (respectively mixing) if the corresponding condition in Definition 1.1 holds.4

We can now state our first result.5

Theorem 1.2. Let gn, n ∈ N, be inner functions fixing the origin and let Gn, G
n
m be6

given by (1). The sequence {Ĝn}n∈N is ergodic if and only if7

lim
N→∞

ℜ

(
1

N2

N−1∑
m=1

N∑
n=m+1

((Gn
m)

′(0))
ℓ

)
= 0, (2)

for any ℓ ∈ N.8

Since ((Gn
m)

′(0))ℓ are complex numbers, the double sum in Condition (2) may have9

cancellations, so that (2) does not depend solely on the modulus of (Gn
m)

′(0). With that10

in mind, in Section 4 we give a necessary and a sufficient condition for ergodicity. Using11

these conditions, in the extreme cases when g′n(0) > 0 for every n ∈ N or when {gn}n∈N12

is not contracting, we obtain the following descriptions.13

Theorem 1.3. Let gn, n ∈ N, be inner functions fixing the origin and let Gn, G
n
m be14

given by (1).15

(i) Assume g′n(0) > 0 for all n ≥ 1. Then, the sequence {Ĝn}n∈N is ergodic if and16

only if17

lim
N→∞

N∏
k=⌊N(1−ε)⌋

g′k(0) = 0, (3)

for any 0 < ε < 1.18

(ii) Assume g′n(0) > 0 for all n ≥ 1. Then, the sequence {Ĝn}n∈N is mixing if and19

only if for every ϵ > 0 there exists M0 such that, for any N > M > M0, we have20

N∏
k=N−M

g′k(0) < ϵ. (4)

(iii) Assume the sequence {gn}n∈N is not contracting. Then the sequence {Ĝn}n∈N is21

ergodic if and only if the sequence {ei argG′
n(0)}n∈N is equidistributed on ∂D.22

Theorem 1.3 deserves some comments.23

First, when gn(z) = eiθz, n ≥ 1, the statement (iii) tells us that {Ĝn}n∈N is ergodic24

if and only if θ is irrational – in other words, we recover the classical result of ergodic25

theory that a rotation of the circle is ergodic if and only if it is irrational. Condition (3)26

in (i) is related to the speed of convergence of Gn(z), z ∈ D, to 0. Roughly speaking,27

the faster Gn tends to 0 on D, the more expanding Ĝn is on ∂D; see [Mas13, Theorem28

4.8]. Hence, condition (i) is related to the classical existence of ergodic measures for29

expanding maps; for related ideas and results, see e.g. [VO16, Chapter 11], [GS09], and30

even [TPvS19] for a non-autonomous approach. Thus, roughly speaking, Theorem 1.331
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says that in our setting there are only two mechanisms for ergodicity, and they are the1

classical ones corresponding to “expanding maps” and “irrational rotations”.2

Second, Pommerenke [Pom81] showed that contracting sequences of inner functions3

fixing the origin are mixing in the usual sense on ∂D, that is, m (A ∩G−1
n (B)) →4

m(A)m(B) as n → ∞, for any pair of measurable sets A,B ⊂ ∂D. We discuss a5

converse to Pommerenke’s result in Section 5.6

Third, note that, by Theorem A, {gn}n∈N is contracting if and only if7

∞∏
j=k

g′j(0) = 0 for all k ∈ N.

Hence conditions (3) and (4) can be understood as quantitative versions of contractibility.8

In particular, condition (3) outlined in Theorem 1.3(i) implies that the sequence {gn}n∈N9

is contracting, but is strictly stronger; in Section 6, we give an example of a contracting10

sequence {gn}n∈N which does not satisfy (2), and is therefore not ergodic in the sense11

of Definition 1.1. Notice that, by the results of Pommerenke [Pom81] mentioned above,12

this sequence is also mixing in the usual sense; we see that (as in [BS01]) a sequence can13

be mixing in the usual sense, but not ergodic. From Theorem 1.3 we derive the following14

more straightforward sufficient conditions for ergodicity and mixing.15

Corollary 1.4. Let gn, n ∈ N, be inner functions fixing the origin and let Gn be given16

by (1).17

(a) Assume that for any 0 < ε < 1 we have18

lim
N→∞

N∏
k=⌊N(1−ε)⌋

g′k(0) = 0. (5)

Then the sequence {Ĝn}n∈N is ergodic.19

(b) Assume that for every ϵ > 0 there exists M0 such that, for N > M > M0,20

N∏
k=N−M

|g′k(0)| < ϵ. (6)

Then the sequence {Ĝn}n∈N is mixing.21

Combining this result and part (iii) of Theorem 1.3 we obtain that contracting se-22

quences are precisely those which have a mixing subsequence. Notice the similarity to23

Theorem 5.2.24

Corollary 1.5. Let gn, n ∈ N, be inner functions fixing the origin and let Gn be given25

by (1). Then {gn}n∈N is contracting if and only if {Ĝn}n∈N has a mixing subsequence.26

Finally, we wish to discuss what our results mean for the recurrence of the sequence27

{Ĝn}n∈N. Let (X,A, µ) be a measure space. A sequence of measurable, measure-28

preserving transformations Tn : X → X is recurrent if for any measurable set A ⊂ X29

we have that Tn(x) ∈ A for infinitely many n ≥ 1, for µ-almost every point x ∈ A. In30

autonomous dynamics, that is when Tn = T n, a classical theorem of Poincaré (see e.g.31

[VO16, Theorem 1.2.1]) tells us that if µ(X) <∞, then the sequence {T n} is recurrent32
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for any measure-preserving transformation T . However, this may fail if the preserved1

measure is infinite, or if the system is non-autonomous; see [DM91] and [BEF+24a]. It2

turns out, however, that ergodicity in the sense of Definition 1.1 is sufficient for recur-3

rence. In fact, the following stronger result, which is well-known in the autonomous4

case, holds.5

Theorem 1.6. Let (X,A, µ) be a probability space. Let Tn : X → X, n ≥ 1, be mea-6

surable, measure-preserving transformations. If {Tn}n∈N has an ergodic subsequence,7

then:8

(i) {Tn}n∈N is recurrent;9

(ii) If, furthermore, supp(µ) = X and X is a second countable topological space, then10

µ-almost every point has a dense orbit in X.11

For other results on recurrence and topological transitivity of boundary extensions of12

inner functions and compositions thereof, see [DM91] and [BEF+24a, BEF+24b].13

The paper is organized as follows. In Section 2 we collect some standard definitions14

and classical results which will be used later. Section 3 is devoted to the proof of Theorem15

1.2. In Section 4 we present one necessary and one sufficient condition for ergodicity,16

and use them to prove Theorem 1.3 and Corollary 1.4. Section 5 is devoted to prove17

the converse of Pommerenke’s result on mixing sequences of inner functions. Section 618

contains some relevant examples and the proof of Corollary 1.5. Finally, Theorem 1.6 is19

proved in Section 7.20

2. Preliminaries21

2.1. Inner functions and the space L2(∂D). Let L2(∂D) be the usual Hilbert space22

of measurable complex-valued functions φ : ∂D → C such that23

∥φ∥2 ..=

(∫
∂D

|φ|2 dm
)1/2

< +∞,

armed with the corresponding inner product24

⟨φ, ψ⟩ ..=

∫
∂D
φ · ψ dm =

∫ 2π

0

φ(eiθ) · ψ(eiθ) dθ
2π
.

Finite linear combinations of the trigonometric monomials25

en(e
iθ) ..= einθ, n ∈ Z,

are dense in L2(∂D). The boundary extension ĝ of an inner function g : D → D satisfies26

|ĝ(ξ)| = 1 for almost every ξ ∈ ∂D. Cauchy’s Formula tells us that the Fourier coefficients27

of ĝ are precisely the coefficients of the power series expansion of g at the origin, that is,28

⟨ĝ, en⟩ =
∫ 2π

0

ĝ(eiθ)e−niθ dθ

2π
=

{
0, n < 0,
g(n)(0)

n!
, n ≥ 0.

(7)

Let ωz denote the harmonic measure on ∂D with respect to the point z ∈ D, defined29

as30

ωz(E) =

∫
E

1− |z|2

|ξ − z|2
dm(ξ), E ⊂ ∂D.

We recall the following classical result (see [DM91, Corollary 1.5]):31
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Lemma 2.1 (Lowner’s Lemma). Let g : D → D be an inner function. Then for any1

z ∈ D,2

ωg(z)(E) = ωz(g
−1(E)), E ⊂ ∂D.

In particular, if g(0) = 0 and φ is an integrable function on ∂D, we have3 ∫
∂D
(φ ◦ g)dm =

∫
∂D
φdm.

2.2. Equidistribution of sequences on ∂D. This is a much-studied notion with many4

connections. We recall the basic definition:5

Definition 2.2. We say that a sequence {zn}n∈N ⊂ ∂D is equidistributed on ∂D if for6

any arc S ⊂ ∂D, we have7

lim
n→∞

#({z1, z2, . . . , zn} ∩ S)
n

= m(S).

The following classical characterisation, due to Weyl (see, for instance, [KN74, Theo-8

rem 2.1]) will allow us to discuss equidistribution in our setting.9

Lemma 2.3 (Weyl’s Criterion). A sequence {zn}n∈N ⊂ ∂D is equidistributed in ∂D if10

and only if11

lim
N→∞

1

N

N∑
n=1

(zn)
ℓ = 0,

for any integer ℓ ≥ 1.12

3. A general characterisation of ergodicity13

In this section, we prove Theorem 1.2. We start with the following elementary lemma.14

Lemma 3.1. Let g : D → D be holomorphic with g(0) = 0. Then, for all n ∈ N,15

(gn)(n) (0) = n! (g′(0))
n
.

Proof. For n > 0, we use the notation O(|z|n) to denote a function h defined on D for16

which there exists a constant C = C(h, n) > 0 such that |h(z)| ≤ C|z|n for any |z| < 1/2.17

Since g(z) = g′(0)z+O(|z|2), we have g(z)n = g′(0)nzn+O(|z|n+1) and the result follows18

by uniqueness of the Taylor series. □19

Next we show that suitable inner products on the circle can be written as derivatives20

at the origin. As before, for ℓ ∈ Z, let eℓ denote the monomial eℓ(ξ) = ξℓ, ξ ∈ ∂D.21

Lemma 3.2. Let gn, n ≥ 1, be inner functions fixing the origin and Gn, G
n
m be given22

by (1). Then, for any integers n > m ≥ 0 and ℓ ∈ N,23 〈
eℓ ◦ Ĝn, eℓ ◦ Ĝm

〉
= ((Gn

m)
′(0))

ℓ
.

Proof. Fix the integers n > m ≥ 0 and ℓ ∈ N. By Lemma 2.1, we have24 〈
eℓ ◦ Ĝn, eℓ ◦ Ĝm

〉
=
〈
eℓ ◦ Ĝn

m, eℓ

〉
.
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The right-hand side can be read as the ℓ-th Fourier coefficient of the boundary map of1

the holomorphic self-map of D given by z 7→ (Gn
m(z))

ℓ, and so by (7) we get2 〈
eℓ ◦ Ĝn, eℓ ◦ Ĝm

〉
=

(
(Gn

m)
ℓ
)(ℓ)

(0)

ℓ!
.

The conclusion follows by applying Lemma 3.1 to the right-hand side. □3

We are ready to prove Theorem 1.2.4

Proof of Theorem 1.2. Since trigonometric polynomials are dense in L2(∂D), it is suffi-5

cient to show that (2) holds if and only if6

lim
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

eℓ ◦ Ĝn

∥∥∥∥∥
2

2

= 0, ℓ ∈ Z \ {0}.

Since e−ℓ = eℓ, we can assume ℓ ≥ 1. Fix ℓ ≥ 1. We have7 ∥∥∥∥∥ 1

N

N∑
n=1

eℓ ◦ Ĝn

∥∥∥∥∥
2

2

=
1

N2

N∑
n=1

∥∥∥eℓ ◦ Ĝn

∥∥∥2
2
+ 2ℜ

(
1

N2

N−1∑
m=1

N∑
n=m+1

〈
eℓ ◦ Ĝn, eℓ ◦ Ĝm

〉)
.

Since |eℓ ◦ Ĝn| = 1 m-almost everywhere on ∂D for any n ≥ 1, we obtain8 ∥∥∥∥∥ 1

N

N∑
n=1

eℓ ◦ Ĝn

∥∥∥∥∥
2

2

=
1

N
+ 2ℜ

(
1

N2

N−1∑
m=1

N∑
n=m+1

〈
eℓ ◦ Ĝn, eℓ ◦ Ĝm

〉)
.

Applying Lemma 3.2, we have
〈
eℓ ◦ Ĝn, eℓ ◦ Ĝm

〉
= ((Gn

m)
′(0))ℓ, which finishes the proof.9

□10

4. Ergodicity in different scenarios11

In this section, we prove Theorem 1.3 and Corollary 1.4. The proof of Theorem 1.3 is12

based on the following result.13

Theorem 4.1. With the same notation as Theorem 1.2, the following hold:14

(a) The sequence {Ĝn}n∈N is ergodic if, for all ℓ ∈ N,15

lim
N→∞

1

N

N−1∑
m=1

(
(GN

m)
′(0)
)ℓ

= 0. (8)

(b) If the sequence {Ĝn}n∈N is ergodic, then16

lim
N→∞

1

N

N∑
n=m+1

((Gn
m)

′(0))
ℓ
= 0, (9)

for every pair of integers m ≥ 0 and ℓ ≥ 1.17
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Proof of Theorem 4.1. We will prove (a) using Theorem 1.2. We start by noting that1

ℜ

(
1

N2

N−1∑
m=1

N∑
n=m+1

((Gn
m)

′(0))
ℓ

)
≤

∣∣∣∣∣ 1

N2

N−1∑
m=1

N∑
n=m+1

((Gn
m)

′(0))
ℓ

∣∣∣∣∣ .
We rewrite the sum on the right-hand side as2

1

N2

N−1∑
m=1

N∑
n=m+1

((Gn
m)

′(0))
ℓ
=

1

N2

N∑
n=2

n−1∑
m=1

((Gn
m)

′(0))
ℓ
,

and applying the triangle inequality yields3 ∣∣∣∣∣ 1

N2

N−1∑
m=1

N∑
n=m+1

((Gn
m)

′(0))
ℓ

∣∣∣∣∣ ≤ 1

N2

N∑
n=2

∣∣∣∣∣
n−1∑
m=1

((Gn
m)

′(0))
ℓ

∣∣∣∣∣ ≤ 1

N

N∑
n=2

∣∣∣∣∣ 1n
n−1∑
m=1

((Gn
m)

′(0))
ℓ

∣∣∣∣∣ .
The right-hand side is now the Cesàro sum of a sequence that, by hypothesis, goes to4

zero. Therefore condition (2) of Theorem 1.2 is satisfied. This completes the proof of5

(a).6

We now prove (b), which is actually independent of Theorem 1.2. Fix integers m ≥ 07

and ℓ ≥ 1. We have by the Cauchy–Schwarz inequality that8 〈
1

N

N∑
n=1

eℓ ◦ Ĝn, eℓ ◦ Ĝm

〉
≤

∥∥∥∥∥ 1

N

N∑
n=1

eℓ ◦ Ĝn

∥∥∥∥∥
2

∥∥∥eℓ ◦ Ĝm

∥∥∥
2
,

and since |eℓ ◦ Ĝm| = 1 at m-almost every point of the unit circle, this becomes9 〈
1

N

N∑
n=1

eℓ ◦ Ĝn, eℓ ◦ Ĝm

〉
≤

∥∥∥∥∥ 1

N

N∑
n=1

eℓ ◦ Ĝn

∥∥∥∥∥
2

. (10)

For 0 ≤ m < N , we have10 〈
1

N

N∑
n=1

eℓ ◦ Ĝn, eℓ ◦ Ĝm

〉
=

1

N

(
m∑

n=1

〈
eℓ ◦ Ĝn, eℓ ◦ Ĝm

〉
+

N∑
n=m+1

〈
eℓ ◦ Ĝn, eℓ ◦ Ĝm

〉)
.

Applying Lemma 3.2 and plugging everything back into (10), we obtain11

1

N

m∑
n=1

〈
eℓ ◦ Ĝn, eℓ ◦ Ĝm

〉
+

1

N

N∑
n=m+1

((Gn
m)

′(0))
ℓ ≤

∥∥∥∥∥ 1

N

N∑
n=1

eℓ ◦ Ĝn

∥∥∥∥∥
2

.

If we assume that {Ĝn}n∈N is ergodic, the right-hand side now goes to zero as N → ∞;12

the first sum on the left-hand side depends only on m and ℓ, and thus when divided by13

N goes to zero as N → ∞. It follows that14

lim
N→∞

1

N

N∑
n=m+1

((Gn
m)

′(0))
ℓ
= 0.

□15

We will also need the following observation about Cesàro sums.16
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Lemma 4.2. Let {zn}n∈N and {wn}n∈N be two sequences of complex numbers. Assume1

that supn |zn| <∞ and that limn→∞wn = w ∈ C \ {0}. Then,2

lim
N→∞

1

N

N∑
n=1

znwn = w · lim
N→∞

1

N

N∑
n=1

zn.

The equality is strong in the sense that either both limits exist and the identity holds, or3

neither limit exists.4

Proof. The proof easily follows from the observation5

lim
N→∞

1

N

N∑
n=1

zn(wn − w) = 0.

□6

We are ready to prove Theorem 1.3.7

Proof of Theorem 1.3. We assume now that g′n(0) > 0 for all n ≥ 1. To show that8

(3) implies ergodicity, we will show that it implies the sufficient condition (8) given in9

Theorem 4.1(a). First, notice that since now (GN
m)

′(0) ∈ (0, 1), it suffices to show that10

the condition (8) is satisfied for ℓ = 1. Fixed ε > 0, we decompose the sum in question11

as12

1

N

N−1∑
m=1

(GN
m)

′(0) =
1

N

⌊N(1−ε)⌋∑
m=1

N∏
k=m+1

g′k(0) +
1

N

N−1∑
m=⌊N(1−ε)⌋+1

(GN
m)

′(0).

For the first sum on the right-hand side, note that, since m ≤ ⌊N(1− ε)⌋ and g′n(0) ∈13

(0, 1), we have14

N∏
k=m+1

g′k(0) ≤
N∏

k=⌊N(1−ε)⌋+1

g′k(0).

For the second sum, note that each (GN
m)

′(0) is less than one, and the sum itself has at15

most N − 1− (⌊N(1− ε)⌋+ 1) ≤ εN terms. Thus,16

1

N

N−1∑
m=1

(GN
m)

′(0) ≤ (1− ε)
N∏

k=⌊N(1−ε)⌋+1

g′k(0) + ε.

By assumption, the first term on the right-hand side goes to zero as N → ∞, and since17

ε > 0 was arbitrary it follows that18

lim
N→∞

1

N

N−1∑
m=1

(GN
m)

′(0) = 0.

Ergodicity follows by Theorem 4.1(a). To show the necessity of condition (3), we use the19

characterisation of ergodicity given in Theorem 1.2. Assume that there exist constants20

ε > 0, c > 0 and a subsequence {Nk}k∈N of positive integers such that21

Nk∏
j=⌊Nk(1−ϵ)⌋+1

g′j(0) ≥ c > 0, k ∈ N.
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We will show that condition (2) of Theorem 1.2 fails for ℓ = 1. Since all the derivatives1

are positive and (Gn
m)

′(0) ≥ (GNk
m )′(0) for any 0 ≤ m < n ≤ Nk, we get2

1

N2
k

Nk−1∑
m=1

Nk∑
n=m+1

(Gn
m)

′(0) ≥ 1

N2
k

Nk−1∑
m=1

Nk∑
n=m+1

(GNk
m )′(0) =

1

N2
k

Nk−1∑
m=1

(Nk −m)(GNk
m )′(0).

Since all terms in the sum are positive, we have3

1

N2
k

Nk−1∑
m=1

Nk∑
n=m+1

(Gn
m)

′(0) ≥ 1

N2
k

Nk−1∑
m=⌊Nk(1−ε)⌋+1

(Nk −m)(GNk
m )′(0).

Now, for Nk > m > ⌊Nk(1− ϵ)⌋, we once again have4

(GNk
m )′(0) ≥ (GNk

⌊Nk(1−ε)⌋)
′(0) =

Nk∏
j=⌊Nk(1−ε)⌋+1

g′j(0) ≥ c > 0,

and therefore5

1

N2
k

Nk−1∑
m=1

Nk∑
n=m+1

(Gn
m)

′(0) ≥ c

N2
k

Nk−1∑
m=⌊Nk(1−ε)⌋+1

(Nk −m).

The sum on the right-hand side is of order N2
k . We conclude that6

lim inf
k→∞

1

N2
k

Nk−1∑
m=1

Nk∑
n=m+1

(Gn
m)

′(0) > 0,

meaning that condition (2) fails. This completes the proof of (i).7

To prove (ii), note that {Ĝn}n∈N is mixing if and only if {Ĝnk
}k∈N is ergodic for any8

subsequence of positive integers {nk}k∈N. Since Gnk
corresponds to the non-autonomous9

dynamics of the inner functions g̃k = Gnk
nk−1

= gnk
◦ . . . ◦ gnk−1+1, part (i) yields that10

{Ĝn}n∈N is mixing if and only if for any 0 < ε < 1, we have11

N∏
k=⌊N(1−ε)⌋

nk∏
j=nk−1+1

g′j(0) → 0,

as N → ∞, for any subsequence of positive integers {nk}k∈N. This last statement is12

equivalent to (4).13

To prove (iii), we assume that
∑

(1−|g′n(0)|) <∞ (which, by Theorem A, is equivalent14

to the sequence {gn}n∈N not being contracting). In this case, we can assume (by dis-15

carding finitely many gn) that g
′
n(0) ̸= 0 for all n ∈ N. Since the sequence {|G′

n(0)|}n∈N16

is decreasing and by assumption is bounded away from 0, it has a positive limit c > 017

as n → ∞. We now assume that {Ĝn}n∈N is ergodic and invoke Theorem 4.1(b) with18

m = 0, obtaining19

lim
N→∞

1

N

N∑
n=1

(G′
n(0))

ℓ = 0
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for every ℓ ∈ N. Lemma 4.2 now says that1

0 = lim
N→∞

1

N

N∑
n=1

|G′
n(0)|ℓ(ei argG

′
n(0))ℓ = cℓ · lim

N→∞

1

N

N∑
n=1

eiℓ argG
′
n(0), ℓ ∈ N,

and it follows from Weyl’s criterion that the sequence {ei argG′
n(0)}n∈N is equidistributed2

in ∂D.3

Conversely, assume that {ei argG′
n(0)}n∈N is equidistributed in ∂D. Using the chain rule,4

we rewrite (Gn
m)

′(0) as (Gn
m)

′(0) = G′
n(0) · (G′

m(0))
−1, so that the sum in equation (8) of5

Theorem 4.1(a) becomes6

1

N

N∑
m=1

((GN
m)

′(0))ℓ =
G′

N(0)
ℓ

N

N∑
m=1

(G′
m(0))

−ℓ =
G′

N(0)
ℓ

N

N∑
m=1

1

|G′
m(0)|ℓ

e−iℓ argG′
m(0), ℓ ∈ N.

By Lemma 4.2, we get7

lim
N→∞

1

N

N∑
m=1

((GN
m)

′(0))ℓ = lim
N→∞

1

N

N∑
m=1

e−iℓ argG′
m(0), ℓ ∈ N

Since {ei argG′
n(0)}n∈N is equidistributed on ∂D, then by Weyl’s criterion this limit is zero,8

whence ergodicity follows by Theorem 4.1(a). □9

Proof of Corollary 1.4. The proof mimics the previous argument and we only sketch10

it. For part (a) we need to show that (5) implies the sufficient condition (8) given in11

Theorem 4.1(a). This follows as in the proof of part (a) of Theorem 1.3 once triangular12

inequality is applied. Part (b) follows similarly. □13

5. Mixing in the usual sense14

Recall that a sequence {Tn}n∈N of transformations of the measure space (X,A, µ) is15

mixing (in the usual sense) if, for all measurable sets A,B ⊂ X,16

µ
(
A ∩ T−1

n (B)
)
→ µ(A)µ(B) as n→ ∞.

If Tn = T n and µ is finite, this implies that {T n} is ergodic (see e.g. [VO16, Proposition17

4.1.3]). However, if the system is non-autonomous, this implication can fail drastically –18

see e.g. [BS01]. Nevertheless, it can be interesting (and useful; see [BEF+24a, Theorem19

7.4]) to study “classical mixing” for compositions of inner functions.20

In this vein, as previously mentioned, Pommerenke [Pom81] already showed that, if21

gn : D → D are inner functions fixing the origin and the composition Gn
..= gn ◦ · · · ◦ g122

tends to zero locally uniformly in D as n → ∞, then {Ĝn}n∈N is mixing in the usual23

sense (in fact, Pommerenke showed the stronger fact that {Ĝn}n∈N is “exact in the usual24

sense”). Here, we give a converse to his result for non-autonomous dynamics. The proof25

relies on the following consequence of mixing (see [VO16, Corollary 7.1.14]), whose short26

proof is included for completeness.27

Lemma 5.1. Let (X,A, µ) be a probability space. Let fn : X → X be measurable,28

measure-preserving transformations. Assume that the sequence Fn
..= fn ◦ · · · ◦ f1 is29
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mixing in the usual sense. Let ν be a probability measure on X which is absolutely1

continuous with respect to µ. Then,2

lim
n→∞

ν
(
F−1
n (B)

)
= µ(B)

for any measurable set B ⊂ X.3

Proof. Let φ denote the Radon-Nykodim derivative of ν relative to µ, and let 1B denote4

the indicator function of the measurable set B ⊂ X. Since φ can be approximated in5

L1(µ) by linear combinations of characteristic functions, the assumption that {Fn}n∈N6

is mixing gives that7 ∫
X

(1B ◦ Fn) · φdµ→
∫
X

1B dµ

∫
X

φdµ

as n→ ∞. The left-hand side is, by the Radon-Nykodim Theorem, equal to ν(F−1
n (B)),8

while the right-hand side is equal to µ(B) since ν is a probability measure. □9

Theorem 5.2. Let gn : D → D be inner functions fixing the origin, and let Gn
..=10

gn ◦ · · · ◦ g1, n ≥ 1. Then, the sequence {Ĝn}n∈N is mixing in the usual sense if and only11

if {gn}n∈N is contracting.12

Proof of Theorem 5.2. As mentioned before, Pommerenke ([Pom81]) proved that {Ĝn}n∈N13

is mixing if Gn tend to 0 uniformly on compacts of D. Conversely, assume that {Ĝn}n∈N14

is mixing but at the same time Gn → G pointwise in D, where G is a non-constant15

inner function. Now, take z ∈ D \G−1(0). Since the harmonic measure ωz is absolutely16

continuous with respect to Lebesgue measure, Lemma 5.1 gives that17

lim
n→∞

ωz

(
Ĝ−1

n (B)
)
= m(B)

for every measurable set B ⊂ ∂D. However, by Lemma 2.1, we have18

ωz

(
Ĝ−1

n (B)
)
= ωGn(z)(B),

for any measurable set B ⊂ ∂D. Since Gn(z) → G(z) we have ωz

(
Ĝ−1

n (B)
)
→ ωG(z)(B)19

as n → ∞, for any measurable set B ⊂ ∂D. Since G(z) ̸= 0, there exists a measurable20

set B ⊂ ∂D with wG(z)(B) ̸= m(B) and we obtain a contradiction, concluding the21

proof. □22

6. Examples and counterexamples23

In this section, we apply the various necessary and sufficient conditions obtained above24

to illustrate what ergodic and non-ergodic compositions of inner functions may look like.25

We start with the example promised in Section 1 of a sequence that is contracting but26

not ergodic. This example also serves to show that the necessary condition given in27

Theorem 4.1(b) cannot be sufficient.28

Proposition 6.1. There exists a sequence gn : D → D of inner functions fixing the origin29

such that the sequence {Gn}n∈N generated by Gn
..= gn ◦ · · · ◦ g1 satisfies the following30

conditions:31

(1) Gn → 0 locally uniformly in D;32
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(2) {Gn}n∈N satisfies the necessary condition (9) in Theorem 4.1(b);1

(3) {Ĝn}n∈N is not ergodic.2

Proof. Let gn : D → D be the Blaschke product of degree 2 given by3

gn(z) = z · z + an
1 + anz

,

with an = n/(n+ 1). An immediate calculation shows that g′n(0) = an, and so4 ∑
n≥1

(1− |g′n(0)|) =
∑
n≥1

1

n+ 1
= ∞,

whence Gn = gn◦· · ·◦g1 converges locally uniformly to zero by Theorem A. Furthermore,5

by the chain rule, we have6

(Gn
m)

′(0) =
n∏

k=m+1

k

k + 1
=
m+ 1

n+ 1
, (11)

and so for any fixed natural numbers ℓ and m, the sequence ((Gn
m)

′(0))ℓ goes to zero7

as n → ∞. The necessary condition (9) in Theorem 4.1(b) is now satisfied, since it8

becomes the Cesàro sum of a sequence going to zero. We finally show that {Ĝn} is not9

ergodic. Note that m+ 1 ≥ (n+ 1)/2 if N/2 ≤ m < n ≤ N . Hence (11) gives10

1

N2

N−1∑
m=1

N∑
n=m+1

(Gn
m)

′(0) ≥ 1

2N2

N−1∑
m=⌊N/2⌋

(N −m),

which does not tend to 0 as N → ∞. Hence condition (2) for ℓ = 1 in Theorem 1.2 is11

not satisfied and consequently {Ĝn}n∈N is not ergodic. □12

Next, we use Theorem 1.3 to provide several explicit examples of mixing and ergodic13

compositions of inner functions.14

Corollary 6.2. Let gn : D → D be inner functions fixing the origin and let Gn
..=15

gn ◦ · · · ◦ g1, n ≥ 1.16

(i) Assume
∑

(1− |g′n(0)|) = ∞. Then {Ĝn}n∈N has a mixing subsequence.17

(ii) If, furthermore, there exist constants 0 < λ < 1, 0 < c < 1 and M0 > 0 such that18

for any a, b ∈ N with b− a > M0 one has19

#{n ∈ [a, b] : |g′n(0)| ≤ λ} ≥ c(b− a), (12)

then the sequence {Ĝn}n∈N is mixing.20

(iii) Assume
∑

(1− |g′n(0)|) <∞. Then:21

(a) If arg g′n(0) → θ as n→ ∞ for some θ ∈ R \Q, then the sequence {Ĝn}n∈N22

is ergodic.23

(b) If the arguments θn = arg g′n(0) are independently and identically distributed24

according to some non-atomic distribution on ∂D, then {Ĝn}n∈N is ergodic25

with probability 1.26
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Proof. Assume
∑

(1− |g′n(0)|) = ∞. Then there exists an increasing sequence {Nk}k∈N1

of positive integers such that2

Nk+1∏
j=Nk+1

|g′j(0)| ≤ 1/2, k = 1, 2, . . . .

Since3

N∏
k=M

Nk+1∏
j=Nk+1

|g′j(0)| ≤ 1/2N−M ,

part (b) of Corollary 1.4 gives that the subsequence {ĜNk
}k∈N is mixing.4

Assume now that condition (12) holds. Then5

N∏
j=M

|g′j(0)| ≤ λc(N−M)

if N −M ≥M0, whence by part (b) of Corollary 1.4 the sequence {Ĝn}n∈N is mixing.6

Now, assume that Gn ̸→ 0 locally uniformly on D (which, recall, is equivalent to7 ∑
n≥1(1 − |g′n(0)|) < ∞ by Theorem A), whence by Theorem 1.3(iii) the sequence8

{Ĝn}n∈N is ergodic if and only if {ei argG′
n(0)}n∈N is equidistributed on ∂D. Thus, we9

only need to check that the conditions outlined in (a) and (b) imply equidistribution.10

That (a) does is an immediate consequence of a theorem by van der Corput (see [KN74,11

Theorem 3.3]). On the other hand, (b) implies equidistribution almost surely by a result12

of Robbins [Rob53, Theorem 2], which says that sums of independent and identically13

distributed random variables drawn from a non-atomic distribution are equidistributed14

with probability one. □15

We can now prove Corollary 1.5.16

Proof of Corollary 1.5. That contracting implies having a mixing subsequence is part17

(a) of the previous result, and the converse follows from part (iii) of Theorem 1.3. □18

7. Recurrence19

In this section, we prove Theorem 1.6.20

Proof of Theorem 1.6. We can assume without loss of generality that the sequence {Tn}n∈N21

is ergodic.22

To show recurrence, let A ⊂ X be a measurable set with µ(A) > 0. If 1A is the23

characteristic function of A, then by ergodicity the sequence (fN)N≥1 given by24

fN(x) =
1

N

N∑
n=1

1A ◦ Tn(x)

converges to the constant function µ(A) in L2(µ). Since a sequence converging in L2(µ)25

admits a subsequence converging µ-almost everywhere, recurrence follows.26
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Next, assume that supp(µ) = X, and let {Uk}k∈N be a countable basis for the topology1

of X. For k ∈ N, denote by Ũk the set of points x ∈ X such that Tn(x) ∈ Uk for only2

finitely many n ≥ 1. Then, clearly,3

1

N

N∑
n=1

1Uk
◦ Tn(x) → 0 as N → ∞

for all x ∈ Ũk. Hence, no subsequence of the time averages at x ∈ Ũk converge to4

µ(Uk) > 0, and so (by ergodicity) Ũk must have measure zero. The set5

Ũ =
⋃
k∈N

Ũk

also has measure zero, and it is clear that any point x ∈ X \ Ũ has a dense orbit. □6
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