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REGULARITY PROPERTIES OF MEASURES,
ENTROPY AND THE LAW OF THE
ITERATED LOGARITHM

JOSE GONZALEZ LLORENTE axpD ARTUR NICOLAU

Introduction

In many problems in analysis one often encounters the following situation: we are
given some positive measure intrinsically associated to the problem and we ask
how large must a set of positive measure be, in terms of the geometry of the
ambient space for instance, and what can be said about its Hausdorff dimension.

Let 4 be a positive Borel measure on RY. We say that u is absolutely
continuous with respect to H,, the Hausdorff measure associated to the measure
function ¢ (hereafter, denoted pu < H,) if

wE) >0 = My(E)>0

where M, is the Hausdorff ¢-content. Specially important are the choices
o(t) =t*, for some 0 < a<N, and in this case the corresponding Hausdorff
measure (called a-dimensional Hausdorfl measure) will be simply denoted by H,,.
(See §1.6 for the definition and basic properties of Hausdorff contents and
measures.) Let us exhibit three important examples where this comparison
question arises.

(a) Zygmund measures. A positive measure p on R is a Zygmund measure if
there is C' > 0 such that

() = (1) < |

for any two adjacent intervals I,I’ C R of the same length. Zygmund measures
have been extensively studied in harmonic analysis and they are also closely
related to some questions in geometric function theory [21, 19]. From the
definition it is easy to get the global estimate p(I) < Cy|I]log(1/]I]) which implies
that p < H,, , where ¢ (t) = tlog t~'. However, the optimal result [18] is u < Hy,
where ¢(t) = ty/logt ' logloglogt~'. See [7].

(b) Harmonic measure. Consider a domain Q C RY and fix a € Q. For E C 99,
let w(E,a,$) be the value at a of the harmonic function in @ with boundary
values 1 on E and 0 on 9Q\ E (we assume that such a function is well defined).
Then w(-,a,Q) is a Borel probability measure on 0f2, called the harmonic
measure with base point a. One of the most challenging problems in geometric
function theory during the last thirty years has been to understand the metric
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properties of harmonic measure. Namely, for which ¢s is it true that w << Hy?
Suppose that N =2 and €2 is simply connected. Then it is not difficult to prove,
using some standard harmonic measure estimates, a global inequality of the type
w(E) < Cvdiam E, which gives w < H; ;. An important advance was obtained by
Carleson, who proved that w < H,; 5, for some € > 0. The final answer is due to
Makarov [16]: w < H,, where () = texp{Cy/logt 'logloglogt '} for some
absolute constant C' > 0. Furthermore, ¢ is sharp, up to the value of C. The
situation is far from being well understood in higher dimensions or for other
elliptic operators.

(¢) Distortion of homeomorphisms of the real line. Let h:R— R be an
increasing homeomorphism and p;, its associated Lebesgue—Stieltjes measure, that
is puy(E) = |h(E)|. Increasing versions of the Cantor function show that p; can be
singular in general. Suppose now that we have control of the distortion of A for all
the different scales in the sense that

h(x +1t) — h(x)

(M) <

< M(t)

for some monotone function M(¢) >1 defined in (0,00). In [3] it was shown that
wy, can be singular even if it is a doubling measure, that is, sup M(t) < M < occ.
(We say that h is M-quasisymmetric in this case.) This suggests the question of
how large must a set E C R be if we know that |h(E)| > 0. In terms of Hausdorff
measures this is equivalent to asking when p;, < 'H, for some ¢ depending on
M(t). We will see that our methods give new answers to this question. See [8] for
related results.

Let Q= [0,1)" be the (half-open) unit cube in RY. We consider its dyadic
decomposition, that is, for k=1,2,... let F). be the collection of the 2"V pairwise
disjoint (half-open) dyadic subcubes of @, of sidelength 27%. Given Q,_, € F)_1,
we denote by {Qi:i=1,...,2Y} the 2 cubes of F) contained in Q,_;, so
Q1 = UJ; Q- Finally, for = € Qy, we denote by Q.(z) the unique cube in F
which contains z.

The main purpose of the paper is to study regularity properties of a positive
Borel measure p in RY, such as being absolutely continuous with respect to
various Hausdorff measures, in terms of its doubling behaviour, that is, in terms of
the size of

6i(x) = min{l ‘%}’

where Q;,_;(x) denotes the only dyadic cube of the generation k — 1 containing x
and {Q;}Z?:\l is its decomposition in dyadic cubes of the generation k. Observe that
by additivity 0< 6, <1 —2"". A positive Borel measure x in the unit cube Q, of
RY is called dyadic doubling if there exists a constant ¢ = c(u) > 0 such that
w(Q}) > cu(Qy_1(x)) for any € Qp, i =1,...,2% and k=1,2,....

Y. Heurteaux has proven the following nice result in this direction [11]. For
simplicity we state his result in dimension 1. Let p be a positive Borel measure
in [0,1] and assume that é,(z)>6é >0 for any = € [0,1]. Then u is absolutely
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continuous with respect to H; for any

_ 6log 61 4 (1 — 6)log(1 — 6)*

A log 2

On the other hand, if é(z)<i—e for any z€[0,1], where £>0, then
Y. Heurteaux also showed that p is singular with respect to Hz for any

-1 1

+(5—¢)log(3—¢)”
log 2 '

5o (+e)logb o)

See [2, 12] for other related results.

In our approach, the doubling behaviour of a probability measure p in @, will
be described by means of an entropy type quantity. Recall that if p;,...,p, is a
probability distribution, its entropy is defined as > p;logp;'. Similarly, for
T € @y, we define

_ Q) o Qi1 (7)) or k —
) =D @y 0 T L

where the sum is taken over the 2V dyadic subcubes Qi € F), contained in
Qj_1(z). We will be interested in hy(z), p-a.e. € Qy, but for the sake of
completeness, we write hy(x) =0 if u(Q_1(z)) =0, and if u(QL) =0 for some i
we interpret the corresponding term in the sum to be 0. Observe that
0< hy(z) < Nlog2 and the extreme cases hy(x) =0 and hy(z) = Nlog2 corre-
spond respectively, to the situations where u gives all the mass u(Q;_i(x)) to one
of the subcubes {QL:i=1,...,2¥} and where u fairly distributes its mass
w(Qp_1(x)) among all {Q} :i=1,...,2V}. Hence, hy(x) tells how u distributes
the mass u(Qy_1(x)) among {Q} :i=1,...,2"} and so the function

H,(z) =Y M(z), forzeQ,
k=1

gives information on the doubling behaviour of g among all dyadic cubes
containing z of generation smaller than n. Since 0<hi(x)<Nlog2 and
H,(x) < Nnlog2, both limits

H(z) = lim H,(z) and lim (Nnlog2— H,(x))

n—oo n—oo

exist and are non-negative but may be infinite. The behaviour of a positive
measure with respect to Hausdorff contents can be described in terms of the
entropy H,, in the following way.

COROLLARY 6.2. (a) Let p be a probability measure in @, and 0 < < N.
Assume that for p almost every point x there exists ng(x) > 0 such that
H,(z)>pnlog2, for n>mny(z).
Then p is absolutely continuous with respect to H, , where
¢s(t) = 7 exp(C(logt " logloglogt~)'/?)

and C = C(N) > 0 is a constant only depending on the dimension N.
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(b) Let u be a dyadic doubling probability measure in Q, which is singular
with respect to Lebesgue measure. Let 0 < 3 < N and assume that for p almost
every point x there exists ng(z) > 0 such that

H,(z)<fnlog2, for n>ny(z).
Then p is singular with respect to Hy , where
Ps(t) = 7 exp(C, (log t ' logloglog t1)/?)
and C, = C|(N) > 0 is a constant only depending on the dimension N.

Since the entropy H,(x) gives information on the doubling behaviour of the
measure f, it is natural to relate H,(z) with the uniform quantity

b, = n}llnék(x) (0.1)

Here, we interpret 6.(z) = 0 if u(Qj_1(x)) =0. In terms of this uniform quantity
our result is as follows.

COROLLARY 6.4. (a) Let u be a probability measure in @,. Assume
6 =inf, 6, > 0. Let p be the integer part of (1 —6)"' and

p(1 = 6)log(1 = 6)"" + (1 — p(1 — ) log(1 —p(1 - §)) "

b= log 2

Then p is absolutely continuous with respect to H,, where
Ps(t) = ¢’ exp(C(logt " logloglog t_l)l/Q)

and C = C(N) > 0 is a constant only depending on the dimension N.

(b) Let u be a dyadic doubling probability measure in ), which is singular
with respect to Lebesgue measure. Assume that for u almost every point x, there
exists ko(x) >0 such that &,(x) <6< 1—2"" if k> ky(x). Then p is singular
with respect to Hy where

¢,(t) = t"exp(C; (logt " logloglog tHY2y,
(1—6)log(1 —6)" + 8log(s/(2Y — 1))~
log 2

v =
and C, = C{(N) > 0 is a constant only depending on the dimension N.

Observe that if N =1, then p =1 and § = ~. In [11], Y. Heurteaux proved that
under the hypothesis of (a), the measure p must be absolutely continuous with
respect to Hy,., for any € > 0. Concerning part (b), he showed that p must be
singular with respect to Hy_. for any € > 0, without the doubling and singularity
assumptions on the measure p. Our methods also give this result, using the
representation (0.4), Doob’s theorem in §1.4 and the theorem of Levy (0.7).
Similar remarks apply to Corollaries 6.2 and 6.5. Moreover our arguments are
quite flexible and can be used in situations where 6;.(z) are not uniformly bounded
below (see Corollary 6.3). Actually in many special cases one can compute the
right Hausdorff measure governing the regularity of the measure in terms of the
sequence 0. A concrete list is given in §8. In addition, our arguments can also be
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used in situations where we only have good doubling behaviour of the measure for
some scales (see Corollaries 6.5 and 6.6). Also an analogue of Corollary 6.2 where
we have weaker assumptions on the entropy H, is stated in Theorem 6.1.

Our method can also be applied in the other extreme case, that is, when
studying regularity properties of measures which double nicely for small scales. A
positive Borel measure p in @ is called dyadic symmetric if limé, =1 — 27V as
k — oo, or equivalently if

. M(Q;ic) . N} -N
g,=infs —————:zxe€Qyi=1,...,2 — 2 0.2
=it { e 02
as k— oco. A well-known result of L. Carleson [5] (see also [9]) states that u is
absolutely continuous with respect to N-dimensional Lebesgue measure if

Z(ZfN —&,)? < o0

o0
=1

Moreover this result is sharp. Our techniques give the following quantitative
version of Carleson’s result.

THEOREM 8.2. (a) Let p be a dyadic symmetric measure in @ and let €, be
the quantities defined in (0.2). Then, there exists a constant C' = C(N) such that
p is absolutely continuous with respect to H, for any measure function ¢
satisfying

n

Pp27") =2 "V exp (C 2" - sk,)2>.
k=1

(b) Let pu be a dyadic symmetric measure in (), which is singular with respect
to Lebesgue measure. Let ¢;, be the quantities defined in (0.2). Then, there exists a
constant Cy = C(N) only depending on the dimension N such that u is singular
with respect to H, for any measure function ¢ satisfying

p(27") =27V exp (01 zn:(Q—N - 5k)2>.

k=1

Again, concrete examples are given in §8.

Our results have the following application to the distortion of homeomorphisms of
the real line. (We recall that M (t) stands for the function controlling the distortion of
the homeomorphism, as in example (c) at the beginning of the introduction.)

COROLLARY 9.1. (a) If M(t)< M < oo, that is, if h is M-quasi-symmetric,
then p, is absolutely continuous with respect to Hg, , where

P () = t7M exp{C(logt " logloglogt~)"/?}.
Here

1 M
M)=——I M+1 1
s om0+ 1)+ 4 lows

B M+ 1
T M+1

M

and C is some fixed absolute constant.
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(b) Assume that

Il log M(s) ds
lim M) s =00
i—0 (loglogt=!)(loglogloglogt!)

Then p is absolutely continuous with respect to ‘H,, where

and C' is some fixed absolute constant.

Essentially the same kind of results can be restated in terms of the harmonic
measure for the elliptic operator obtained as a pull-back of the Laplacian with the
Beurling—Ahlfors extension of h to the upper half-space. We refer to §9 for
further details.

We now explain our methods. Our analysis is modelled on the following well-
known example which is extremal in Heurteaux’s result. For fixed 0 < A< %, we
will define a probability measure g on [0,1] by induction. Put p[0,1] =1 and
assume that the mass of p has been defined on all dyadic intervals of generation k.
If I is such an interval and [ = I, U [_ its decomposition into its right and left

halves, we define

(L) = MalD), () = (1= Nu(D),

So, the mass of p on intervals of generation k4 1 is defined. Iterating this
construction, we define a Borel probability measure p on [0, 1] so that

(I, () = N (1= Ny, (0.3)

where v(n,z) is the number of dyadic intervals of length bigger than 27"
containing = which are at right position. Observe that in this case the entropy
H,(z) = nh(\), where h()\) = XlogA™' + (1 — A)log(1 — A\)~'. Observe also that
the pointwise estimate p(l,(z))<(1—MN)", for x €]0,1], shows that p is
absolutely continuous with respect to H, for a < logy(1 — \)~'. However this result
can be substantially improved using the law of large numbers which says that
lim v, ) =X p-ae x€l0,1].
n—00 n
So,

lim M =h(N\) p-ae x€]0,1],

n—oo n
and we deduce that u is absolutely continuous with respect to Hg,
B < h(\)/log2
and is singular with respect to H,, and
v > h(\)/log2.

This can also be deduced from the ergodic theorem once it is observed that pu is
ergodic with respect to the shift transformation.



REGULARITY PROPERTIES OF MEASURES 491

Our analysis uses martingales with respect to a probability measure on @), and
the law of the iterated logarithm relating the size of the martingale with the size
of its quadratic characteristic. These notions and results are reviewed in §1.

Given a positive Borel measure p in @)y, our method consists of proving the
following analogue of identity (0.3):

M(Qn(x)) = eXp(Sn(x) - Hn(x))v pra.e. x € QO? (04)

where (S,,u) is a dyadic martingale. This is just Doob’s decomposition for the
p-submartingale log u(Q,,(x))/|Q,(x)|. In particular,

M = exp{Sn(x) + Nnlog2 — Hn(x)}' (05)

|Qn ()]

It turns out that S, is completely explicit and one can prove that its quadratic
characteristic (S),, is pointwise estimated as follows:

<S>n(m) < 2(nN 10g2 - Hn(£))' (06)

Actually, the two terms are comparable if p is a dyadic doubling measure, that is,
if 6(z) = inf;, 6,(x) is uniformly bounded below. In this general situation, some
growth estimate of S, playing the role of the law of large numbers in the model
case described above, is needed. From a theorem of Levy [23, p.157; 20, p.519], it
follows that

NREAGI

RTINS 07

at prae. x € {x € Qp: () (x) = 00}
Now, (0.5), (0.6) and (0.7) tell us that at p-almost every point

ze{r € Qp: (S)w(r) =00}
the densities p(Q,(z))/|Q.(x)] behave as exp{Nnlog2— H,(z)} if n is
sufficiently large.

THEOREM 4.3. Let u be a probability measure on the unit cube Q, of RY.
Then:

(a) w Is singular with respect to Lebesgue measure if and only if

lim (nNlog2 — H,(z)) =00, pra.e. z € Qy;

n—od
(b) w is absolutely continuous with respect to Lebesgue measure if and only if

lim (nNlog2 — H,(z)) < 0o, p-a.e. z € Q.

n—00

However, the law of the iterated logarithm (LIL) shows that the estimate (0.7)
can be typically improved. We have the following LIL.

COROLLARY 3.8. Let pu be a probability measure in @, and (S,,u) the
martingale arising in (0.4). Then
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_ Sp(z)
lim <C 0.8
oo \/<S>n(x) log log<S>n($) s ' ( )

pra.e. at {x € Qy: () (x) = 0o}; here C) is a constant depending on the
dimension;
(b) if p is a dyadic doubling measure, we also have

p-a.e. at {x € Qq: (S) () = 00}; here Cy is a constant depending on the
dimension and on the doubling behaviour of p.

G, (0.9)

For general dyadic martingales, the LIL only holds under certain size
restrictions on the increments of the martingale. Actually, it turns out that the
versions of the LIL that one can find in the literature require either the
boundedness of the increments or some strong growth assumptions which would
be quite restrictive in our setting [22]. Nevertheless, Corollary 3.8(a) states that
the upper bound of the LIL holds for the special martingale S, without any
assumption on the increments. Therefore, even though we start from a general
measure u, the fact that the martingale S,, is constructed in a very special way
seems to play an essential role in our arguments. We do not know whether this is
a sign of a more general fact.

From the LIL, it is natural to expect that if the total entropy is large, then the
iterated logarithm term should be small compared to the total entropy. In
Theorem 5.6, we will show that if

H, ()
(logn)(logloglogn)

— 00 asmn — 0o (0.10)

then

\/<S>n(x) log 1Og<S>n('r) = O(Hn(x))'
Therefore, the LIL can be used to show that S, (z) = o(H,(z)) and hence

1(@n(x)) = Ofexp(=(1 4 o(1))H,(z)))

at p-a.e. x € @ satisfying (0.10).

Corollary 6.2(a) follows from these considerations. Part (b) follows from similar
arguments using the lower bound in the law of the iterated logarithm.

The paper is organized as follows. Section 1 contains background about
martingales, quadratic characteristic and the law of the iterated logarithm. In §2,
the martingale S, for which the main identity (0.4) holds is introduced. Also, its
quadratic characteristic is computed. In §3 we show that the law of the iterated
logarithm holds for S,,, without any additional hypothesis on its growth. Section 4
is devoted to the proof of Theorem 4.3. In §5, the quadratic characteristic (S),,
the entropy H, and the uniform quantity ¢, are compared. The corresponding
estimates are applied in §6, which contains the proof of Theorem 6.1 and its
corollaries. In §7 a continuous version of the results is presented. Section 8
contains examples and the proof of Theorem 8.2. Finally, in §9 we give an
application of the preceding results to distortion of homeomorphisms of the real
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line and to the size of harmonic measure of certain degenerate elliptic equations,
which are typically non-doubling.

Acknowledgement. We are indebted to our colleague J. Donaire for many
helpful conversations. We thank him for sharing his smart insights with us.

1. Notation and background about martingales and Hausdorff measures

1.1. Notation

Let Qy = [0,1)Y ¢ RY be the (half-open) unit cube in RV and denote by F), the
family of all (half-open) dyadic subcubes of @, of the generation k, that is, all
cubes of the form

2N
[T =127 m2™)  (1<m; <2
i=1

for i=1,...,2". Given Qi—1 € Fj_1, there is a natural dyadic decomposition
Qp1 = U?;l Q;., where {Qi}?;l are disjoint and Q) € F). We will refer to such
{Q}} as the ‘dyadic sons’ of the generation k of Q,_;. Also, we remind the reader
that, for x € Qy, we will denote by Q. (x) the unique @ € F; which contains x.
Finally, from now on, | | will denote N-dimensional Lebesgue measure.

1.2. Conditional expectation

Note that the measurable functions with respect to the o-algebra F 1, generated
by F, are just the step functions in @), that are constant on each cube of Fj.
Now, given a probability measure u in Q, and f & L'(Q,u), define the
conditional expectation of f with respect to F, denoted by E[f/F}, u], as the
unique (up to sets of p-measure zero) F-measurable function such that

[ fn=| ELr17e b d

for any @ € F. Note that E[f/F}, u] is a step function, constant on the cubes of
the generation k such that

B/ Fellg = @j@fdu Qe Fy)

whenever p(Q) # 0 (otherwise any value would work).

1.3. Martingales

Given a real-valued sequence of functions {S,},2 in Qy, we say that (S,, ) is
a dyadic martingale if the following two conditions hold:
(i) each S, is constant on any dyadic cube of the generation n, that is, S, is
ﬁl—measurable for any n;
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(i) E[S,/F—i,1] = S,—1 (n=1,2,...) or, equivalently,

2N

Qn1 M(anl) = Z

i=1

Snfl

Qn (Qn)

whenever Q,_; € F,_; and {Q!}% 1 are its dyadic sons.
The differences X,, = S,, — S,,_; will be called the increments of the martingale (.S,,).

1.4. Quadratic characteristic

If (S,, i) is a martingale in @, its quadratic characteristic (), is defined to be
the following sequence of functions:

= ZE[(Sk - Sk—l)Q/]:k—laM]'
k=1
Note that each (S, is F »—1-measurable, that is, constant on the dyadic cubes of
the generation k£ — 1. Sequences with such a property are called predictable.
If Qk’—l (S fk'—h then

2N i
(S~ Sp1)* [ Firul = ) ulzgiki)

provided u(Q;_1) # 0 (otherwise, the value of the conditional expectation is
irrelevant). Therefore

(Sk = Sik1)?

ZZ uQ Sk —Sp1)? pae z€Q
=1 i= 1

where {Q},} is the dyadic tower of cubes containing x, {Q.} are the dyadic sons of
Qp-1, Sk—1 = Sk_1lg, , and Si =8 Q- In fact, (S), is the unique non-decreasing
predictable sequence such that S2 = <S Yo -+ M, for some martingale M, and all
n >0 (Doob’s decomposition). We will put, hereafter, (S), = lim,_..(S),.

It is well known that, in many aspects, the quadratic characteristic (S},
determines the structure and properties of the martingale S,,. For instance we
have the following result [23, p.65].

THEOREM (Doob). Let (S,,p) be a martingale in Q. Then
{z€Qy: (9)n(zr) <o} C{reqQ,:3lim S,(z) <o} pae,

that is, lim,_,. S, (z) exists at p-almost every point x where {S),(x) < co.

1.5. Law of the iterated logarithm

The precise asymptotic growth of a martingale is closely related to its quadratic
characteristic. Given a martingale (S,,u), we will say that it obeys the upper
bound (respectively lower bound) of the law of the iterated logarithm (LIL) if
there is 0 < C' < oo such that

T Sn(ﬂf)

<C
A TS) @) log g (8. @)
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(respectively > C') for p-a.e. z in the set {(S),, = co}. The lower bound is usually
harder to establish, whereas we will be mainly concerned with the upper bound.

The law of the iterated logarithm has a long history. It was first proved by
Khintchine [13] for sums of independent, identically distributed, uniformly
bounded random variables. Kolmogorov [14] and Hartman and Wintner [10]
generalized it to wider classes of independent variables. The first extension to a
martingale setting was due to Levy [15]. More recent extensions to martingales
have been obtained by Strassen [24] and Stout [22, 23]. For general martingales,
some boundedness condition on the differences is required to prove the LIL, even
the upper bound (see [22, 23]). However, we will only be interested in the upper
bound of the LIL for a special class of dyadic martingales. In this particular
situation, we will see that a certain elementary exponential inequality allows one
to drop any boundedness restriction on the differences, which is much more
convenient for our purposes. The argument follows Makarov [17] and we will give
the details in § 3.

1.6. Some elementary facts about Hausdorff measures

A measure function is a non-decreasing, positive, continuous function
¢ :[0,400) — [0,400)
with ¢(0) = 0. Given a measure function ¢, the Hausdorff ¢-content of E C Q is

defined as
- iutf > @)

where the infimum is taken over all coverings of E by cubes {Q;}, each r(Q;)
being the sidelength of @;. With the same notation, the Hausdorff ¢-measure of £
is defined as

Hy(E) _g%mf{zqs QJ)<6}

It is easy to check that
My(E) =0 <= HyFE)=0.

The advantage of the Hausdorff content is that it is always finite. This is the
reason for which, throughout this paper, we will restrict our attention to
Hausdorff contents instead of Hausdorff measures.

If ¢(t) =t (a > 0), then we simply write M, (E) (respectively H,) and we refer
to it as the Hausdorfl a-content of E (respectively a-dimensional Hausdorff
measure). Note that My(-) is just a multiple of the usual N-dimensional
Lebesgue outer measure. The Hausdorff dimension of E is defined as

dim E = inf{a>0: M,(E) = 0},

so M,(E) > 0 implies dim F > «. Given two measure functions ¢; and ¢, it is easy
to check that M, (E) < M, (E) if ¢(t) < ¢o(t) near t=0. Also, M, (E) >0
implies My, (E) > 0 if lim ;_,(¢o(t)/¢1(t)) > 0 and M (E) = 0 implies M, (E) =0
if Timy o ((2) /1 () < +o0.
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As mentioned in the introduction, we will be interested in determining when a
given measure p is absolutely continuous with respect to the Hausdorff measure
associated to a certain measure function ¢. In this respect, note that if p satisfies a
global estimate of the form

1(Q) < co(r(Q))

for any cube @ C @, and some positive constant ¢, then u < H,, directly from
the definition. Standard measure-theoretical arguments show that a local control
is actually sufficient to get the same conclusion.

ProrosiTioN 1.1. With the notation above,

(a) if
. 1(Qn(2))
limsup———+ < oo for p-a.e. x,
7Hoop $(27") :

then p < Hy;

(b) if
. 1(Qn(2))
limsup————= =00 for p-a.e. x,
T 8

then p is singular with respect to H,.

Proof. (a) Choose E, with ;(E) > 0. By localization, it is enough to assume that
w(@Qn(2)) < Mp(27") for all x € E, each n € N and some M > 0. Suppose that
E C Ui Qp, where the Q) are cubes. Fix such a @, and let n € N be such that
27 <r(Qy) < 2=~ Then Q) is covered by, at most, 2V cubes Q}w ce f\ e F,
and {Qj:j= 1,2,...,2N,k: 1,2,...} is a covering of E by dyadic cubes. We
can also assume that Q] N E # () for all k and j, so ¢(r(Q})) =M '1u(Q]). Then,

S 00r(@0) 220 S S 6 (Q)) > M2 N ().
=1 =1 =1

This shows that M,(E) > 0.
(b) Let A be the set of points x of the unit square @, for which
1(@n(x))

limsup———= =

n—00 ¢(27n)
So, u(A) = u(Qy). Given M > 0, let A;; be the set of points = € @y such that

hffl sup —u;?;(f))) > M.
Hence, if x € Ay, there exists n such that p(Q,(z)) > M$(2™"). Denote
Q(x) = @u(x). Then
Ay C U Q(x) = UQJA
J

T€A)
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where {Q;} is a collection of pairwise disjoint dyadic cubes. Then

Ho(Aa) < D o(r(Q)) <M~ 1Zu (@) <M~ (@)
Therefore H,;(A) = 0. O

REMARK. It is well known that Hausdorff measures allow one to compare sets
of Lebesgue measure zero. If M (FE) >0, then the smaller ¢(¢) is when t
approaches 0, the bigger E is, in this sense. In this paper we are specially
concerned with measures which ‘live’ on sets of Hausdorff dimension smaller than
N, so this means that we will mainly deal with measure functions such that

limy_o((£)/£") = oc.

2. The logarithmic transform

Suppose we are given a probability measure p in @y. For each @ € F,,, define

Znlo = m@)/1Q.

Then (Z,) is an .7-'” -measurable sequence of functions which measures the density
of p, with respect to Lebesgue measure, for any scale. The following proposition
clarifies the structure of the logarithmic transform log Z,,.

ProrosiTioN 2.1. If p and Z, are as above then there are a martingale
(S,, 1) in Qy and a non-negative, non-decreasing, predictable sequence P, such that

logZ, =S5, + P, up-ae.

In particular, u(Q,,) = exp{S, — H,} for any dyadic cube Q,, of the generation n. In
fact, except for additive constants, one has

_Nmee Q) ((Q)
D=2 2 G (u(Q;i))

n 2V
lyiu’ ( le)

ZZ o)

=nNlog2 — H( ),

and

M

where, for each k, (), is the dyadic cube of the generation k that contains x and
{Qi}?;l are its 2V dyadic brothers.

Proof. Fix Qj_, € Fj_1, with p(Q)_1) >0 and let {Qi} C F) be its dyadic
sons. Suppose that log Z;,, = S;. + P}, with (S}, 1) martingale and (P,) predictable.
Let S}, Z{, P, (respectively S, 1, Z,_1, P,_1) be the restrictions of Sy, Z;, P, to
Q; (respectively Q;_;). Predictability and the martingale condition imply then
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that
0= ;u(@i) <10g Zi — (P, - pk_1)>
B oN . oD ) )
_;N(Qk)l g(2 #(QH)) (P — Py )@y 1)
So,

z i oN M(Q}i)
~ 1= 21: le ( ﬂ(le))

and the proposition follows with the choice of P, in the statement. Positivity of
P, is a consequence of the following elementary fact: if A; >0 and > ;") \; = 1,
then Y7, \;log \;! < logm. O

REMARK 2.1. Since we will only be interested in properties of u which hold p-
a.e., the relevant values of x for us are those for which p(Q.(x)) > 0 for all k. In
this case, note that all the Qj such that u(Qj) =0 are not relevant in the
definition of S, and P, in the proposition above. Also, in the rest of the paper, all
the inequalities must be understood p-a.e.

REMARK 2.2. If N =1, then

and

—nlog?2 — S e o (1) M(]k/:) o p(l_1)
Ful@) = nlog? Z[uuk_l)lg( (1) )U(zk_l)lg( () )}

k=1
where I}, is the dyadic interval of F, which contains x and I}, is its dyadic brother.
REMARK 2.3. The quadratic characteristic of the martingale (S,,, 1) is given by
ZZ e, [ @ (u(Qé))]Q
171:qu1 lllJ“le M(Q;«)
where, as before, {Q,.} is the ‘dyadic tower’ of cubes containing z and Q,_; = 22;1 Q.
is the dyadic decomposition of Qk,l. An elementary computation shows that

o =F [ S ()
(?;M‘Zéfifog(“ﬁ?é&)ﬂ

REMARK 2.4. Observe that if 4 is Lebesgue measure in @, then S, = P, = 0.
Actually, P,(x) measures how far p is from Lebesgue measure according to the
doubling behaviour of u on cubes containing z. Furthermore, P, can be
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understood in terms of means. Fix k and let A, = u(Q;)/u(Qp_1). Then the
arithmetic mean of the \; is 27V and

P, = Zlog( ‘1X)X).

3. On the upper bound of the LIL for the class
of martingales arising in §2

DEFINITION. We say that a dyadic martingale (S,,u) in Q, C RV satisfies
condition £ with constant ¢ > 0 if

(eXp(tSn - Ct2<S>n)a M)

is a supermartingale for any ¢ > 0.

From §1, we remember that, for a dyadic martingale S, =5 ;_; X, with
respect to a probability measure p in @y, then

iZ)J XJ

where \/ = (Q,;)/M(Qk 1), X =5,—-8,_ 1|QJ7 {Q;} is the dyadic tower of cubes
containing = and {Qj} are the dyadic sons of Q-

ProrosiTION 3.1. Let (S,,u) be a dyadic martingale in Q. Then (S,, 1)
satisfies condition & with constant ¢ > 0 if and only if, for each k € N and each
Qi1 € Fj_, the following inequality holds:

2N oN
Z)\;g exp {tX]} < exp {ct2 ZAZ(X;)Q}, for t > 0,
=1 =

where )\,g and X,g are as above for j=1,...,2".

Proof. The inequality stated in the proposition is equivalent to

J,, et = B ((S) = ()01 dn< Qi)
=
which is in fact equivalent to

Elexp(tSy — ct’(S))/Fr1] < exp(tSy_1 — ct*(S);_1)

which is just condition £ with constant c. O

The first part of the following theorem is the key point of the section.

THEOREM 3.2. (a) There is ¢ = ¢(N) > 0 such that, if p is any probability
measure in Q, C RY, and (S, 1) is the dyadic martingale associated to p as in §2,
then (S, n) satisfies condition € with constant c.
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(b) If (S,, ) is a dyadic martingale in Q, C RY and p is dyadic doubling then
S, satisfies condition £ with a constant ¢ depending only on N and the doubling
constant of .

Theorem 3.2 is a consequence of the following two lemmas, which will be proved
at the end of the section.

LEMMA 3.3. Let m € N, m>2. Then there exists a constant ¢ = c(m) >0
such that for any t >0 one has

Z Ajexp(tX;) < exp (ct Z A X2>

J=1
where0< \;<1forj=1,...,m, > A\, =1, H =3 AlogA;"' and
X;=log\;+H= ZAi log(A\;/ ).

LemMA 3.4. Let m € N and 0 < §<1/m. Suppose that \;>6 for 1<i<m,
and Y ity N, = 1. If (x;)i%, are real numbers such that > iy \;jx; = 0 then, for any
t>0 and any c¢>3/(46), we have

Z)\ exp(tx;) exp(ct Z)\I)

REMARKS. 1. The use of continuous exponential inequalities has been a usual
tool to prove the upper bound of the LIL for general martingales [22, 23]. In the
dyadic case, what we have called ‘condition & is a reformulation of the
‘exponential transformation’, extensively used by Makarov in [17]. We will show
that the discrete exponential inequality given by Lemma 3.3 is all that we need to
get an upper bound of the LIL for the special class of martingales described in § 2.
On the other hand, we believe that part (b) of Theorem 3.2 is probably well
known and has previously appeared in the literature in more or less explicit ways
1, 6].

2. An easy observation that will be useful in the proof of the LIL is the fact
that condition £ is preserved by stopping-times. More precisely, if (S,,u) is a
dyadic martingale in @)y that satisfies condition £ with constant ¢ > 0 and 7 is any
stopping-time in @, then the stopped martingale

S,;((L‘) = Smin{T(z).,n} (LL')

also satisfies condition £ with the same constant c¢. This is obvious from the
definition of stopping-time.

3. The proofs of Lemmas 3.3 and 3.4 give explicit values of the constant c
which are not necessarily the best ones.

Now we will see that condition £ is all that we need to get an upper bound of
the LIL. The following lemma is the key for such reduction.
Given a dyadic martingale (S, 1), put
Sy =max{S;,...,S,}, Sx=1mS,, (S),=IlLm(S),.

n
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LEMMA 3.5. Let (S,,u) be a dyadic martingale in Q, C RY satisfying condition
& with constant ¢ > 0. Suppose that Sy = 0. Then, for any M >0, N > 0,

pwl{r € Qy:IneN, S)(z) > M, (S),(x) <N} exp{ _i\/[c]if}
Proof. Given M > 0, let 7 be the stopping-time defined by
T(x)=k <<= Si(x)<M, ..., Sp1(z)<M, Sp(z)>M
and let (S)) be the stopped martingale. Let
A={z:3IneN, S, (x) > M, (S),<N}.
From Remark 2, (S)) satisfies condition £ with constant c. From the supermartingale

assumption,

1= J exp(tSg — ct*(S7)o) du 2] exp(tS;) — ct*(S7),) du
Qo

>j exp(tS] — ct2(S™),) dis
A

for any ¢t > 0 and each n € N.
Since (S7), < (S),, it follows from the definition of 7 that if = € A, then
Sp(x) =M and (S7),(x) <N eventually. Therefore, by Fatou’s lemma,

exp(tM — ct> N)p(A) < h_mJ exp(tSy — ct*(S7),) du <1
A

n

and the lemma follows with the choice ¢t = M /2¢N. O
COROLLARY 3.6. If (S,,u) is as in Lemma 3.5, then

iz € Qu s S4(@) > M, (S) () <N} < exp{ —j”N}

Now, the proof of the LIL (upper bound) is standard [17, 1]. We include it
for completeness.

THEOREM 3.7 (LIL, upper bound). Let (S,,u) be a dyadic martingale in Q)
satisfying condition £ with constant ¢ > 0. Then

Tim Sn <1
n—00 \/4C<S>n loglog(S),

almost everywhere on the set {(S),, = 0o}.

Proof. Fix R > 1, and define, for k € N, the following sets:

A={(8) =00, S, > R\/4¢(S), loglog(S),, for infinitely many n},
Ap={r€Qy:IeN: R <(S),(z) < R,
Su(x) > R\/4¢(S),, () loglog(S) () }.
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It is easy to check that

and, since
Ay C{z:3In: S} (z) > Ry4cRFloglog RF, { < RMY
it follows by Lemma 3.5 that

R*4cR"loglog R*
dcRFH1

1
w(A;) < exp { } oF exp{—Rloglog R}.

Therefore,

cRN~ 1
N(A) geleoglobR Zﬁ
k=n

for any neN and, since R>1 it follows that u(A)=0. This finishes
the proof. 0

COROLLARY 3.8. There exist a constant C, = C|(N) > 0 such that, if (S, i)
is the martingale associated to p as in §2, then

lim S”(x)
=2 \/(S),(x) loglog(S), ()

for p-a.e. x € {x € Qy : (S)o(x) = 0}. If pu is a dyadic doubling measure, there
exists a constant Cy > 0 such that

<C

hm Sn(x)
1% /(8)u(x) loglog(S).,()

p-a.e. at {x € Qy: (S)(x) = 00}

>C, (3.1)

The upper bound follows from the previous result, while the lower bound
follows from well-known results [22], because the assumption on the measure p
implies that the martingale (S,, 1) has bounded increments.

Proof of Lemma 3.3. Let ¢ = c¢(m) be a constant to be determined later. We
have to show that the function

f(t) =log (Z A; exp(tlog /\j)> —ct? > ONX] +tH
J=1 j=1

is negative if ¢ > 0. It turns out that f(0) = f’(0) = 0 and so it is sufficient to show
that f”(t) <0 if t>0. Computing f”(t), one is led to prove that for any ¢>0,

> Aid(log A; —log A;)° <2CZ)\ X3 (3.2)

i<j
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where
exp(tlog\; +tlog ;)
(327 A exp(tlog A)))*

Observe that k;;(0) = 1 and an easy calculation shows that (3.2) holds with ¢ :%
when ¢ = 0. Since ) 74 \; =1, we have 0< \; <1,

Aj, =max{A;:j=1,...,m}>1/m

kij(t) =

and
exp(tlog\; +tlog ;) o2

kij(t) < S
/ A% exp(2tlog \;)

Hence (3.2) holds with ¢ =1m?*. O

Proof of Lemma 3.4. As above, we will see that if ¢ >3/(46) then the function

f(t) =log < DN exp(tfci)> — > Na?
=1 i=1

is negative for ¢>0. Since f(0) = f'(0) =0, it is enough to see that f”(t) <0 if
t>0. Computation shows that the sign of f” is given by

Z A exp(t(z; + x;)) (:v? —rw; — 262 )\kmi)
k
Now observe that

z —202)\k:rk<x — T, (Aix?—i—)\jxf)go
as soon as ¢ = 3/(49). O

4. Characterization of the singularity and absolute continuity of
1 in terms of the sequence (P,)

In this section we will see that singularity and absolute continuity of the
measure u can be expressed in terms of the boundedness of the sequence (F,).
Note that, since P, is non-decreasing, there always exists Py (x) = lim,_,,, P,(x).
Notation is as in §2.

The following proposition relates (S), and PB,.

ProprosIiTION 4.1. With the notation of §2, we have, for every n € N:
(a) (S)n<2P;
(b) if the measure u is dyadic doubling, then

CPn < <S>n < 2P
where ¢ = ¢(u) > 0 only depends on the doubling constant of f.

The inequalities must be understood p-a.e.

Using Proposition 2.1 and Remark 2.3, we see that Proposition 4.1 is a direct
consequence of the following elementary lemma.
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LEMMA 4.2. Let m € N, and (\)j%; be such that \; >0 for i=1,...,m,
. A\ = 1. Then:
(a)

m m

m 1 1 2
2 .
;:1 A; log N < ;:1 \; log )\i) <2 ;:1 A log(mA,);

(b) if, furthermore, M~ < X\;/\;< M for some M >0 and any i and j, then
there exists ¢ > 0, only depending on M, such that

m 1 m 1
Ailog(mA;) < > Alog? T (Z N logy>
i=1 4 i=1 4

m 2
C .
i=1

Proof. We only sketch the proof of (a). The result is obvious if m = 1. Fix m
and suppose, by induction, that the result is true for smaller m. Then, it is enough
to show that the maximum of

m

m 1 1 2 m
FOL A =D\ loggx— (Z)\ilog)\> —2) Nlog
=1 i i=1 i i=1

on the set A ={(A,...,\,) : A >0,> 0%\ =1} is 2logm.

From Lagrange multipliers it is easily seen that if A;,..., ), is the only critical
point of f at A, then log), —2Hlog), must be independent of i (here
H=>57,\log)\, ). Since each log);, is negative, this implies that
AL = ... =)\, = 1/m. The result now follows from the facts that f(1/m,...,1/m) =
2logm and (1/m,...,1/m) cannot be a minimum. O

THEOREM 4.3. Let u be a probability measure in @y. Then

(a) w is singular (with respect to Lebesgue measure) if and only if P, (z) = oo
at p-a.e. T € Qq;

(b) w is absolutely continuous if and only if P, (x) < oo at p-a.e. x € Q.

Proof. We only prove (a), the proof of (b) being similar. Suppose first that p
is singular. If p{P,, < oo} > 0, then, by Proposition 4.1 and the theorem of Doob
stated in §1.4, it follows that p{sup,|S,| < oo} > 0. Since log Z, = S,, + P, and
P, >0, we can choose E C Q, with pu(FE) >0, and ¢ > 0 such that

(271 < :U“(Qn(x))

S0 S°

for all n €N and each z € E, which is impossible if p is singular. Thus,
this contradiction shows that p{P,, < oo} = 0. For the other implication assume
P =00 pra.e. From a theorem of Levy [23, p.157; 20, p.519], we have |S,| =
o((S),) p-a.e. on {(S), =oo}. Since (S),<2P,, it follows that |S,|=o(P,)
p-a.e. Therefore log 7, () — +oo for p-a.e. z € Q, and

w(Q,())

———— +00 asn— o0

Q. ()]
for p-a.e. x € Q. This implies that p is singular. O
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COROLLARY 4.4. If p is a singular probability measure in @), then there is
¢ > 0 such that

— og(u(Qu(2))/1Qu(@)) — Pula) _
n—00 \/P logloan( ) h

for p-a.e. x € Q.

Proof. Recall that S, = log(u(Q,(X))/|Q.(x)|) — P,(x) is a p-martingale. By
Theorem 4.3, u{P, <oc} =0. Hence, the result is obvious on the set
{sup,|S,| < co}. On its complement, we use the upper bound of the LIL for the
martingale S, and the estimate in Proposition 4.1. O

Theorem 4.3 should be compared to Corollary 1.2 in [9], which says that a
dyadic doubling positive measure p is singular if and only if

23 (o () ==

a.e.(dr) x € Q. Here Q;_, is the dyadic cube of generation k — 1 which contains =
and {Qi}, for i =1,...,2" are its 2" dyadic sons.

5. Control of S, by H,

5.1. Control of (S), by H,

From §2, for a given probability measure in @),, we have the representation

M(Qn(aj)) = eXp{Sn(‘T) - Hn(x)}

where (S, 1) is a dyadic martingale,

r) = zn:hk(x)a hy(x) = Z)\i(x) log il
k=1 i=1 k(@)

and, from now on, () = u(QL)/u(Qr_1(x)), {Qi}?-, being the dyadic sons of
Q1 (x). Since, by the upper bound of the law of the iterated logarithm, S,, can be
controlled by (S),, the purpose of this section is to determine which conditions
on the doubling behaviour of p imply that S, (z) = o(H,(z)) for p-a.e. z. We
remember that, if (S,) is as above, then

ZZ/\J(ZX 1og'>

nor2¥v 1 2V 1\2
:Z {ZAijlogQi (Z)\fflogi> }
=1 L=t Ak i=1 Ak

We start with some technical lemmas.
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LEMMA 5.1. Let m € N with m >2. Then there exists ¢ = ¢(m) > 0 such that
if (\)i%; are non-negative and 2111 A =1, then

Z)\log (Z)\log >
m logm
< Al 1 — |-
C<Z N > Og( 7_’1>\i10g/\i1>

Proof. We will distinguish two cases.

1. There is j, with 1 <j<m, such that 1/100m < A; < 3. Since 37 A log? A

<log?m and S Ajlog A ! >\ log /\] >c¢(m) then the conclusion follows from
Lemma 4.2(a).

2. There is j with A; > % and \; <1/100m if ¢ # j. Assume that A, , and
A < 1/100m for i=1,...,m—1. Let e =max{\,...,\,_1} < 1/100m Since
SN A, = 1< (m —1)e + A, it follows that A, 1 — (m — 1)e. Therefore,

m 1
,Z:)\i log? A7 < (m — 1)elog”e ™ + [1 — (m — 1)e] log2m

1 2
<(m—1elog?e ™ + [ —————1
(m—1)elog”e +(1—(m—1)£ >
<2(m —1)elog”e™ (5.1)

where the fact that xlogz™ is increasing in [0,e7!] D [0,¢] and decreasing in
[1 —e(m —1),1] and the estimate log(1+t) <t (¢ > 0) have been used. On the
other hand, an easy computation shows that

-1 m —1
cloge <Z,L:1/\,Llog)\z < g1

W=

logm logm

g

SO

Ti ey, (o ) closc ! ((loem )

logm SOty Ailog At logm eloge™!
and we finally get

uL _ logm
i=1 1= 7 i
The result follows now from (5.1) and (5.2). O

The following lemma shows how to control the quadratic characteristic in terms
of the total entropy.

LEMMA 5.2, Let 0<h,<1, k=1,2,...,n, and H, = j_; hy. Then,
" 1
thlog— < H, log ).
k=1 hk: Hn

Proof. The result follows from Jensen’s inequality for the convex function
logz L. O
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Observe that the opposite inequality in Lemma 5.2 cannot be true: put
hi=...=h, =1with b, =0if n>k>m.

Now we are ready to control (S), by H,. Corollary 5.3 is a direct consequence
of Lemmas 5.1 and 5.2.

COROLLARY 5.3. If, for each k € N,

pule) = - M) log s

is the entropy at step k and H,(x) = j_i hy(z), then

(S),(z) < CH,(x)log (“N log 2 >

H,(x)

where C' is some positive constant depending only on N.

Now Corollary 5.3 and the LIL (Corollary 3.8) give the following reformulation
of the LIL in terms of the total entropy.

COROLLARY 5.4. Let S, (S,), and H, be as at the beginning of this section
and T, (z) = nN(log2)H,(z)"". Then

S,
lim sup z 5 SC <oo
oo (H,(logT,)loglog(H, log T,,))"/

p-a.e. on the set {(S), = oo}, where C = C(N) > 0. In particular,

S,
lim sup “ 75 SC <0
oo (H,log(2T,,)loglog(H, log(2T,)))"

p-a.e. on the set {lim, H, = co}.

Observe that 27),(x)>2 for all n. This is technically convenient for the
subsequent applications.

LEMMA 5.5. Let hy, with 0<h, <1, and H, be as in Lemma 5.2 and
T, = nN(log2)H,". Suppose that

H,
1- n —
oo (logn)(logloglogn) >

Then, H,log(2T,)loglog(H, log(2T,)) = o(H2) as n — oo.
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Proof. If n is large enough, using the notation log® n = logloglogn, we have

H, log(2T),) loglog(H, log(2T,,))
H?

<l ( 2nN log 2 )
<log | ————
®\ (log n)(1og® n)

loglog H, log® (2N (log2)n(logn) ™" (log® n)™)
“\Tm, T a

log log((log 1) (log® 1
< C(logn) <a oglog((logn)(log “ n)) +e ) <2Ce. O
(logn)(log® n) logn

The following result says, in a precise way, that if H, is big enough then the
expression in (S), appearing in the LIL can be controlled by H,.

THEOREM 5.6. Let S,, (S),, H, be as at the beginning of the section. Let
x € Qy be such that

H,(z)
(logn)(logloglogn)

— 00 asn — Q.

Then +/(S),(z)log™ log™(S), () = o(H,(x)) as n — oco. In particular, S,(z) =
o(H,(z)) for p-almost every point

H,(x)
(logn)(logloglogn)

xG{xGQO:

HOO&S’HJ*)OO}.

Proof. Just combine Corollary 5.3, Corollary 5.4, Lemma 5.5 and Doob’s
theorem in §1.4. 0

5.2. Uniform conditions

We introduce the following quantities:

#(Qp)
Q1)

6k:min{1— :leefkl,izl,...,2N}

for each k € N, where, as usual, {Qk}?;l are the dyadic sons of @;_;. Note that 4,
informs about the worst doubling behaviour of p at the generation k. Observe also
that, from the additivity of u, it follows that 0< 8, <1 — 2" for each k. These
extreme values correspond to the extreme doubling behaviour of y: 8, near 1 — 27
means that u behaves like Lebesgue measure and 4, near 0 means that p doubles
very badly inside some Q.

The following technical lemma says how small the entropy in the function of
this uniform quantity can be.
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LEMMA 5.7. (a) Let meN, m>2, and 0<6<1 — m~'. Then

m m
min{ZAilogAgl DY N =1,0<)0<1 —5}
i=1 i=1

=p(1—6)log

+(1-p(1 - 8))log—

1
1-6 1—p(1—20)

where p = [(1 — 6)"'] is the integer part of (1 —8)".

(b)

m m
maX{Z)\ilog)\fl DY A =1L0<N < max ) =1 5}
i=1 i1 !

+6logm_

=(1-0)log 5

1
1-96 '

Proof. (a) We claim that some ); of the extremal configuration must be equal
to 1 — 4. If not, the extremal configuration would be of the form A;,...,A;,0,...,0,

where I1<g<m and 0 < \; <1—-6 (i=1,...,q). But this would imply that the
minimum

q q
min{Z)\ilog/\i_l:Z/\izl, 0<\ < 1—5}

i=1 =1

is attained at the set {(Ay,...,A,) : 2t A =1, 0 < \; < 1— 6} which is impossible
since, by Lagrange, the only critical point at this set is Ay =... =\, = 1/q and it
is a local maximum.

Therefore, we can assume that \; =1 — . Now we argue by induction on m.

We distinguish two cases.
1: 0<6 <3 Then p=[(1 - 8) "' =1 and, since 31", \; = &, it follows that

T\ 1) dL 1 1
t _— > . > —.
E 5 log (Ai) >0, so ;:2 A; log " /6log6

=2 t
Therefore,

m

1 1
> a log = >élog <+ (1—6)log
i=1 i

1
o 1-6

2: %S(Sgl—mfl. Here, put u; = \;/6 for i =2,...,m. Then
UL 1-96
ZNz‘Zl and 0<ui<T:1—5/
=2

where 6’ = (26 — 1)/6. Note that

1 1 1
0<6’<1——1 and =1,
p—
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o [(1—¢")""] =p—1. By the induction hypothesis,
- 1 &\ 6
;log—=Y “log <—)
2oy =2 5 (5
> (p— 1)1~ &) log

+(1—(p—1)(1-6)log

1
I=(p-D(1 =9

1-6 6 1—p(1—9)
=(p—1 1 1 .
(p= 1) =5~ log g+ ————loeg— i
So
ﬁéxw M= (1-6)lo ! +M01+(-—DO—6HO
D Ailog > g5 T ologs+(p S
+(1- (176))10#
b ST—p1—9)
=p(1—46)1 ! + (1 —p(1—-46))1 !
—P 815 P BT 1 —0)

(b) Assume that \; = max; \; =1 —¢. Then ) ;s \; = 6 and, under this restric-
tion, the maximum of > %, A\;log1/); is attained when Ay =... =\, =§/m — 1.
Thus

a 1 (m—18§ m-1
Z)\logz\ )log 6+ 1 log 5
— (1= 6)log—— + 6log ™=
- S R
and the lemma is proved. O

REMARK 5.1. In the situation of Lemma 5.5 note that, if 0 <6 < % or m=2,
then

1 1
p(l—é)logl_ + (1 —p(1—96))log :6log5+(1—6)log

1
1—p(1—9) 1-6

REMARK 5.2. If p, 6 and m are as in Lemma 5.5, then

1
= 6log—
g

p(l—5)10g1i6+(1—p(1—6))log

1
1—p(1-96)

with comparison constants that depend only on m.

The upper bound of the law of the iterated logarithm, Lemma 5.7 and Remark
5.2 lead to the following formulations of Theorem 5.6 in terms of the quantities 8.

COROLLARY b5.8. If

> i1 O log 6
(logn)(logloglogn)

+00,



REGULARITY PROPERTIES OF MEASURES 511

then +/(S),(z)log*log*(S),(z) = o(H,(x)) as n—oco for p-ae x€Q, In
particular, S, (z) = o(H,(z)) as n — oo, for u-almost every x € Q.

COROLLARY 5.9. If

logloglog k
5]{/ (Tgk — 00 ask— o0,

then

V(S)u(z)log" log" (S),(x) = o(H,(x)) asn— oo

and S, (z) = o(H,(z)) as n — oo, for p-almost every x € Q.

Proof. Just observe that the hypothesis yields

LS b logsy!
n—o (logn)(logloglogn)

and apply Corollary 5.8. 0

6. Estimates of the support of p in terms of its doubling behaviour

In this section we apply the results in §5 to determine measure functions ¢ for
which 1 < 'H,, under restrictiq\ps on the doubling behaviour of u. Let S,, (S,
H, =311 hy, and hy(z) = 327, M log(AL) ™! be as in §5.

The first result is an immediate consequence of Corollary 5.4.

THEOREM 6.1. Let (A,);—; be a sequence of numbers such that
0<A,— A, {<Nlog2 foralln,

and such that

li A
im
n—so (logn)(logloglogn)

n

Suppose that H,(x)> A, for n>ng(x), p-almost every x€ Q,. Let
T, = nN(log2)A,'. Then, u < H,, where ¢ is any measure function such that
¢(27”) = eXp{C(An(log 21—1”) log log(An log(2Tn,)))l/2 - An}
for some C =C(N)>0. In particular, for any >0, p<H, where
P(27") = exp{—(1 — )4, }.
Proof. Corollary 5.4 gives

@, (2)) < exp{C(H, () log(2T,(x)) log log(H, () log(2T,,(«))))"/* — H,(x)}
eventually for p-a.e. z. Now, for n>ny(z), T, (z) <T, and hence
H,(z) — C(H,(2) log(2T, () log log(H,,(z) log(2T,,(«))))*
> /H,(2)(v/H,(x) - C\/log 2T, loglog(H,,(x) log(2T,)) ).

Since H,(z)> A, > (logn)(log® n), it is sufficient to observe that the function
vz — Cy/(log2T,)loglog(xlog 2T},) is increasing in z if x> A,,. O
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REMARK. It is easily checked that if ¢; and ¢, are two measure functions
such that ¢;(27") = ¢9(27") = exp{—B,,}, where 0< B,, — B,,_; < C for all n then
¢1(t) < ¢o(t) for all t € [0,1], and, therefore M, (E) > 0 if and only if M, (E) > 0.
Thus, there is no ambiguity in the statements of Theorem 6.1 and the
results below.

COROLLARY 6.2. (a) Let 0 < <N and assume H,(xz)>fnlog2 p-almost
every z € (y. Then n < Hgy,, where

¢p(t) = t7 exp{C(logt ! logloglog til)l/z},

for some C' = C(N) > 0.

(b) Assume that p is a dyadic doubling measure which is singular with respect
to Lebesgue measure. Let 0 < < N and assume that H,(z) < fnlog2 u-almost
every x € QQg. Then p is singular with respect to ‘H,,, where

Ps(t) = t7 exp{C, (log t ' loglog logtil)l/Q}
for some C; = C(N) > 0.

Proof. Part (a) follows from Theorem 6.1.

To prove (b) recall that p(Q,(z)) =exp(S,(z) — H,(x)) where (S,,p) is a
martingale. Since p is dyadic doubling, the lower bound in the law of the iterated
logarithm holds, that is,

lim sup Sn(@)
n—oo /(S),(x)loglog(S),(x)

at pra.e. € {x € Qy:(S)s(x) =00} Since p is a dyadic doubling measure,
Proposition 4.11(b) tells us that (S),(x) is comparable to

P,(x) =nNlog2 — H,(x).

>C

Also, since p is singular with respect to Lebesgue measure, Theorem 4.3 tells that
() oo () = 00 pra.e. € Q. Therefore, the lower bound in the law of the iterated
logarithm reads

lim sup Su(2)

>C pae 2€Q,.
n—oo +/(nNlog2— H,(z))loglog(nNlog2 — H, (z)) : o

Hence, for p-a.e. x € @, there exist a sequence of natural numbers n, tending to
infinity for which

(@, (7))
> exp(C\/(nkNlogQ — H, (x))loglog(n;Nlog2 — H, (x)) — an(x))

Now, we deduce that

/‘L(Qn,k (‘T)) 2 exXp (C(ﬂv N>C V IOg log ng — ﬂnk IOg 2)
= 2 P exp(C’Q\/nk log log nk) p-a.e. & € Q.

Applying part (b) of Proposition 1.1, we deduce that p is singular with respect to
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H,, where

(&)

¢p(t) = 7 exp{C; (log t ! logloglogtfl)lﬂ}. O
Let (6;) be as in §5.2.

COROLLARY 6.3. (a) Suppose that

lim >oho b log &'
n— (logn)(logloglogn)

Then, for each € > 0, we have y < H,_where ¢, is any measure function such that

n

o2 =ep {-(1-9) % (1 - 80w

k=1
+ (1= pu(1 = 6) logm)}

where p;, = [(1 — &,)"']. In particular, there exists ¢ = ¢(N) > 0 such that p < H,,
where ¢ is any measure function such that

d(27") =exp { - CZ s logéi }
=1

k

(b) Let u be a singular dyadic doubling measure in (), which is singular with
respect to Lebesgue measure. Then p is singular with respect to ‘H, where ¢ is any
measure function such that

d(27") =ex —i(l—&)lo L—&—6 lo 2" -1
= exp 2. k g1—5k k108 5 :

Proof. Statement (a) follows from Theorem 6.1, Lemma 5.7 and Remark 5.2
in §5.2. To prove (b) we argue as in the proof of Corollary 6.2(b). We know that
for p-a.e. = € @y, there exists a sequence n; of natural numbers, n;, — oo, for
which

1(Qy, (2))
> exp(Cy/(Nnylog2 — H, (z))loglog(Nnylog2 — H, (z)) — H,, ().

Since 6;(x) <&, and (1 —2z)log(l —2)~ ' + zlog((2Y —1)/z) is increasing in z if
0<z<1-2"" applying Lemma 5.7, we deduce that

1 2N 1

Hy(x)< > (1-6)log—— + 6o
() };( W)log 5+ dlog =

Hence,

M(an. (J))) 2 ¢(27”k) exp (C\/Pnk (x) 1Og IOg Pn;,,, (.73)) .

Since p is singular with respect to Lebesgue measure, P, (z) — 00 p-a.e. € Q.
So, part (b) of Proposition 1.1 shows that p is singular with respect to H,. [
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The hypothesis in Theorem 6.1 and Corollary 6.3 may seem unnatural, but some
restrictions on the growth of H,, and §, are necessary to avoid measures with point
masses which obviously cannot be absolutely continuous with respect to any
Hausdorff measure. Actually it turns out that if &, = k™' (log k)~ ' (loglog k)¢, with
e > 0, it could happen that p has point masses, while if 6, k(log k) / log loglog k — oo,
Corollary 6.3 can be applied. Our method does not give enough information to fill
in this narrow gap.

In the case that the sequence (8;,) is bounded below by some positive constant
(that is, ¢ dyadic doubling) we recover Heurteaux’s result (recall Remark 5.2 of
§5.2; see also §8).

COROLLARY 6.4. (a) Suppose that 6,>6>0 for all keN, and let
p=[(1- 6] and

p(1 = 8)log(1 — &) + (1 — p(1 = 6))log(1 —p(1 — §)) "
log 2 '

/6 pr—
Then i < 'H,,, where ¢g is as in Corollary 6.2(a). In particular, if N = 1,

~ blogd ' 4 (1—68)log(1 —6) "
N log 2 '

B

(b) Let u be a dyadic doubling singular measure. Assume 6,(z) <6 <1 —27
at p-a.e. x € Qq, for k=1,2,.... Then p is singular with respect to H,, where ¢,
is as in Corollary 6.2(b), with

= (log2)"! ((1 —(5)log1i6—|—610g (2N5 1))

Proof. (a) A direct application of Lemma 5.7 gives

21\"

hi(@) =) (@) log%
2p(1—(5)10g1i5+(1_p(1_6))10gm'

The result follows now from Corollary 6.2.
(b) As in the proof of Corollary 6.2(b), we know that for u-a.e. x € @, there
exists a sequence of natural numbers n;, tending to infinity, for which

w(@n, (7))
> exp(C\/(Nnk log2 — H, (x))loglog(Nn;log2 — H, (x)) — Hm(m))

Now, since &,(z) <6 <1—-27", prae. x € Q, we deduce that for p-ac. z € Q,,
the dyadic square Qy(z) contains a dyadic cube of the next generation @}, with
1(Qry1) = (L = () u(Qr) = (1 — O)u(Qy). Then, applying Lemma 5.7(b) we
deduce that

N _
Hn(x)<n<(1 —6)10g(1i5) +(5log2—61>
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and deduce that

(@, (x)) = 27" exp(C(6, N)C'/ny loglog ny, )

for pra.e. €@y and for infinitely many n;,. An application of part (b) of
Proposition 1.1 finishes the proof. O

As announced in the introduction, we can obtain the same results under the
assumption that the doubling behaviour of u is good for many scales, that is,
suppose that 6, >6 > 0 for each k € A, where A C N. Let p = [(1 — 6)71]. Then,
by Lemma 5.5,

21\‘
i 1 1 1
= plog— >p(1—96)1 1—p(1-96))]log—F——
if ke A, so

1
Hn> <p(1 —6)1Og1 _6

+ (1 =p(1-96)) IOgm

The following two corollaries are now a consequence of Corollary 6.3.

)card(A N [1,n)).

COROLLARY 6.5. (a) If 6, =6 >0 for all k€ A CN and
lim card(AN[1,n])

n—o0 n

=1
then p < Hg: for any

(1 —6)log(1 —8)~" + (1 —p(1 — é)) log(1 —p(1 - 6)) " .

!/
g< log 2

In particular, if N =1 then p < Hg for any

, Slog6~t 4 (1 —6)log(1 —6)~*
< .
log 2

B

(b) Let p be a dyadic doubling measure in (), which is singular with respect to
Lebesgue measure. Assume 6, <6 <1 —27" for all ke A C N and
ANl
lim card(AN[1,n]) _1

n—00 n

Then p is singular with respect to Hg for any

8> (1 —6)log(l —6)" + 6log((2¥ —1)/6) .
log 2

In particular, if N =1, then p is singular with respect to Hg for any

(1 —6)log(1—6)"" +6logs™?
log 2 '

B>

COROLLARY 6.6. If infycy 6, >0 and lim, . (AN[l,n])/n >0, then there
exists 3 > 0 such that pu < Hg.
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7. Continuous formulation for measures in RY

For each cube Q C RY, denote by {Ql}fll its natural decomposition into 2V
disjoint cubes of half size. Now, given a locally finite positive measure p in RY,
define, for 0 <t < %,

8(t) = inf {1 — u(Q,)/u(Q)}

where the infimum is taken over all cubes in RV of sidelength r(Q)>2t, and
where {Q;}7, is as above. The function §(¢) is non-decreasing and, when p is
restricted to the unit cube @), it is easy to check that, with the notation of §6,

527 <6
The following elementary proposition allows one to apply the results in §6.

PROPOSITION 7.1. There is a positive constant ¢, depending only on N, such
that

1/2 1 dt
Zék log J 8() log@?.

Corollary 6.3 admits the following integral formulation.

THEOREM 7.2. There exists a positive constant ¢, depending only on N, such
that if

i J;l/z 5(s)log 671 (s)s 1 ds
lim — — = 00,
=0 (loglogt~!)(loglogloglogt™')

o(t) = exp { - ch/Qé(s) logﬁ% }

then p < 'H,4, where

8. Examples

8.1. An extremal class of dyadic doubling measures

The construction of extremal measures in Heurteaux’s result given in the
introduction can be easily generalized to hlgher dimensions. This is very classical.
Fix non-negative \;,..., Ay such that S 7 1/\ = 1. Suppose that Q,_; € Fj_4
and that p(Q;_;) has been defined. If {Qk}z 1 is the dyadic decomposition of
Qk—b define

M(Qlic) = N Qp—1)-

Independently of the flexibility of these assignments for the different scales, it is
clear that this also defines a Borel probability measure in Q. Then

2~
H,=n>» X\logh '

i=1
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and this implies, according to results in §6,

2N

p<Hg forany < (Z)‘l log)\i1>(log2)1,

i=1

and p is singular with respect to Hj for any
2N
8> (Z \; log A;1> (log2)~".
i—1

8.2. Some particular applications of the results in §6

When specialized to particular choices of the sequence (8,) in §6, we can write
down explicitly the measure functions ¢ for which p < H,. We collect some
examples in Table 1.

TABLE 1.

o o(t) (n <Hy)
log log k exp{—C(loglogt!)(logloglogt ™)}
klogk
k! exp{—C(loglogt™")?}
Y (0<a<l) exp{—C(logt™")" " (loglogt ™)}

1 _1. logloglogt™1

~ C(logt ™) 2808081

log k EXP{ C(logt™) loglogt=! }

8.3. On the sharpness of the results in §6

We can modify the construction given in the introduction to allow different
values of A for different scales. Precisely, we consider a sequence (A;)7—; such that
0< A, <3 for each k €N, and, given pu(f;_;), define

w(I) = ML), p(ly) = (1= N)u(Ly—y)-

Since our final measure can have atoms in this general situation, it is worth
pointing out that all dyadic intervals considered are always half-open (of the form
[ , ). Then, since [[72, Ax = 0 for any n € N, it can be shown that the requisites
to extend p are satisfied [20], so this procedure also defines a Borel probability
measure in [0,1]. As in §8.1, we have now

3

}U(In) = H /\Z‘ H(l - /\k)l_Ek
k=1

k=1

where €, = 1 if the predecessor of I,, of the generation k is at right position and 0
if it is at left position. Observe that if 72, A, < oo then p will have atoms at the
dyadic numbers {m/2" : n € Nym =0,1,...,2" — 1} in fact,

k
plm/2",m/2" +1/2%) = e(m,n) [J(1 = )

J=n
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if k>n, which shows that p has an atom at {m/2"}. It can be shown that pu is
actually concentrated at the dyadic numbers. Observe that a measure with atoms can
never be absolutely continuous with respect to any H,, for any measure function ¢.

8.4. Symmetric measures

A positive measure in @ is called dyadic-symmetric if

i w(Qp)
= f{m@k_lu»

as k — oo. With the notation of §5.2, this is easily shown to be equivalent to
lim;_. 6, =1 — 2", Actually, observe that by additivity, 1 —2"" —§,(z) is
comparable to 27V — ep(z). Hence, dyadic symmetric measures are those dyadic
doubling measures with a nice doubling behaviour for small scales. Examples of
such measures can be given using the construction of §§8.1 and 8.3. Concretely,
given sequences (A)p2; (i=1,...,2") where 0 <\, such that 212;1 A, =1 for
each k, define inductively

1
:xEQO,izl,Q,...,QN}H2—N

M(Qli) = Aiu(QkA)

for i =1,...,2N. If inf, /\}'f — 27V as k — oo, the resulting measure is dyadic
symmetric.
Now, let u be a dyadic symmetric measure, so that
M) =——"""—>e,—— ask—oo, fori=1,...,2".
Q-1 (z)) ~ 2N 7
Without loss of generality, we can assume that 2~V <e, <27V for any

k=1,2,.... We will use the following elementary lemma which can be proved
by induction.

LEMMA 8.1. Let meN, m>2 and 0 < e<m™'. Then

min Y )\ilogi: A =€, 3 A =1
; Ai i=1

1 1
= —Delog—+ (1 — (m —1)e)log———.
(m —1)elog _+ (1~ (m = 1) og y——5-
Hence, if p is dyadic symmetric then we have
oN
S ) log— > (2Y — 1)z, log—
i=1 /\2(1‘) €k
1—-@2Y —1Dep)log—————
+ ( ( )gk) Og]. — (2N — 1)5k

— Nlog2 ask— oco.
So

n

1 1
H, > 2V _ e log—+ (1— 2V =1 log————
n T (( )Ek Oggk + ( ( )Ek) Ogl _ (2N _ 1)€k>
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and, since e, — 27" as k — 0o, the results in §6 would imply that pu < Hjp for
any 3 with 0 < 8 < N. In fact, our method gives a sharper result. For that, we
need a more careful estimate of ©(@,). We know that

/”'(Qn) = eXp{Sn - Hn} = 27”N eXp{Sn + Nn 10g2 - Hn}
and, by Lemma 8.1,

n 2 N

; 1
P, = Nnlog2 — H, = Nnlog2 — A} log —
= Nulog2 — H, = Nulog2 = 3_ 3 o
—1 i=1 k
<Zn: Nlog2—( (2¥=1)e logl+(1—(2N—l)5.)log;
= FT e, VST 2N — e, ) |
An elementary computation shows that
0<Nlog2— [ (2V — 1)zl 1+(1 2V —1)z)1 !
< Nlog2 — — 1)z log— — —1Dz)log——F——
& &2 STV

<Oy —a)

if 2V <2 <27V, where Cy only depends on N. Therefore

n 1 2
P, =Nnlog2—H,<Cy ) <2N—sk> :
k=1

At this point we should mention that we can assume that

> (5-a)
SN €k> = Q.
=1 \2
Indeed, if this series converges then a well-known result of Carleson [5] implies
that p is absolutely continuous with respect to Lebesgue measure.

Now, since (S), <2P, =2(Nnlog2 — H,), we have, for u-almost every = € Q,,
either sup, |S,(z)| < oo or S,(z) = o(y/P,(z)loglog P,(x)) by the results in §1
and the LIL. Therefore,

n 1 2
M(Qn(x)) < 2—TLN exp{C’(:r) + C(N Z <2N - ek:) }

k=1

So, we have the following.

THEOREM 8.2. (a) If p is a dyadic symmetric measure and (g;,) are as above,
then p < 'Hy where ¢ is any measure function such that

o2y =27 exp{ci (%N - sk>2}

k=1

for some ¢ = ¢(N) > 0.
(b) Let u be a dyadic symmetric measure which is singular with respect to
Lebesgue measure. Then p is singular with respect to H, where ¢ is any measure
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function such that
—-n —n - 1 ’
(,25(2 ) =2 ’Nexp <CZ <2_N_ €k> )
k=1
for some ¢ = ¢(N).

Proof. As in the proof of Corollary 6.2(b) we see that for u-a.e. x € @, there
exists a sequence n; of natural numbers, n;, — oo, such that

@ (@) exp(C(P,, (z) loglog P, (2))'* + P, (x)).

UQy, ()"
Applying Lemma 5.7(b), we deduce that

n

1 2V —1
H,(x) < ; (1—65) 10g1_76k+5k10g 5,

and (1 —z)log (1 —z) ' 4+ zlog((2"Y — 1)/x) is comparable to (1 — 27" — 2)? for z
close to 1 —27V. So, we deduce that

M@u®) (o SN
1Qu @)~ p(c”,;“ 2 5"’)

which finishes the proof. O

When specializing these results to particular examples we have, for instance,
those shown in Table 2.

TABLE 2.
& o(t) (n < Hy)
2%7% t (logt~!)*
-om 0<a<) ¥ exp{e(logt 1))
QL\, WI@ ¥ exp{e(loglog ™)}

9. Application to a certain class of degenerate elliptic equations

Now we are ready to apply the previous results to the two situations described
in the introduction. Suppose that h : R — R is an increasing homeomorphism and
let 1y, be the Lebesgue—Stieltjes measure associated to h. Then if M(¢) is as in the
introduction, it follows for instance that if M(t) < M, then &, > (M +1)~" for all
k. This observation and Corollary 6.4 prove part (a) in Corollary 9.1. Part (b) is
derived from either Theorem 6.1 or Theorem 7.2.

COROLLARY 9.1. (a) If M(¢t) < M < oo, that is, if h is M-quasi-symmetric,
then p, is absolutely continuous with respect to ‘H,, , where

dur(t) = t7M exp{C(logt ' logloglogt')"/?}.



REGULARITY PROPERTIES OF MEASURES 521

Here
M M+1
M) = 1 M+1 I
BM) = g lom M + 1)+ 7o (1)
and C' is some fixed absolute constant.
(b) Assume that
fl log M(s) ds
lim L M) s =0
t—0 (loglog t~1)(loglog loglog t 1)

Then p is absolutely continuous with respect to H,, where

o(t) = eXp{ _ Cﬁ%%}

and C is some fixed absolute constant.

The rest of the section is devoted to describing how these kinds of results inform
us about the size of harmonic measure for certain degenerate elliptic equations.

To start with, consider a positive locally finite Borel measure p in R such that
p(—00,+00) = oo, 1 has no atoms and p(I) > 0 for any interval I of the real line.
Let h:R — R be the associated homeomorphism, that is h(z) = p[0,z] if >0
and h(z) = —plz,0] for £ < 0. Then h: R — R is a continuous, strictly increasing
homeomorphism of the real line. Define

u(w,y) :é(irwh(t) dt + HI h(t) dt> ,

x =y
1 T4y 1(*
v(w,y) :%<§L h(t) dt — QLyh(t) dt) ,

for z € R, y > 0. Then ® : R2 — R%, given by ®(z,y) = (u(z,y),v(x,y)), is called
the Beurling—Ahlfors extension of h [3] (or simply, the Beurling—Ahlfors extension

of p).
Computing the derivatives of ®, as in [3], it follows that

(blf Uy uy _ a+ﬂ a/_ﬂ,
\v, v ) \a—-p08 o+

where
:lh($+y)_h( ) ﬁ:lh(x)—h(x—y)
2 Y ’ 2 y )
;1 )i (4 y) — h(t)] dt 5= Loy [h(t) = Az —y)] dt
o = 2 yg ) — 9 y2

Note that all o, 8, a’, 8" are strictly positive. Then, det ®’ = 2(af’ + fa’) > 0
and it follows, for elementary topological reasons, that ® is a C' homeomorphism
from the upper half-plane into itself such that ®(x,0) = h(x), for = € R.

The connection with elliptic operators is well known [4, 12]. A simple
computation with the chain rule and the change of variables formula shows
that, if u is harmonic in R%, then v = u o ® is a solution of the following equation
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in divergence form [4]:
Lv =div(A(z,y)Vv) =0

where A(z,y) = det ®(z,y)(®'(z,y)) " ((®'(z,y))") .
An explicit computation of A(x,y) gives

Ala,y) = 1 o +6" aa’ - By’
VT a8y \aa' — B8 ot ),

Therefore,
(K(z,9) " (2, 9)lI* < (A(z,9), (z,9)) < K(z,) || (2, )|

where

2 2 /2 /2
K(z,y) = (a +§ﬁ,++aa,ﬁ+ﬁ )(m,y)>2.

In a similar way to what we did in §7, put

st =n {0 1110} 2t = 60 0.)
u(I)

where J is any of the two half-intervals in which I is divided. Note that, in the
case of the line, 6(-) is the same uniform function as that introduced in §7, up to
a change of scale: y instead of 2y. Then §(y) < %, so M(y) > 2. Furthermore, 6(y) is
increasing and M (y) is decreasing for y > 0. The following lemma is elementary.

LEMMA 9.2. Ifa, B, o', B’ are as above, then

<2M(y),  (M(y)—1)7'< = <M(y) - L.

P«
"B
<

In particular K(x,y) <4M?*(y).

Proof. That o' <a and B'<f is trivial from the definitions. On the other
hand,

a h(z +y) — h(x) . h(z +y) — h(x)
1= Yy o SY -+y/2
a U@+ y) = h@)]dt T [T (x4 y) - ()] dt
hfz+y) —h(z) _, pezt+y <aM(y).

Wz +y) —h(z+y/2) " ple+y/2,2+y)

Also,
a_ hMaty) —hz)  plzz+y
B hx)—hz-y) plz-ya]

SMQ2y) —1<M(y) — 1.

The other inequalities are analogous. Therefore,

4+ +8?  aa BB a B
Rey) == vas  <ap ap 5 a
<AM (y)(M(y) — 1) + 2(M(y) — 1) <4M*(y) 0
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Now, if L is the elliptic operator obtained by pulling back the Laplacian in R2,
as described above, z, € R% is fixed, and wy, = ®(z,), then, for E C R,

wi (B, 29) = wa(h(E), wo) < |h(E)| = p(E)

where wy (-, 2,) (respectively wa( -, wy)) denotes harmonic measure in R?, from z,
(respectively wg) for the operator L (respectively the Laplacian). Here the
notation A < B means that there exists a constant C' > 0 which may depend on z,
and h, but not on the set E, such that C™'A < B< CA. We can summarize these
preliminaries in the following proposition.

PrROPOSITION 9.3. Let pu be a Borel, locally finite positive, infinite, measure in
R without atoms and satisfying p(I) > 0 for any interval I C R. Let ® be the
Beurling—Ahlfors extension of p, and L = div(A(z,y)V(-)), the pull-back of the
Laplacian by ®. Then, the ellipticity of A is related to the doubling behaviour of
as follows:

40 () M| (2, )P < (Al ), (,9)) <4MP(y)| (2, )1

where M (y) is defined in (9.1). Furthermore, wy(-) < u where wy, is L-harmonic
measure from some fixed point in R%. In particular, w; < H, if and only if p < H,,.

Now we are ready to apply Theorem 7.2 to this situation.

THEOREM 9.4. Let u, L, wy, M(y) be as in Proposition 9.2. Suppose that

J‘l log M(s) ds

. L M(s) s

lim =00
t—0

(loglogt~1)(loglogloglogt~1)

Then, there is some absolute constant C' > 0 such that w; < 'H,, where

"og M(s) ds
t) =exps —C| ————— ».
ot0) = exp { - ¢ PEI
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