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Introduction

In many problems in analysis one often encounters the following situation: we are
given some positive measure intrinsically associated to the problem and we ask
how large must a set of positive measure be, in terms of the geometry of the
ambient space for instance, and what can be said about its Hausdor/ dimension.

Let � be a positive Borel measure on R
N . We say that � is absolutely

continuous with respect to H�, the Hausdor/ measure associated to the measure
function � (hereafter, denoted �� H�) if

�ðEÞ > 0 ¼) M�ðEÞ > 0

where M� is the Hausdor/ �-content. Specially important are the choices
�ðtÞ ¼ t�, for some 0 < �6N, and in this case the corresponding Hausdor/
measure (called �-dimensional Hausdor/ measure) will be simply denoted by H�.
(See x 1.6 for the de8nition and basic properties of Hausdor/ contents and
measures.) Let us exhibit three important examples where this comparison
question arises.

(a) Zygmund measures. A positive measure � on R is a Zygmund measure if
there is C > 0 such that

j�ðIÞ 	 �ðI 0Þj6CjIj
for any two adjacent intervals I; I 0 � R of the same length. Zygmund measures
have been extensively studied in harmonic analysis and they are also closely
related to some questions in geometric function theory [21, 19]. From the
de8nition it is easy to get the global estimate �ðIÞ6C1jIj logð1=jIjÞ which implies
that ��H�1

, where �1ðtÞ ¼ t log t	1. However, the optimal result [18] is �� H�,

where �ðtÞ ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log t	1 log log log t	1

p
. See [7].

(b) Harmonic measure. Consider a domain > � R
N and 8x a 2 >. For E � @>,

let !ðE; a;>Þ be the value at a of the harmonic function in > with boundary
values 1 on E and 0 on @> nE (we assume that such a function is well de8ned).
Then !ð � ; a;>Þ is a Borel probability measure on @>, called the harmonic
measure with base point a. One of the most challenging problems in geometric
function theory during the last thirty years has been to understand the metric
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properties of harmonic measure. Namely, for which �s is it true that !� H�?
Suppose that N ¼ 2 and > is simply connected. Then it is not diIcult to prove,
using some standard harmonic measure estimates, a global inequality of the type
!ðEÞ6C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diamE

p
, which gives !�H1=2. An important advance was obtained by

Carleson, who proved that !�H1=2þ� for some � > 0. The 8nal answer is due to
Makarov [16]: !� H , where  ðtÞ ¼ t expfC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log t	1 log log log t	1

p
g for some

absolute constant C > 0. Furthermore,  is sharp, up to the value of C. The
situation is far from being well understood in higher dimensions or for other
elliptic operators.

(c) Distortion of homeomorphisms of the real line. Let h : R! R be an
increasing homeomorphism and �h its associated Lebesgue--Stieltjes measure, that
is �hðEÞ ¼ jhðEÞj. Increasing versions of the Cantor function show that �h can be
singular in general. Suppose now that we have control of the distortion of h for all
the di/erent scales in the sense that

ðMðtÞÞ	1
6
hðxþ tÞ 	 hðxÞ
hðxÞ 	 hðx	 tÞ 6MðtÞ

for some monotone function MðtÞ> 1 de8ned in ð0;1Þ. In [3] it was shown that
�h can be singular even if it is a doubling measure, that is, supMðtÞ6M <1.
(We say that h is M-quasisymmetric in this case.) This suggests the question of
how large must a set E � R be if we know that jhðEÞj > 0. In terms of Hausdor/
measures this is equivalent to asking when �h � H� for some � depending on
MðtÞ. We will see that our methods give new answers to this question. See [8] for
related results.

Let Q0 ¼ ½0; 1ÞN be the (half-open) unit cube in R
N . We consider its dyadic

decomposition, that is, for k ¼ 1; 2; . . . let F k be the collection of the 2kN pairwise
disjoint (half-open) dyadic subcubes of Q0 of sidelength 2	k. Given Qk	1 2 F k	1,
we denote by fQi

k : i ¼ 1; . . . ; 2Ng the 2N cubes of F k contained in Qk	1, so
Qk	1 ¼

S
i Q

i
k. Finally, for x 2 Q0, we denote by QkðxÞ the unique cube in F k

which contains x.
The main purpose of the paper is to study regularity properties of a positive

Borel measure � in R
N , such as being absolutely continuous with respect to

various Hausdor/ measures, in terms of its doubling behaviour, that is, in terms of
the size of

�kðxÞ ¼ min

�
1	 �ðQi

kÞ
�ðQk	1ðxÞÞ

�
;

where Qk	1ðxÞ denotes the only dyadic cube of the generation k	 1 containing x

and fQi
kg2N

i¼1 is its decomposition in dyadic cubes of the generation k. Observe that
by additivity 06 �k6 1	 2	N . A positive Borel measure � in the unit cube Q0 of
R
N is called dyadic doubling if there exists a constant c ¼ cð�Þ > 0 such that

�ðQi
kÞ > c�ðQk	1ðxÞÞ for any x 2 Q0, i ¼ 1; . . . ; 2N and k ¼ 1; 2; . . . .

Y. Heurteaux has proven the following nice result in this direction [11]. For
simplicity we state his result in dimension 1. Let � be a positive Borel measure
in ½0; 1� and assume that �kðxÞ> � > 0 for any x 2 ½0; 1�. Then � is absolutely
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continuous with respect to H� for any

� <
� log �	1 þ ð1	 �Þ logð1	 �Þ	1

log 2
:

On the other hand, if �kðxÞ6 1
2 	 " for any x 2 ½0; 1�, where " > 0, then

Y. Heurteaux also showed that � is singular with respect to H� for any

� >
ð1

2 þ "Þ logð1
2 þ "Þ	1 þ ð1

2 	 "Þ logð1
2 	 "Þ	1

log 2
:

See [2, 12] for other related results.
In our approach, the doubling behaviour of a probability measure � in Q0 will

be described by means of an entropy type quantity. Recall that if p1; . . . ; pn is a
probability distribution, its entropy is de8ned as

P
pi log p	1

i . Similarly, for
x 2 Q0, we de8ne

hkðxÞ ¼
X
i

�ðQi
kÞ

�ðQk	1ðxÞÞ
log

�ðQk	1ðxÞÞ
�ðQi

kÞ
; for k ¼ 1; 2; . . . ;

where the sum is taken over the 2N dyadic subcubes Qi
k 2 F k contained in

Qk	1ðxÞ. We will be interested in hkðxÞ, �-a.e. x 2 Q0, but for the sake of
completeness, we write hkðxÞ � 0 if �ðQk	1ðxÞÞ ¼ 0; and if �ðQi

kÞ ¼ 0 for some i
we interpret the corresponding term in the sum to be 0. Observe that
06hkðxÞ6N log 2 and the extreme cases hkðxÞ ¼ 0 and hkðxÞ ¼ N log 2 corre-
spond respectively, to the situations where � gives all the mass �ðQk	1ðxÞÞ to one
of the subcubes fQi

k : i ¼ 1; . . . ; 2Ng and where � fairly distributes its mass
�ðQk	1ðxÞÞ among all fQi

k : i ¼ 1; . . . ; 2Ng. Hence, hkðxÞ tells how � distributes
the mass �ðQk	1ðxÞÞ among fQi

k : i ¼ 1; . . . ; 2Ng and so the function

HnðxÞ ¼
Xn
k¼1

hkðxÞ; for x 2 Q0;

gives information on the doubling behaviour of � among all dyadic cubes
containing x of generation smaller than n. Since 06hkðxÞ6N log 2 and
HnðxÞ6Nn log 2, both limits

HðxÞ ¼ lim
n!1

HnðxÞ and lim
n!1

ðNn log 2	HnðxÞÞ

exist and are non-negative but may be in8nite. The behaviour of a positive
measure with respect to Hausdor/ contents can be described in terms of the
entropy Hn in the following way.

COROLLARY 6.2. ðaÞ Let � be a probability measure in Q0 and 0 < �6N .
Assume that for � almost every point x there exists n0ðxÞ > 0 such that

HnðxÞ> �n log 2; for n > n0ðxÞ:

Then � is absolutely continuous with respect to H�� , where

��ðtÞ ¼ t� expðCðlog t	1 log log log t	1Þ1=2Þ

and C ¼ CðNÞ > 0 is a constant only depending on the dimension N.
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ðbÞ Let � be a dyadic doubling probability measure in Q0 which is singular
with respect to Lebesgue measure. Let 0 < � < N and assume that for � almost
every point x there exists n0ðxÞ > 0 such that

HnðxÞ6 �n log 2; for n > n0ðxÞ:

Then � is singular with respect to H�� , where

��ðtÞ ¼ t� expðC1ðlog t	1 log log log t	1Þ1=2Þ

and C1 ¼ C1ðNÞ > 0 is a constant only depending on the dimension N.

Since the entropy HnðxÞ gives information on the doubling behaviour of the
measure �, it is natural to relate HnðxÞ with the uniform quantity

�k ¼ min
x
�kðxÞ: ð0:1Þ

Here, we interpret �kðxÞ ¼ 0 if �ðQk	1ðxÞÞ ¼ 0. In terms of this uniform quantity
our result is as follows.

COROLLARY 6.4. ðaÞ Let � be a probability measure in Q0. Assume
� ¼ infk �k > 0. Let p be the integer part of ð1	 �Þ	1 and

� ¼ pð1	 �Þ logð1	 �Þ	1 þ ð1	 pð1	 �ÞÞ logð1	 pð1	 �ÞÞ	1

log 2
:

Then � is absolutely continuous with respect to H�� , where

��ðtÞ ¼ t� expðCðlog t	1 log log log t	1Þ1=2Þ

and C ¼ CðNÞ > 0 is a constant only depending on the dimension N.
ðbÞ Let � be a dyadic doubling probability measure in Q0 which is singular

with respect to Lebesgue measure. Assume that for � almost every point x, there
exists k0ðxÞ > 0 such that �kðxÞ6 � < 1	 2	N if k > k0ðxÞ. Then � is singular
with respect to H� , where

� ðtÞ ¼ t expðC1ðlog t	1 log log log t	1Þ1=2Þ ;

 ¼ ð1	 �Þ logð1	 �Þ	1 þ � logð�=ð2N 	 1ÞÞ	1

log 2

and C1 ¼ C1ðNÞ > 0 is a constant only depending on the dimension N.

Observe that if N ¼ 1, then p ¼ 1 and � ¼  . In [11], Y. Heurteaux proved that
under the hypothesis of (a), the measure � must be absolutely continuous with
respect to H�þ", for any " > 0. Concerning part (b), he showed that � must be
singular with respect to H�	" for any " > 0, without the doubling and singularity
assumptions on the measure �. Our methods also give this result, using the
representation (0.4), Doob’s theorem in x 1.4 and the theorem of Levy (0.7).
Similar remarks apply to Corollaries 6.2 and 6.5. Moreover our arguments are
quite Lexible and can be used in situations where �kðxÞ are not uniformly bounded
below (see Corollary 6.3). Actually in many special cases one can compute the
right Hausdor/ measure governing the regularity of the measure in terms of the
sequence �k. A concrete list is given in x 8. In addition, our arguments can also be
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used in situations where we only have good doubling behaviour of the measure for
some scales (see Corollaries 6.5 and 6.6). Also an analogue of Corollary 6.2 where
we have weaker assumptions on the entropy Hn is stated in Theorem 6.1.

Our method can also be applied in the other extreme case, that is, when
studying regularity properties of measures which double nicely for small scales. A
positive Borel measure � in Q0 is called dyadic symmetric if lim �k ¼ 1	 2	N as
k!1, or equivalently if

"k ¼ inf

�
�ðQi

kÞ
�ðQk	1ðxÞÞ

: x 2 Q0; i ¼ 1; . . . ; 2N
�
! 2	N ð0:2Þ

as k!1. A well-known result of L. Carleson [5] (see also [9]) states that � is
absolutely continuous with respect to N-dimensional Lebesgue measure ifX1

k¼1

ð2	N 	 "kÞ2 <1:

Moreover this result is sharp. Our techniques give the following quantitative
version of Carleson’s result.

THEOREM 8.2. ðaÞ Let � be a dyadic symmetric measure in Q0 and let "k be
the quantities de�ned in ð0:2Þ. Then, there exists a constant C ¼ CðNÞ such that
� is absolutely continuous with respect to H� for any measure function �
satisfying

�ð2	nÞ ¼ 2	nN exp

 
C
Xn
k¼1

ð2	N 	 "kÞ2
!
:

ðbÞ Let � be a dyadic symmetric measure in Q0 which is singular with respect
to Lebesgue measure. Let "k be the quantities de�ned in ð0:2Þ. Then, there exists a
constant C1 ¼ C1ðNÞ only depending on the dimension N such that � is singular
with respect to H� for any measure function � satisfying

�ð2	nÞ ¼ 2	nN exp



C1

Xn
k¼1

ð2	N 	 "kÞ2
�
:

Again, concrete examples are given in x 8.
Our results have the following application to the distortion of homeomorphisms of

the real line. (We recall thatMðtÞ stands for the function controlling the distortion of
the homeomorphism, as in example (c) at the beginning of the introduction.)

COROLLARY 9.1. ðaÞ If MðtÞ6M <1, that is, if h is M-quasi-symmetric,
then �h is absolutely continuous with respect to H�M , where

�MðtÞ ¼ t�ðMÞ expfCðlog t	1 log log log t	1Þ1=2g:
Here

�ðMÞ ¼ 1

M þ 1
log2ðM þ 1Þ þ M

M þ 1
log2



M þ 1

M

�
and C is some �xed absolute constant.
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ðbÞ Assume that

lim
t!0

Ð 1
t

logMðsÞ
MðsÞ

ds
s

ðlog log t	1Þðlog log log log t	1Þ ¼ 1:

Then � is absolutely continuous with respect to H�, where

�ðtÞ ¼ exp

�
	 C

ð1

t

logMðsÞ
MðsÞ

ds

s

�
and C is some �xed absolute constant.

Essentially the same kind of results can be restated in terms of the harmonic
measure for the elliptic operator obtained as a pull-back of the Laplacian with the
Beurling--Ahlfors extension of h to the upper half-space. We refer to x 9 for
further details.

We now explain our methods. Our analysis is modelled on the following well-
known example which is extremal in Heurteaux’s result. For 8xed 0 < #6 1

2 , we
will de8ne a probability measure � on ½0; 1� by induction. Put �½0; 1� ¼ 1 and
assume that the mass of � has been de8ned on all dyadic intervals of generation k.
If I is such an interval and I ¼ Iþ [ I	 its decomposition into its right and left
halves, we de8ne

�ðIþÞ ¼ #�ðIÞ; �ðI	Þ ¼ ð1	 #Þ�ðIÞ:

So, the mass of � on intervals of generation kþ 1 is de8ned. Iterating this
construction, we de8ne a Borel probability measure � on ½0; 1� so that

�ðInðxÞÞ ¼ #$ðn;xÞð1	 #Þn	$ðn;xÞ; ð0:3Þ

where $ðn; xÞ is the number of dyadic intervals of length bigger than 2	n

containing x which are at right position. Observe that in this case the entropy
HnðxÞ ¼ nhð#Þ, where hð#Þ ¼ # log#	1 þ ð1	 #Þ logð1	 #Þ	1. Observe also that
the pointwise estimate �ðInðxÞÞ6 ð1	 #Þn, for x 2 ½0; 1�, shows that � is

absolutely continuous with respect to H� for � < log2ð1	 #Þ	1. However this result
can be substantially improved using the law of large numbers which says that

lim
n!1

$ðn; xÞ
n

¼ # �-a.e. x 2 ½0; 1�:

So,

lim
n!1

log�ðInðxÞÞ	1

n
¼ hð#Þ �-a.e. x 2 ½0; 1�;

and we deduce that � is absolutely continuous with respect to H�,

� < hð#Þ= log 2

and is singular with respect to H , and

 > hð#Þ= log 2:

This can also be deduced from the ergodic theorem once it is observed that � is
ergodic with respect to the shift transformation.
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Our analysis uses martingales with respect to a probability measure on Q0 and
the law of the iterated logarithm relating the size of the martingale with the size
of its quadratic characteristic. These notions and results are reviewed in x 1.

Given a positive Borel measure � in Q0, our method consists of proving the
following analogue of identity (0.3):

�ðQnðxÞÞ ¼ expðSnðxÞ 	HnðxÞÞ; �-a.e. x 2 Q0; ð0:4Þ

where ðSn; �Þ is a dyadic martingale. This is just Doob’s decomposition for the
�-submartingale log�ðQnðxÞÞ=jQnðxÞj. In particular,

�ðQnðxÞÞ
jQnðxÞj

¼ expfSnðxÞ þNn log 2	HnðxÞg: ð0:5Þ

It turns out that Sn is completely explicit and one can prove that its quadratic
characteristic hS in is pointwise estimated as follows:

hS inðxÞ6 2ðnN log 2	HnðxÞÞ: ð0:6Þ

Actually, the two terms are comparable if � is a dyadic doubling measure, that is,
if �ðxÞ ¼ infk �kðxÞ is uniformly bounded below. In this general situation, some
growth estimate of Sn, playing the role of the law of large numbers in the model
case described above, is needed. From a theorem of Levy [23, p. 157; 20, p. 519], it
follows that

lim
n!1

jSnðxÞj
hS inðxÞ

¼ 0 ð0:7Þ

at �-a.e. x 2 fx 2 Q0 : hS i1ðxÞ ¼ 1g.
Now, (0.5), (0.6) and (0.7) tell us that at �-almost every point

x 2 fx 2 Q0 : hS i1ðxÞ ¼ 1g

the densities �ðQnðxÞÞ=jQnðxÞj behave as expfNn log 2	HnðxÞg if n is
suIciently large.

THEOREM 4.3. Let � be a probability measure on the unit cube Q0 of R
N .

Then:
(a) � is singular with respect to Lebesgue measure if and only if

lim
n!1

ðnN log 2	HnðxÞÞ ¼ 1; �-a.e. x 2 Q0;

(b) � is absolutely continuous with respect to Lebesgue measure if and only if

lim
n!1

ðnN log 2	HnðxÞÞ <1; �-a.e. x 2 Q0:

However, the law of the iterated logarithm (LIL) shows that the estimate (0.7)
can be typically improved. We have the following LIL.

COROLLARY 3.8. Let � be a probability measure in Q0 and ðSn; �Þ the
martingale arising in ð0:4Þ. Then
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(a)

lim
n!1

SnðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS inðxÞ log loghS inðxÞ

p 6C1 ð0:8Þ

�-a.e. at fx 2 Q0 : hS i1ðxÞ ¼ 1g; here C1 is a constant depending on the
dimension;

(b) if � is a dyadic doubling measure, we also have

lim
n!1

SnðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS inðxÞ log loghS inðxÞ

p >C2 ð0:9Þ

�-a.e. at fx 2 Q0 : hS i1ðxÞ ¼ 1g; here C2 is a constant depending on the
dimension and on the doubling behaviour of �.

For general dyadic martingales, the LIL only holds under certain size
restrictions on the increments of the martingale. Actually, it turns out that the
versions of the LIL that one can 8nd in the literature require either the
boundedness of the increments or some strong growth assumptions which would
be quite restrictive in our setting [22]. Nevertheless, Corollary 3.8(a) states that
the upper bound of the LIL holds for the special martingale Sn without any
assumption on the increments. Therefore, even though we start from a general
measure �, the fact that the martingale Sn is constructed in a very special way
seems to play an essential role in our arguments. We do not know whether this is
a sign of a more general fact.

From the LIL, it is natural to expect that if the total entropy is large, then the
iterated logarithm term should be small compared to the total entropy. In
Theorem 5.6, we will show that if

HnðxÞ
ðlognÞðlog log lognÞ ! 1 as n!1 ð0:10Þ

then ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS inðxÞ log loghS inðxÞ

p
¼ oðHnðxÞÞ:

Therefore, the LIL can be used to show that SnðxÞ ¼ oðHnðxÞÞ and hence

�ðQnðxÞÞ ¼ Oðexpð	ð1þ oð1ÞÞHnðxÞÞÞ

at �-a.e. x 2 Q0 satisfying (0.10).
Corollary 6.2(a) follows from these considerations. Part (b) follows from similar

arguments using the lower bound in the law of the iterated logarithm.
The paper is organized as follows. Section 1 contains background about

martingales, quadratic characteristic and the law of the iterated logarithm. In x 2,
the martingale Sn for which the main identity (0.4) holds is introduced. Also, its
quadratic characteristic is computed. In x 3 we show that the law of the iterated
logarithm holds for Sn, without any additional hypothesis on its growth. Section 4
is devoted to the proof of Theorem 4.3. In x 5, the quadratic characteristic hS in,
the entropy Hn and the uniform quantity �n are compared. The corresponding
estimates are applied in x 6, which contains the proof of Theorem 6.1 and its
corollaries. In x 7 a continuous version of the results is presented. Section 8
contains examples and the proof of Theorem 8.2. Finally, in x 9 we give an
application of the preceding results to distortion of homeomorphisms of the real
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line and to the size of harmonic measure of certain degenerate elliptic equations,
which are typically non-doubling.

Acknowledgement. We are indebted to our colleague J. Donaire for many
helpful conversations. We thank him for sharing his smart insights with us.

1. Notation and background about martingales and Hausdor, measures

1.1. Notation

Let Q0 ¼ ½0; 1ÞN � R
N be the (half-open) unit cube in R

N and denote by F k the
family of all (half-open) dyadic subcubes of Q0 of the generation k, that is, all
cubes of the form

Y2N
i¼1

½ðmi 	 1Þ2	k;mi2
	kÞ ð16mi6 2kÞ

for i ¼ 1; . . . ; 2N . Given Qk	1 2 F k	1, there is a natural dyadic decomposition

Qk	1 ¼
S2N

i¼1 Q
i
k, where fQi

kg2N

i¼1 are disjoint and Qi
k 2 F k. We will refer to such

fQi
kg as the ‘dyadic sons’ of the generation k of Qk	1. Also, we remind the reader

that, for x 2 Q0, we will denote by QkðxÞ the unique Qk 2 F k which contains x.
Finally, from now on, j j will denote N-dimensional Lebesgue measure.

1.2. Conditional expectation

Note that the measurable functions with respect to the )-algebra eFF k generated
by F k are just the step functions in Q0 that are constant on each cube of F k.
Now, given a probability measure � in Q0 and f 2 L1ðQ0; �Þ, de8ne the
conditional expectation of f with respect to F k, denoted by E½f=F k; ��, as the
unique (up to sets of �-measure zero) eFF k-measurable function such thatð

Q
f d� ¼

ð
Q
E½f=F k; �� d�

for any Q 2 F k. Note that E½f=F k; �� is a step function, constant on the cubes of
the generation k such that

E½f=F k; ��jQ ¼
1

�ðQÞ

ð
Q
f d� ðQ 2 F kÞ

whenever �ðQÞ 6¼ 0 (otherwise any value would work).

1.3. Martingales

Given a real-valued sequence of functions fSng1n¼0 in Q0, we say that ðSn; �Þ is
a dyadic martingale if the following two conditions hold:

(i) each Sn is constant on any dyadic cube of the generation n, that is, Sn iseFFn-measurable for any n;
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(ii) E½Sn=Fn	1; �� ¼ Sn	1 ðn ¼ 1; 2; . . .Þ or, equivalently,

Sn	1jQn	1
�ðQn	1Þ ¼

X2N
i¼1

SnjQi
n
�ðQi

nÞ

whenever Qn	1 2 Fn	1 and fQi
ng2N

i¼1 are its dyadic sons.
The di/erences Xn ¼ Sn 	 Sn	1 will be called the increments of the martingale ðSnÞ.

1.4. Quadratic characteristic

If ðSn; �Þ is a martingale in Q0, its quadratic characteristic hS in is de8ned to be
the following sequence of functions:

hS in ¼
Xn
k¼1

E½ðSk 	 Sk	1Þ2=F k	1; ��:

Note that each hS ik is eFF k	1-measurable, that is, constant on the dyadic cubes of
the generation k	 1. Sequences with such a property are called predictable.

If Qk	1 2 F k	1, then

E½ðSk 	 Sk	1Þ2=F k	1; �� ¼
X2N
i¼1

�ðQi
kÞ

�ðQk	1Þ
ðS i

k 	 Sk	1Þ2

provided �ðQk	1Þ 6¼ 0 (otherwise, the value of the conditional expectation is
irrelevant). Therefore

hS inðxÞ ¼
Xn
k¼1

X2N
i¼1

�ðQi
kÞ

�ðQk	1Þ
ðS i

k 	 Sk	1Þ2 �-a.e. x 2 Q0

where fQkg is the dyadic tower of cubes containing x, fQi
kg are the dyadic sons of

Qk	1, Sk	1 ¼ Sk	1jQk	1
and S i

k	1 ¼ SkjQi
k
. In fact, hS in is the unique non-decreasing

predictable sequence such that S2
n ¼ hS in þMn for some martingale Mn and all

n> 0 (Doob’s decomposition). We will put, hereafter, hS i1 ¼ limn!1hS in.
It is well known that, in many aspects, the quadratic characteristic hS in

determines the structure and properties of the martingale Sn. For instance we
have the following result [23, p. 65].

THEOREM (Doob). Let ðSn; �Þ be a martingale in Q0. Then

fx 2 Q0 : hS i1ðxÞ <1g � fx 2 Q0 : 9 lim
n!1

SnðxÞ <1g �-a.e.;

that is, limn!1 SnðxÞ exists at �-almost every point x where hS i1ðxÞ <1.

1.5. Law of the iterated logarithm

The precise asymptotic growth of a martingale is closely related to its quadratic
characteristic. Given a martingale ðSn; �Þ, we will say that it obeys the upper
bound (respectively lower bound) of the law of the iterated logarithm (LIL) if
there is 0 < C <1 such that

lim
n!1

SnðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS inðxÞ log loghS inðxÞ

p 6C
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(respectively >C) for �-a.e. x in the set fhS i1 ¼ 1g. The lower bound is usually
harder to establish, whereas we will be mainly concerned with the upper bound.

The law of the iterated logarithm has a long history. It was 8rst proved by
Khintchine [13] for sums of independent, identically distributed, uniformly
bounded random variables. Kolmogorov [14] and Hartman and Wintner [10]
generalized it to wider classes of independent variables. The 8rst extension to a
martingale setting was due to Levy [15]. More recent extensions to martingales
have been obtained by Strassen [24] and Stout [22, 23]. For general martingales,
some boundedness condition on the di/erences is required to prove the LIL, even
the upper bound (see [22, 23]). However, we will only be interested in the upper
bound of the LIL for a special class of dyadic martingales. In this particular
situation, we will see that a certain elementary exponential inequality allows one
to drop any boundedness restriction on the di/erences, which is much more
convenient for our purposes. The argument follows Makarov [17] and we will give
the details in x 3.

1.6. Some elementary facts about Hausdor, measures

A measure function is a non-decreasing, positive, continuous function

� : ½0;þ1Þ ! ½0;þ1Þ

with �ð0Þ ¼ 0. Given a measure function �, the Hausdor/ �-content of E � Q0 is
de8ned as

M�ðEÞ ¼ inf

�X
j

�ðrðQjÞÞ
�

where the in8mum is taken over all coverings of E by cubes fQjg, each rðQjÞ
being the sidelength of Qj. With the same notation, the Hausdor/ �-measure of E
is de8ned as

H�ðEÞ ¼ lim
�!0

inf

�X
j

�ðrðQjÞÞ : rðQjÞ6 �

�
:

It is easy to check that

M�ðEÞ ¼ 0 () H�ðEÞ ¼ 0:

The advantage of the Hausdor/ content is that it is always 8nite. This is the
reason for which, throughout this paper, we will restrict our attention to
Hausdor/ contents instead of Hausdor/ measures.

If �ðtÞ ¼ t� ð� > 0Þ, then we simply write M�ðEÞ (respectively H�) and we refer
to it as the Hausdor, �-content of E (respectively �-dimensional Hausdor/
measure). Note that MNð � Þ is just a multiple of the usual N-dimensional
Lebesgue outer measure. The Hausdor, dimension of E is de8ned as

dimE ¼ inff�> 0 : M�ðEÞ ¼ 0g;

so M�ðEÞ > 0 implies dimE>�. Given two measure functions �1 and �2 it is easy
to check that M�1

ðEÞ �M�2
ðEÞ if �1ðtÞ � �2ðtÞ near t ¼ 0. Also, M�1

ðEÞ > 0

implies M�2
ðEÞ > 0 if lim t!0ð�2ðtÞ=�1ðtÞÞ > 0 and M�1

ðEÞ ¼ 0 implies M�2
ðEÞ ¼ 0

if limt!0ð�2ðtÞ=�1ðtÞÞ < þ1.
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As mentioned in the introduction, we will be interested in determining when a
given measure � is absolutely continuous with respect to the Hausdor/ measure
associated to a certain measure function �. In this respect, note that if � satis8es a
global estimate of the form

�ðQÞ6 c�ðrðQÞÞ

for any cube Q � Q0, and some positive constant c, then �� H�, directly from
the de8nition. Standard measure-theoretical arguments show that a local control
is actually suIcient to get the same conclusion.

PROPOSITION 1.1. With the notation above,
(a) if

lim sup
n!1

�ðQnðxÞÞ
�ð2	nÞ <1 for �-a.e. x;

then �� H�;
(b) if

lim sup
n!1

�ðQnðxÞÞ
�ð2	nÞ ¼ 1 for �-a.e. x;

then � is singular with respect to H�.

Proof. (a) Choose E, with �ðEÞ > 0. By localization, it is enough to assume that
�ðQnðxÞÞ6M�ð2	nÞ for all x 2 E, each n 2 N and some M > 0. Suppose that
E �

S
k Qk, where the Qk are cubes. Fix such a Qk and let n 2 N be such that

2	n6 rðQkÞ < 2	ðn	1Þ. Then Qk is covered by, at most, 2N cubes Q1
k; . . . ; Q2N

k 2 Fn

and fQj
k : j ¼ 1; 2; . . . ; 2N ; k ¼ 1; 2; . . .g is a covering of E by dyadic cubes. We

can also assume that Qj
k \ E 6¼ ; for all k and j, so �ðrðQj

kÞÞ>M	1�ðQj
kÞ. Then,

X1
k¼1

�ðrðQkÞÞ> 2	N
X1
k¼1

X2N
j¼1

�ðrðQj
kÞÞ>M	12	N�ðEÞ:

This shows that M�ðEÞ > 0.
(b) Let A be the set of points x of the unit square Q0 for which

lim sup
n!1

�ðQnðxÞÞ
�ð2	nÞ ¼ 1:

So, �ðAÞ ¼ �ðQ0Þ. Given M > 0, let AM be the set of points x 2 Q0 such that

lim sup
n!1

�ðQnðxÞÞ
�ð2	nÞ > M:

Hence, if x 2 AM , there exists n such that �ðQnðxÞÞ > M�ð2	nÞ. Denote
QðxÞ ¼ QnðxÞ. Then

AM �
[
x2AM

QðxÞ ¼
[
j

Qj;
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where fQjg is a collection of pairwise disjoint dyadic cubes. Then

H�ðAMÞ6
X

�ðrðQjÞÞ6M	1
X
j

�ðQjÞ6M	1�ðQ0Þ:

Therefore H�ðAÞ ¼ 0. �

Remark. It is well known that Hausdor/ measures allow one to compare sets
of Lebesgue measure zero. If M�ðEÞ > 0, then the smaller �ðtÞ is when t
approaches 0, the bigger E is, in this sense. In this paper we are specially
concerned with measures which ‘live’ on sets of Hausdor/ dimension smaller than
N, so this means that we will mainly deal with measure functions such that
limt!0ð�ðtÞ=tNÞ ¼ 1.

2. The logarithmic transform

Suppose we are given a probability measure � in Q0. For each Q 2 F n, de8ne

ZnjQ ¼ �ðQÞ=jQj:

Then ðZnÞ is an eFFn-measurable sequence of functions which measures the density
of �, with respect to Lebesgue measure, for any scale. The following proposition
clari8es the structure of the logarithmic transform logZn.

PROPOSITION 2.1. If � and Zn are as above then there are a martingale
ðSn; �Þ in Q0 and a non-negative, non-decreasing, predictable sequence Pn such that

logZn ¼ Sn þ Pn �-a.e.

In particular, �ðQnÞ ¼ expfSn 	Hng for any dyadic cube Qn of the generation n. In
fact, except for additive constants, one has

SnðxÞ ¼
Xn
k¼1

X2N
i¼1

�ðQi
kÞ

�ðQk	1Þ
log



�ðQkÞ
�ðQi

kÞ

�
and

PnðxÞ ¼
Xn
k¼1

X2N
i¼1

�ðQi
kÞ

�ðQk	1Þ
log



2N

�ðQi
kÞ

�ðQk	1Þ

�

¼ n log 2N 	
Xn
k¼1

X2N
i¼1

�ðQi
kÞ

�ðQk	1Þ
log



�ðQk	1Þ
�ðQi

kÞ

�
¼ nN log 2	HnðxÞ;

where, for each k, Qk is the dyadic cube of the generation k that contains x and

fQi
kg2N

i¼1 are its 2N dyadic brothers.

Proof. Fix Qk	1 2 F k	1, with �ðQk	1Þ > 0 and let fQi
kg � F k be its dyadic

sons. Suppose that logZk ¼ Sk þ Pk, with ðSk; �Þ martingale and (Pk) predictable.
Let S i

k, Z
i
k , Pk (respectively Sk	1, Zk	1, Pk	1) be the restrictions of Sk, Zk, Pk to

Qi
k (respectively Qk	1). Predictability and the martingale condition imply then
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that

0 ¼
X2N
i¼1

�ðQi
kÞ



log
Zi
k

Zk	1

	 ðPk 	 Pk	1Þ
�

¼
X2N
i¼1

�ðQi
kÞ log



2N

�ðQi
kÞ

�ðQk	1Þ

�
	 ðPk 	 Pk	1Þ�ðQk	1Þ:

So,

Pk 	 Pk	1 ¼
X2N
i¼1

�ðQi
kÞ

�ðQk	1Þ
log



2N

�ðQi
kÞ

�ðQk	1Þ

�
and the proposition follows with the choice of Pn in the statement. Positivity of
Pn is a consequence of the following elementary fact: if #i> 0 and

Pm
i¼1 #i ¼ 1,

then
Pm

i¼1 #i log#	1
i 6 logm. �

Remark 2.1. Since we will only be interested in properties of � which hold �-
a.e., the relevant values of x for us are those for which �ðQkðxÞÞ > 0 for all k. In
this case, note that all the Qi

k such that �ðQi
kÞ ¼ 0 are not relevant in the

de8nition of Sn and Pn in the proposition above. Also, in the rest of the paper, all
the inequalities must be understood �-a.e.

Remark 2.2. If N ¼ 1, then

SnðxÞ ¼
Xn
k¼1

�ðI 0kÞ
�ðIk	1Þ

log



�ðIkÞ
�ðI 0kÞ

�
;

and

PnðxÞ ¼ n log 2	
Xn
k¼1

�
�ðIkÞ
�ðIk	1Þ

log



�ðIk	1Þ
�ðIkÞ

�
þ �ðI 0kÞ
�ðIk	1Þ

log



�ðIk	1Þ
�ðI 0kÞ

��
where Ik is the dyadic interval of F k which contains x and I 0k is its dyadic brother.

Remark 2.3. The quadratic characteristic of the martingale ðSn; �Þ is given by

hS inðxÞ ¼
Xn
k¼1

X2N
j¼1

�ðQj
kÞ

�ðQk	1Þ

�X2N
i¼1

�ðQi
kÞ

�ðQk	1Þ
log



�ðQj

kÞ
�ðQi

kÞ

��2

where, as before, fQkg is the ‘dyadic tower’ of cubes containing x andQk	1 ¼
S2N

i¼1 Q
i
k

is the dyadic decomposition of Qk	1. An elementary computation shows that

hS inðxÞ ¼
Xn
k¼1

�X2N
i¼1

�ðQi
kÞ

�ðQk	1Þ
log2



�ðQk	1Þ
�ðQi

kÞ

�

	

X2N

i¼1

�ðQi
kÞ

�ðQk	1Þ
log



�ðQk	1Þ
�ðQi

kÞ

��2�
:

Remark 2.4. Observe that if � is Lebesgue measure in Q0, then Sn ¼ Pn ¼ 0.
Actually, PnðxÞ measures how far � is from Lebesgue measure according to the
doubling behaviour of � on cubes containing x. Furthermore, Pn can be
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understood in terms of means. Fix k and let #ik ¼ �ðQi
kÞ=�ðQk	1Þ. Then the

arithmetic mean of the #i is 2	N and

Pn ¼
Xn
k¼1

log


Q2N

i¼1ð#ikÞ#
i
k

2	N

�
:

3. On the upper bound of the LIL for the class
of martingales arising in x 2

DEFINITION. We say that a dyadic martingale ðSn; �Þ in Q0 � R
N satis�es

condition E with constant c > 0 if

ðexpðtSn 	 ct2hS inÞ; �Þ

is a supermartingale for any t > 0.

From x 1, we remember that, for a dyadic martingale Sn ¼
Pn

k¼1 Xk with
respect to a probability measure � in Q0, then

hS inðxÞ ¼
Xn
k¼1

X2N
j¼1

#jkðX
j
kÞ

2

where #jk ¼ �ðQj
kÞ=�ðQk	1Þ, Xj

k ¼ Sk 	 Sk	1jQj
k
, fQkg is the dyadic tower of cubes

containing x and fQj
kg are the dyadic sons of Qk	1.

PROPOSITION 3.1. Let ðSn; �Þ be a dyadic martingale in Q0. Then ðSn; �Þ
satis�es condition E with constant c > 0 if and only if, for each k 2 N and each
Qk	1 2 F k	1, the following inequality holds:

X2N
j¼1

#jk exp ftX j
kg6 exp

�
ct2
X2N
j¼1

#jkðX
j
kÞ

2

�
; for t > 0;

where #jk and Xj
k are as above for j ¼ 1; . . . ; 2N .

Proof. The inequality stated in the proposition is equivalent toð
Qk	1

expðtXk 	 ct2ðhS ik 	 hS ik	1ÞÞ d�6�ðQk	1Þ

which is in fact equivalent to

E½expðtSk 	 ct2hS ikÞ=F k	1�6 expðtSk	1 	 ct2hS ik	1Þ

which is just condition E with constant c. �

The 8rst part of the following theorem is the key point of the section.

THEOREM 3.2. ðaÞ There is c ¼ cðNÞ > 0 such that, if � is any probability
measure in Q0 � R

N , and ðSn; �Þ is the dyadic martingale associated to � as in x 2,
then ðSn; �Þ satis�es condition E with constant c.
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ðbÞ If ðSn; �Þ is a dyadic martingale in Q0 � R
N and � is dyadic doubling then

Sn satis�es condition E with a constant c depending only on N and the doubling
constant of �.

Theorem 3.2 is a consequence of the following two lemmas, which will be proved
at the end of the section.

LEMMA 3.3. Let m 2 N, m> 2. Then there exists a constant c ¼ cðmÞ > 0
such that for any t> 0 one hasXm

j¼1

#j expðtXjÞ6 exp



ct2
Xm
j¼1

#jX
2
j

�
;

where 06#j6 1 for j ¼ 1; . . . ;m,
P
#j ¼ 1, H ¼

P
#j log#	1

j and

Xj ¼ log#j þH ¼
X
i

#i logð#j=#iÞ:

LEMMA 3.4. Let m 2 N and 0 < �6 1=m. Suppose that #i> � for 16 i6m,
and

Pm
i¼1 #i ¼ 1. If ðxiÞmi¼1 are real numbers such that

Pm
i¼1 #ixi ¼ 0 then, for any

t> 0 and any c> 3=ð4�Þ, we haveXm
i¼1

#i expðtxiÞ6 exp



ct2
Xm
i¼1

#ix
2
i

�
:

Remarks. 1. The use of continuous exponential inequalities has been a usual
tool to prove the upper bound of the LIL for general martingales [22, 23]. In the
dyadic case, what we have called ‘condition E’ is a reformulation of the
‘exponential transformation’, extensively used by Makarov in [17]. We will show
that the discrete exponential inequality given by Lemma 3.3 is all that we need to
get an upper bound of the LIL for the special class of martingales described in x 2.
On the other hand, we believe that part (b) of Theorem 3.2 is probably well
known and has previously appeared in the literature in more or less explicit ways
[1, 6].

2. An easy observation that will be useful in the proof of the LIL is the fact
that condition E is preserved by stopping-times. More precisely, if ðSn; �Þ is a
dyadic martingale in Q0 that satis8es condition E with constant c > 0 and 3 is any
stopping-time in Q0, then the stopped martingale

S 3
n ðxÞ ¼ Sminf3ðxÞ;ngðxÞ

also satis8es condition E with the same constant c. This is obvious from the
de8nition of stopping-time.

3. The proofs of Lemmas 3.3 and 3.4 give explicit values of the constant c
which are not necessarily the best ones.

Now we will see that condition E is all that we need to get an upper bound of
the LIL. The following lemma is the key for such reduction.

Given a dyadic martingale ðSn; �Þ, put

S #
n ¼ maxfS1; . . . ; Sng; S #

1 ¼ lim
n
S #
n ; hS i1 ¼ lim

n
hS in:
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LEMMA 3.5. Let ðSn; �Þ be a dyadic martingale in Q0 � R
N satisfying condition

E with constant c > 0. Suppose that S0 ¼ 0. Then, for any M > 0, N > 0,

�fx 2 Q0 : 9n 2 N; S #
n ðxÞ > M; hS inðxÞ6Ng6 exp

�
	 M 2

4cN

�
:

Proof. Given M > 0, let 3 be the stopping-time de8ned by

3ðxÞ ¼ k () S1ðxÞ6M; . . . ; Sk	1ðxÞ6M; SkðxÞ > M

and let ðS 3
n Þ be the stopped martingale. Let

A ¼ fx : 9n 2 N; S #
n ðxÞ > M; hS in6Ng:

From Remark 2, ðS 3
n Þ satis8es condition E with constant c. From the supermartingale

assumption,

1 ¼
ð
Q0

expðtS 3
0 	 ct2hS 3 i0Þ d�>

ð
Q0

expðtS 3
n 	 ct2hS 3 inÞ d�

>

ð
A

expðtS 3
n 	 ct2hS 3inÞ d�

for any t > 0 and each n 2 N.
Since hS 3 in6 hS in, it follows from the de8nition of 3 that if x 2 A, then

S 3
n ðxÞ>M and hS 3 inðxÞ6N eventually. Therefore, by Fatou’s lemma,

expðtM 	 ct2NÞ�ðAÞ6 lim
n

ð
A

expðtS 3
n 	 ct2hS 3 inÞ d�6 1

and the lemma follows with the choice t ¼M=2cN . �

COROLLARY 3.6. If ðSn; �Þ is as in Lemma 3:5, then

�fx 2 Q0 : S #
1ðxÞ > M; hS i1ðxÞ6Ng6 exp

�
	 M 2

4cN

�
:

Now, the proof of the LIL (upper bound) is standard [17, 1]. We include it
for completeness.

THEOREM 3.7 (LIL, upper bound). Let ðSn; �Þ be a dyadic martingale in Q0

satisfying condition E with constant c > 0. Then

lim
n!1

Snffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4chS in log loghS in

p 6 1

almost everywhere on the set fhS i1 ¼ 1g.

Proof. Fix R > 1, and de8ne, for k 2 N, the following sets:

A ¼ fhS i1 ¼ 1; Sn > R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4chS in log loghS in

p
for infinitely many ng;

Ak ¼
�
x 2 Q0 : 9n 2 N : Rk

6 hS inðxÞ < Rkþ1;

SnðxÞ > R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4chS inðxÞ log loghS in

p
ðxÞ
�
:
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It is easy to check that

A �
\1
n¼1

[1
k¼n

Ak

and, since

Ak � fx : 9n : S #
n ðxÞ > R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4cRk log logRk

p
; hS inðxÞ6Rkþ1g;

it follows by Lemma 3.5 that

�ðAkÞ6 exp

�
	 R24cRk log logRk

4cRkþ1

�
¼ 1

kR
expf	R log logRg:

Therefore,

�ðAÞ6 e	R log logR
X1
k¼n

1

kR

for any n 2 N and, since R > 1 it follows that �ðAÞ ¼ 0. This 8nishes
the proof. �

COROLLARY 3.8. There exist a constant C1 ¼ C1ðNÞ > 0 such that, if ðSn; �Þ
is the martingale associated to � as in x 2, then

lim
n!1

SnðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS inðxÞ log loghS inðxÞ

p 6C1

for �-a.e. x 2 fx 2 Q0 : hS i1ðxÞ ¼ 1g. If � is a dyadic doubling measure, there
exists a constant C2 > 0 such that

lim
n!1

SnðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS inðxÞ log loghS inðxÞ

p >C2 ð3:1Þ

�-a.e. at fx 2 Q0 : hS i1ðxÞ ¼ 1g.

The upper bound follows from the previous result, while the lower bound
follows from well-known results [22], because the assumption on the measure �
implies that the martingale ðSn; �Þ has bounded increments.

Proof of Lemma 3.3. Let c ¼ cðmÞ be a constant to be determined later. We
have to show that the function

fðtÞ ¼ log


Xm
j¼1

#j expðt log#jÞ
�
	 ct2

Xm
j¼1

#jX
2
j þ tH

is negative if t> 0. It turns out that fð0Þ ¼ f 0ð0Þ ¼ 0 and so it is suIcient to show
that f 00ðtÞ6 0 if t> 0. Computing f 00ðtÞ, one is led to prove that for any t> 0,

X
i<j

#i#jðlog#i 	 log #jÞ2kijðtÞ6 2c
Xm
j¼1

#jX
2
j ð3:2Þ
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where

kijðtÞ ¼
expðt log#i þ t log#jÞ
ð
Pm

j¼1 #j expðt log#jÞÞ2
:

Observe that kijð0Þ ¼ 1 and an easy calculation shows that (3.2) holds with c ¼ 1
2

when t ¼ 0. Since
Pm

j¼1 #j ¼ 1, we have 06#j6 1,

#j0
¼ maxf#j : j ¼ 1; . . . ;mg> 1=m

and

kijðtÞ6
expðt log#i þ t log#jÞ
#2
j0

expð2t log#j0
Þ 6m2:

Hence (3.2) holds with c ¼ 1
2m

2. �

Proof of Lemma 3.4. As above, we will see that if c> 3=ð4�Þ then the function

fðtÞ ¼ log


Xm
i¼1

#i expðtxiÞ
�
	 ct2

Xm
i¼1

#ix
2
i

is negative for t> 0. Since fð0Þ ¼ f 0ð0Þ ¼ 0, it is enough to see that f 00ðtÞ6 0 if
t> 0. Computation shows that the sign of f 00 is given byX

i;j

#i#j expðtðxi þ xjÞÞ


x2
i 	 xixj 	 2c

X
k

#kx
2
k

�
:

Now observe that

x2
i 	 xixj 	 2c

X
k

#kx
2
k6 x2

i 	 xixj 	 2cð#ix2
i þ #jx

2
j Þ6 0

as soon as c> 3=ð4�Þ. �

4. Characterization of the singularity and absolute continuity of
� in terms of the sequence ðPnÞ

In this section we will see that singularity and absolute continuity of the
measure � can be expressed in terms of the boundedness of the sequence ðPnÞ.
Note that, since Pn is non-decreasing, there always exists P1ðxÞ ¼ limn!1 PnðxÞ.
Notation is as in x 2.

The following proposition relates hS in and Pn.

PROPOSITION 4.1. With the notation of x 2, we have, for every n 2 N:
(a) hS in6 2Pn;
(b) if the measure � is dyadic doubling, then

cPn6 hS in6 2Pn

where c ¼ cð�Þ > 0 only depends on the doubling constant of �.
The inequalities must be understood �-a.e.

Using Proposition 2.1 and Remark 2.3, we see that Proposition 4.1 is a direct
consequence of the following elementary lemma.
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LEMMA 4.2. Let m 2 N, and ð#iÞmi¼1 be such that #i> 0 for i ¼ 1; . . . ;m,Pm
i¼1 #i ¼ 1. Then:
(a) Xm

i¼1

#i log2 1

#i
	

Xm

i¼1

#i log
1

#i

�2

6 2
Xm
i¼1

#i logðm#iÞ;

(b) if, furthermore, M	1
6#i=#j6M for some M > 0 and any i and j, then

there exists c > 0, only depending on M, such that

c
Xm
i¼1

#i logðm#iÞ6
Xm
i¼1

#i log2 1

#i
	

Xm

i¼1

#i log
1

#i

�2

:

Proof. We only sketch the proof of (a). The result is obvious if m ¼ 1. Fix m
and suppose, by induction, that the result is true for smaller m. Then, it is enough
to show that the maximum of

fð#1; . . . ; #mÞ ¼
Xm
i¼1

#i log2 1

#i
	

Xm

i¼1

#i log
1

#i

�2

	 2
Xm
i¼1

#i log#i

on the set A ¼ fð#1; . . . ; #mÞ : #i > 0;
Pm

i¼1 #i ¼ 1g is 2 logm.
From Lagrange multipliers it is easily seen that if #1; . . . ; #m is the only critical

point of f at A, then log2 #i 	 2H log#i must be independent of i (here
H ¼

Pm
k¼1 #k log#k

	1). Since each log#i is negative, this implies that
#1 ¼ . . . ¼ #m ¼ 1=m. The result now follows from the facts that fð1=m; . . . ; 1=mÞ ¼
2 logm and ð1=m; . . . ; 1=mÞ cannot be a minimum. �

THEOREM 4.3. Let � be a probability measure in Q0. Then
(a) � is singular (with respect to Lebesgue measure) if and only if P1ðxÞ ¼ 1

at �-a.e. x 2 Q0;
(b) � is absolutely continuous if and only if P1ðxÞ <1 at �-a.e. x 2 Q0.

Proof. We only prove (a), the proof of (b) being similar. Suppose 8rst that �
is singular. If �fP1 <1g > 0, then, by Proposition 4.1 and the theorem of Doob
stated in x 1.4, it follows that �fsupnjSnj <1g > 0. Since logZn ¼ Sn þ Pn and
Pn> 0, we can choose E � Q0, with �ðEÞ > 0, and c > 0 such that

c	1
6
�ðQnðxÞÞ
jQnðxÞj

6 c

for all n 2 N and each x 2 E, which is impossible if � is singular. Thus,
this contradiction shows that �fP1 <1g ¼ 0. For the other implication assume
P1 ¼ 1 �-a.e. From a theorem of Levy [23, p. 157; 20, p. 519], we have jSnj ¼
oðhS inÞ �-a.e. on fhS i1 ¼ 1g. Since hS in6 2Pn, it follows that jSnj ¼ oðPnÞ
�-a.e. Therefore logZnðxÞ ! þ1 for �-a.e. x 2 Q0 and

�ðQnðxÞÞ
jQnðxÞj

! þ1 as n!1

for �-a.e. x 2 Q0. This implies that � is singular. �
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COROLLARY 4.4. If � is a singular probability measure in Q0, then there is
c > 0 such that

lim
n!1

logð�ðQnðxÞÞ=jQnðxÞjÞ 	 PnðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PnðxÞ log logPnðxÞ

p 6 c

for �-a.e. x 2 Q0.

Proof. Recall that Sn ¼ logð�ðQnðXÞÞ=jQnðxÞjÞ 	 PnðxÞ is a �-martingale. By
Theorem 4.3, �fP1 <1g ¼ 0. Hence, the result is obvious on the set
fsupnjSnj <1g. On its complement, we use the upper bound of the LIL for the
martingale Sn and the estimate in Proposition 4.1. �

Theorem 4.3 should be compared to Corollary 1.2 in [9], which says that a
dyadic doubling positive measure � is singular if and only if

X1
k¼1

X2N
i¼1

log



2N

�ðQi
kÞ

�ðQk	1Þ

�
 �2

¼ 1

a:e:ðdxÞ x 2 Q0. Here Qk	1 is the dyadic cube of generation k	 1 which contains x
and fQi

kg, for i ¼ 1; . . . ; 2N , are its 2N dyadic sons.

5. Control of Sn by Hn

5.1. Control of hSin by Hn

From x 2, for a given probability measure in Q0, we have the representation

�ðQnðxÞÞ ¼ expfSnðxÞ 	HnðxÞg

where ðSn; �Þ is a dyadic martingale,

HnðxÞ ¼
Xn
k¼1

hkðxÞ; hkðxÞ ¼
X2N
i¼1

#ikðxÞ log
1

#ikðxÞ

and, from now on, #ikðxÞ ¼ �ðQi
kÞ=�ðQk	1ðxÞÞ, fQi

kg2n

i¼1 being the dyadic sons of
Qk	1ðxÞ. Since, by the upper bound of the law of the iterated logarithm, Sn can be
controlled by hS in, the purpose of this section is to determine which conditions
on the doubling behaviour of � imply that SnðxÞ ¼ oðHnðxÞÞ for �-a.e. x. We
remember that, if ðSnÞ is as above, then

hS in ¼
Xn
k¼1

X2N
j¼1

#jk


X2N
i¼1

#ik log
#jk
#ik

�2

¼
Xn
k¼1

�X2N
i¼1

#ik log2 1

#ik
	

X2N

i¼1

#ik log
1

#ik

�2�
:

We start with some technical lemmas.
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LEMMA 5.1. Let m 2 N with m> 2. Then there exists c ¼ cðmÞ > 0 such that
if ð#iÞmi¼1 are non-negative and

Pm
i¼1 #i ¼ 1, then

06
Xm
i¼1

#i log2 1

#i
	

Xm

i¼1

#i log
1

#i

�2

6 c


Xm
i¼1

#i log
1

#i

�
log



logmPm

i¼1 #i log#	1
i

�
:

Proof. We will distinguish two cases.
1. There is j, with 16 j6m, such that 1=100m6#j6

3
4. Since

Pm
i¼1 #i log2 #	1

i

6 log2 m and
Pm

i¼1 #i log#	1
i >#j log#	1

j > cðmÞ then the conclusion follows from
Lemma 4.2(a).

2. There is j with #j>
3
4 and #i6 1=100m if i 6¼ j. Assume that #m>

3
4, and

#i6 1=100m for i ¼ 1; . . . ;m	 1. Let " ¼ maxf#1; . . . ; #m	1g6 1=100m. SincePm	1
i¼1 #i þ #m ¼ 16 ðm	 1Þ"þ #m, it follows that #m> 1	 ðm	 1Þ". Therefore,Xm

i¼1

#i log2 #	1
i 6 ðm	 1Þ" log2 "	1 þ ½1	 ðm	 1Þ"� log2 1

1	 ðm	 1Þ"

6 ðm	 1Þ" log2 "	1 þ



1

1	 ðm	 1Þ"	 1

�2

6 2ðm	 1Þ" log2 "	1 ð5:1Þ

where the fact that x log x	1 is increasing in ½0; e	1� $ ½0; "� and decreasing in
½1	 "ðm	 1Þ; 1� and the estimate logð1þ tÞ6 t ðt > 0Þ have been used. On the
other hand, an easy computation shows that

" log "	1

logm
6

Pm
i¼1 #i log#	1

i

logm
6

1
36

1

e

so Pm
i¼1 #i log#	1

i

logm
log



logmPm

i¼1 #i log#	1
i

�
>
" log "	1

logm
log



logm

" log "	1

�
and we 8nally get
Xm

i¼1

#i log#	1
i

�
log



logmPm

i¼1 #i log#	1
i

�
>

1
2" log2 ": ð5:2Þ

The result follows now from ð5:1Þ and ð5:2Þ. �

The following lemma shows how to control the quadratic characteristic in terms
of the total entropy.

LEMMA 5.2. Let 06hk6 1, k ¼ 1; 2; . . . ; n, and Hn ¼
Pn

k¼1 hk. Then,Xn
k¼1

hk log
1

hk
6Hn log



n

Hn

�
:

Proof. The result follows from Jensen’s inequality for the convex function
log x	1. �
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Observe that the opposite inequality in Lemma 5.2 cannot be true: put
h1 ¼ . . . ¼ hm ¼ 1 with hk ¼ 0 if n> k > m.

Now we are ready to control hS in by Hn. Corollary 5.3 is a direct consequence
of Lemmas 5.1 and 5.2.

COROLLARY 5.3. If, for each k 2 N,

hkðxÞ ¼
X2N
i¼1

#ikðxÞ log
1

#ikðxÞ

is the entropy at step k and HnðxÞ ¼
Pn

k¼1 hkðxÞ, then

hS inðxÞ6CHnðxÞ log



nN log 2

HnðxÞ

�

where C is some positive constant depending only on N.

Now Corollary 5.3 and the LIL (Corollary 3.8) give the following reformulation
of the LIL in terms of the total entropy.

COROLLARY 5.4. Let Sn, hSnin and Hn be as at the beginning of this section
and TnðxÞ ¼ nNðlog 2ÞHnðxÞ	1. Then

lim sup
n!1

Sn

ðHnðlogTnÞ log logðHn logTnÞÞ1=2
6C <1

�-a.e. on the set fhS i1 ¼ 1g, where C ¼ CðNÞ > 0. In particular,

lim sup
n!1

Sn

ðHn logð2TnÞ log logðHn logð2TnÞÞÞ1=2
6C <1

�-a.e. on the set flimn Hn ¼ 1g.

Observe that 2TnðxÞ> 2 for all n. This is technically convenient for the
subsequent applications.

LEMMA 5.5. Let hk, with 06hk6 1, and Hn be as in Lemma 5:2 and

Tn ¼ nNðlog 2ÞH	1
n . Suppose that

lim
n!1

Hn

ðlognÞðlog log lognÞ ¼ 1:

Then, Hn logð2TnÞ log logðHn logð2TnÞÞ ¼ oðH2
nÞ as n!1.
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Proof. If n is large enough, using the notation logð3Þ n ¼ log log logn, we have

Hn logð2TnÞ log logðHn logð2TnÞÞ
H2
n

6 log



2nN log 2

ðlognÞðlogð3Þ nÞ

�
%



log logHn

Hn

þ logð3Þð2Nðlog 2ÞnðlognÞ	1ðlogð3Þ nÞ	1Þ
Hn

�
6CðlognÞ



"

log logððlognÞðlogð3Þ nÞÞ
ðlognÞðlogð3Þ nÞ

þ "
1

logn

�
6 2C": �

�

The following result says, in a precise way, that if Hn is big enough then the
expression in hS in appearing in the LIL can be controlled by Hn.

THEOREM 5.6. Let Sn, hS in, Hn be as at the beginning of the section. Let
x 2 Q0 be such that

HnðxÞ
ðlognÞðlog log lognÞ ! 1 as n!1:

Then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS inðxÞ logþ logþhS inðxÞ

p
¼ oðHnðxÞÞ as n!1. In particular, SnðxÞ ¼

oðHnðxÞÞ for �-almost every point

x 2
�
x 2 Q0 :

HnðxÞ
ðlognÞðlog log lognÞ ! 1 as n!1

�
:

Proof. Just combine Corollary 5.3, Corollary 5.4, Lemma 5.5 and Doob’s
theorem in x 1.4. �

5.2. Uniform conditions

We introduce the following quantities:

�k ¼ min

�
1	 �ðQi

kÞ
�ðQk	1Þ

: Qk	1 2 F k	1; i ¼ 1; . . . ; 2N
�

for each k 2 N, where, as usual, fQi
kg2N

i¼1 are the dyadic sons of Qk	1. Note that �k
informs about the worst doubling behaviour of � at the generation k. Observe also
that, from the additivity of �, it follows that 06 �k6 1	 2	N for each k. These
extreme values correspond to the extreme doubling behaviour of �: �k near 1	 2	N

means that � behaves like Lebesgue measure and �k near 0 means that � doubles
very badly inside some Qk	1.

The following technical lemma says how small the entropy in the function of
this uniform quantity can be.
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LEMMA 5.7. ðaÞ Let m 2 N, m> 2, and 06 �6 1	m	1. Then

min

�Xm
i¼1

#i log#	1
i :

Xm
i¼1

#i ¼ 1; 06#i6 1	 �

�
¼ pð1	 �Þ log

1

1	 �
þ ð1	 pð1	 �ÞÞ log

1

1	 pð1	 �Þ

where p ¼ ½ð1	 �Þ	1� is the integer part of ð1	 �Þ	1.
ðbÞ

max

�Xm
i¼1

#i log#	1
i :

Xm
i¼1

#i ¼ 1; 06#i6 max
i
#i ¼ 1	 �

�
¼ ð1	 �Þ log

1

1	 �
þ � log

m	 1

�
:

Proof. (a) We claim that some #i of the extremal con8guration must be equal
to 1	 �. If not, the extremal con8guration would be of the form #1; . . . ; #q; 0; . . . ; 0,
where 16 q6m and 0 < #i < 1	 � ði ¼ 1; . . . ; qÞ. But this would imply that the
minimum

min

�Xq
i¼1

#i log#	1
i :

Xq
i¼1

#i ¼ 1; 0 < #i < 1	 �

�

is attained at the set fð#1; . . . ; #qÞ :
Pq

i¼1 #i ¼ 1; 0 < #i < 1	 �g which is impossible
since, by Lagrange, the only critical point at this set is #1 ¼ . . . ¼ #q ¼ 1=q and it
is a local maximum.

Therefore, we can assume that #1 ¼ 1	 �. Now we argue by induction on m.
We distinguish two cases.

1: 06 � < 1
2. Then p ¼ ½ð1	 �Þ	1� ¼ 1 and, since

Pm
i¼2 #i ¼ �, it follows that

Xm
i¼2

#i
�

log



�

#i

�
> 0; so

Xm
i¼2

#i log
1

#i
> � log

1

�
:

Therefore, Xm
i¼1

#i log
1

#i
> � log

1

�
þ ð1	 �Þ log

1

1	 �
:

2: 1
2 6 �6 1	m	1. Here, put �i ¼ #i=� for i ¼ 2; . . . ;m. Then

Xm
i¼2

�i ¼ 1 and 06�i6
1	 �

�
¼ 1	 � 0

where � 0 ¼ ð2� 	 1Þ=�. Note that

06 � 06 1	 1

m	 1
and

1

1	 � 0
¼ 1

1	 �
	 1;
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so ½ð1	 � 0Þ	1� ¼ p	 1. By the induction hypothesis,Xm
i¼2

�i log
1

�i
¼
Xm
i¼2

#i
�

log



�

#i

�
> ðp	 1Þð1	 � 0Þ log

1

1	 � 0

þ ð1	 ðp	 1Þð1	 � 0ÞÞ log
1

1	 ðp	 1Þð1	 � 0Þ

¼ ðp	 1Þ 1	 �

�
log

�

1	 �
þ 1	 pð1	 �Þ

�
log

�

1	 pð1	 �Þ :

So Xm
i¼1

#i log#	1
i > ð1	 �Þ log

1

1	 �
þ � log

1

�
þ ðp	 1Þð1	 �Þ log

�

1	 �

þ ð1	 pð1	 �ÞÞ log
�

1	 pð1	 �Þ

¼ pð1	 �Þ log
1

1	 �
þ ð1	 pð1	 �ÞÞ log

1

1	 pð1	 �Þ :

(b) Assume that #i ¼ maxi #i ¼ 1	 �. Then
Pm

i¼2 #i ¼ � and, under this restric-
tion, the maximum of

Pm
i¼2 #i log 1=#i is attained when #2 ¼ . . . ¼ #m ¼ �=m	 1.

Thus Xm
i¼1

#i log#	1
i 6 ð1	 �Þ log

1

1	 �
þ ðm	 1Þ�

m	 1
log

m	 1

�

¼ ð1	 �Þ log
1

1	 �
þ � log

m	 1

�
;

and the lemma is proved. �

Remark 5.1. In the situation of Lemma 5.5 note that, if 06 � < 1
2 or m ¼ 2,

then

pð1	 �Þ log
1

1	 �
þ ð1	 pð1	 �ÞÞ log

1

1	 pð1	 �Þ ¼ � log
1

�
þ ð1	 �Þ log

1

1	 �
:

Remark 5.2. If p, � and m are as in Lemma 5.5, then

pð1	 �Þ log
1

1	 �
þ ð1	 pð1	 �ÞÞ log

1

1	 pð1	 �Þ � � log
1

�

with comparison constants that depend only on m.

The upper bound of the law of the iterated logarithm, Lemma 5.7 and Remark
5.2 lead to the following formulations of Theorem 5.6 in terms of the quantities �k.

COROLLARY 5.8. If Pn
k¼1 �k log �	1

k

ðlognÞðlog log lognÞ ! þ1;
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then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS inðxÞ logþ logþhS inðxÞ

p
¼ oðHnðxÞÞ as n!1 for �-a.e x 2 Q0. In

particular, SnðxÞ ¼ oðHnðxÞÞ as n!1, for �-almost every x 2 Q0.

COROLLARY 5.9. If

�k

.
log log log k

k log k

�
!1 as k!1;

then ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS inðxÞ logþ logþhS inðxÞ

p
¼ oðHnðxÞÞ as n!1

and SnðxÞ ¼ oðHnðxÞÞ as n!1, for �-almost every x 2 Q0.

Proof. Just observe that the hypothesis yields

lim
n!1

Pn
k¼1 �k log �	1

k

ðlognÞðlog log lognÞ ¼ 1

and apply Corollary 5.8. �

6. Estimates of the support of � in terms of its doubling behaviour

In this section we apply the results in x 5 to determine measure functions � for
which �� H�, under restrictions on the doubling behaviour of �. Let Sn, hS in,
Hn ¼

Pn
k¼1 hk and hkðxÞ ¼

P2N

i¼1 #
i
k logð#ikÞ	1 be as in x 5.

The 8rst result is an immediate consequence of Corollary 5.4.

THEOREM 6.1. Let ðAnÞ1n¼1 be a sequence of numbers such that

06An 	 An	1 6N log 2 for all n;

and such that

lim
n!1

An

ðlognÞðlog log lognÞ ¼ 1:

Suppose that HnðxÞ>An for n>n0ðxÞ, �-almost every x 2 Q0. Let
Tn ¼ nNðlog 2ÞA	1

n . Then, ��H�, where � is any measure function such that

�ð2	nÞ ¼ expfCðAnðlog 2TnÞ log logðAn logð2TnÞÞÞ1=2 	 Ang
for some C ¼ CðNÞ > 0. In particular, for any " > 0, �� H�" where
�ð2	nÞ ¼ expf	ð1	 "ÞAng.

Proof. Corollary 5.4 gives

�ðQnðxÞÞ6 expfCðHnðxÞ logð2TnðxÞÞ log logðHnðxÞ logð2TnðxÞÞÞÞ1=2 	HnðxÞg
eventually for �-a.e. x. Now, for n>n0ðxÞ, TnðxÞ6Tn and hence

HnðxÞ 	 CðHnðxÞ logð2TnðxÞÞ log logðHnðxÞ logð2TnðxÞÞÞÞ1=2

>

ffiffiffiffiffiffiffiffiffiffiffiffiffi
HnðxÞ

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
HnðxÞ

p
	 C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 2Tn log logðHnðxÞ logð2TnÞÞ

p �
:

Since HnðxÞ>An> ðlognÞðlogð3Þ nÞ, it is suIcient to observe that the functionffiffiffi
x

p 	 C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlog 2TnÞ log logðx log 2TnÞ

p
is increasing in x if x>An. �
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Remark. It is easily checked that if �1 and �2 are two measure functions
such that �1ð2	nÞ ¼ �2ð2	nÞ ¼ expf	Bng, where 06Bn 	 Bn	1 6C for all n then
�1ðtÞ � �2ðtÞ for all t 2 ½0; 1�, and, therefore M�1

ðEÞ > 0 if and only if M�2
ðEÞ > 0.

Thus, there is no ambiguity in the statements of Theorem 6.1 and the
results below.

COROLLARY 6.2. ðaÞ Let 0 < �6N and assume HnðxÞ> �n log 2 �-almost
every x 2 Q0. Then �� H�� , where

��ðtÞ ¼ t� expfCðlog t	1 log log log t	1Þ1=2g;

for some C ¼ CðNÞ > 0.
ðbÞ Assume that � is a dyadic doubling measure which is singular with respect

to Lebesgue measure. Let 0 < � < N and assume that HnðxÞ6 �n log 2 �-almost
every x 2 Q0. Then � is singular with respect to H�� , where

��ðtÞ ¼ t� expfC1ðlog t	1 log log log t	1Þ1=2g

for some C1 ¼ C1ðNÞ > 0.

Proof. Part (a) follows from Theorem 6.1.
To prove (b) recall that �ðQnðxÞÞ ¼ expðSnðxÞ 	HnðxÞÞ where ðSn; �Þ is a

martingale. Since � is dyadic doubling, the lower bound in the law of the iterated
logarithm holds, that is,

lim sup
n!1

SnðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS inðxÞ log loghS inðxÞ

p >C

at �-a.e. x 2 fx 2 Q0 : hS i1ðxÞ ¼ 1g. Since � is a dyadic doubling measure,
Proposition 4.11(b) tells us that hS inðxÞ is comparable to

PnðxÞ ¼ nN log 2	HnðxÞ:

Also, since � is singular with respect to Lebesgue measure, Theorem 4.3 tells that
hS i1ðxÞ ¼ 1 �-a.e. x 2 Q0. Therefore, the lower bound in the law of the iterated
logarithm reads

lim sup
n!1

SnðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnN log 2	HnðxÞÞ log logðnN log 2	HnðxÞÞ

p >C �-a.e. x2Q0:

Hence, for �-a.e. x 2 Q0, there exist a sequence of natural numbers nk tending to
in8nity for which

�ðQnkðxÞÞ
> exp

�
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnkN log 2	HnkðxÞÞ log logðnkN log 2	HnkðxÞÞ

p
	HnkðxÞ

�
:

Now, we deduce that

�ðQnkðxÞÞ> exp
�
Cð�;NÞC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk log lognk

p
	 �nk log 2

�
¼ 2	�nk exp

�
C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk log lognk

p �
�-a.e. x 2 Q0:

Applying part (b) of Proposition 1.1, we deduce that � is singular with respect to
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H�� where

��ðtÞ ¼ t� expfC1ðlog t	1 log log log t	1Þ1=2g: �

�Let ð�kÞ be as in x 5.2.

COROLLARY 6.3. ðaÞ Suppose that

lim
n!1

Pn
k¼1 �k log �	1

k

ðlognÞðlog log lognÞ ¼ 1:

Then, for each " > 0, we have �� H�" where �" is any measure function such that

�"ð2	nÞ ¼ exp

�
	ð1	 "Þ

Xn
k¼1



pkð1	 �kÞ log

1

1	 �k

þ ð1	 pkð1	 �kÞÞ log
1

1	 pkð1	 �kÞ

��
where pk ¼ ½ð1	 �kÞ	1�. In particular, there exists c ¼ cðNÞ > 0 such that �� H�

where � is any measure function such that

�ð2	nÞ ¼ exp

�
	 c

Xn
k¼1

�k log
1

�k

�
:

ðbÞ Let � be a singular dyadic doubling measure in Q0 which is singular with
respect to Lebesgue measure. Then � is singular with respect to H� where � is any
measure function such that

�ð2	nÞ ¼ exp



	
Xn
b¼1

ð1	 �kÞ log
1

1	 �k
þ �k log

2N 	 1

�k

�
:

Proof. Statement (a) follows from Theorem 6.1, Lemma 5.7 and Remark 5.2
in x 5.2. To prove (b) we argue as in the proof of Corollary 6.2(b). We know that
for �-a.e. x 2 Q0, there exists a sequence nk of natural numbers, nk !1, for
which

�ðQnkðxÞÞ
> exp

�
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNnk log 2	HnkðxÞÞ log logðNnk log 2	HnkðxÞÞ

p
	HnkðxÞ

�
:

Since �kðxÞ6 �k and ð1	 xÞ logð1	 xÞ	1 þ x logðð2N 	 1Þ=xÞ is increasing in x if
06 x6 1	 2	N , applying Lemma 5.7, we deduce that

HnðxÞ6
Xn
k¼1

ð1	 �kÞ log
1

1	 �k
þ �k log

2N 	 1

�k
:

Hence,

�ðQnkðxÞÞ>�ð2	nkÞ exp
�
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PnkðxÞ log logPnkðxÞ

p �
:

Since � is singular with respect to Lebesgue measure, PnkðxÞ ! 1 �-a.e. x 2 Q0.
So, part (b) of Proposition 1.1 shows that � is singular with respect to H�. �
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The hypothesis in Theorem 6.1 and Corollary 6.3 may seem unnatural, but some
restrictions on the growth of Hn and �k are necessary to avoid measures with point
masses which obviously cannot be absolutely continuous with respect to any
Hausdor/ measure. Actually it turns out that if �k ¼ k	1ðlog kÞ	1ðlog log kÞ", with
" > 0, it could happen that � has point masses, while if �kkðlog kÞ= log log log k!1,
Corollary 6.3 can be applied. Our method does not give enough information to 8ll
in this narrow gap.

In the case that the sequence ð�kÞ is bounded below by some positive constant
(that is, � dyadic doubling) we recover Heurteaux’s result (recall Remark 5.2 of
x 5.2; see also x 8).

COROLLARY 6.4. ðaÞ Suppose that �k> � > 0 for all k 2 N, and let
p ¼ ½ð1	 �Þ	1� and

� ¼ pð1	 �Þ logð1	 �Þ	1 þ ð1	 pð1	 �ÞÞ logð1	 pð1	 �ÞÞ	1

log 2
:

Then �� H�� , where �� is as in Corollary 6:2ðaÞ. In particular, if N ¼ 1,

� ¼ � log �	1 þ ð1	 �Þ logð1	 �Þ	1

log 2
:

ðbÞ Let � be a dyadic doubling singular measure. Assume �kðxÞ6 � < 1	 2	N

at �-a.e. x 2 Q0, for k ¼ 1; 2; . . . . Then � is singular with respect to H� where � 
is as in Corollary 6:2ðbÞ, with

 ¼ ðlog 2Þ	1 ð1	 �Þ log
1

1	 �
þ � log



2N 	 1

�

�
 �
:

Proof. (a) A direct application of Lemma 5.7 gives

hkðxÞ ¼
X2N
i¼1

#ikðxÞ log
1

#ikðxÞ

> pð1	 �Þ log
1

1	 �
þ ð1	 pð1	 �ÞÞ log

1

1	 pð1	 �Þ :

The result follows now from Corollary 6.2.
(b) As in the proof of Corollary 6.2(b), we know that for �-a.e. x 2 Q0, there

exists a sequence of natural numbers nk, tending to in8nity, for which

�ðQnkðxÞÞ
> exp

�
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNnk log 2	HnkðxÞÞ log logðNnk log 2	HnkðxÞÞ

p
	HnkðxÞ

�
:

Now, since �kðxÞ6 � < 1	 2	N , �-a.e. x 2 Q0, we deduce that for �-a.e. x 2 Q0,
the dyadic square QkðxÞ contains a dyadic cube of the next generation Qi

kþ1, with

�ðQi
kþ1Þ> ð1	 �kðxÞÞ�ðQkÞ> ð1	 �Þ�ðQkÞ. Then, applying Lemma 5.7(b) we

deduce that

HnðxÞ6n



ð1	 �Þ log

1

ð1	 �Þ þ � log
2N 	 1

�

�
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and deduce that

�ðQnkðxÞÞ> 2	nk� exp
�
Cð�;NÞC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk log lognk

p �
for �-a.e. x 2 Q0 and for in8nitely many nk. An application of part (b) of
Proposition 1.1 8nishes the proof. �

As announced in the introduction, we can obtain the same results under the
assumption that the doubling behaviour of � is good for many scales, that is,
suppose that �k> � > 0 for each k 2 A, where A � N. Let p ¼

�
ð1	 �Þ	1

�
. Then,

by Lemma 5.5,

hk ¼
X2N
i¼1

#ik log
1

#ik
> pð1	 �Þ log

1

1	 �
þ ð1	 pð1	 �ÞÞ log

1

1	 pð1	 �Þ

if k 2 A, so

Hn>



pð1	 �Þ log

1

1	 �

þ ð1	 pð1	 �ÞÞ log
1

1	 pð1	 �Þ

�
cardðA \ ½1; n�Þ:

The following two corollaries are now a consequence of Corollary 6.3.

COROLLARY 6.5. ðaÞ If �k> � > 0 for all k 2 A � N and

lim
n!1

cardðA \ ½1; n�Þ
n

¼ 1

then �� H� 0 for any

� 0 <
pð1	 �Þ logð1	 �Þ	1 þ ð1	 pð1	 �ÞÞ logð1	 pð1	 �ÞÞ	1

log 2
:

In particular, if N ¼ 1 then �� H� 0 for any

� 0 <
� log �	1 þ ð1	 �Þ logð1	 �Þ	1

log 2
:

ðbÞ Let � be a dyadic doubling measure in Q0 which is singular with respect to
Lebesgue measure. Assume �k6 � < 1	 2	N for all k 2 A � N and

lim
n!1

cardðA \ ½1; n�Þ
n

¼ 1:

Then � is singular with respect to H� 0 for any

� 0 >
ð1	 �Þ logð1	 �Þ	1 þ � logðð2N 	 1Þ=�Þ

log 2
:

In particular, if N ¼ 1, then � is singular with respect to H� 0 for any

� 0 >
ð1	 �Þ logð1	 �Þ	1 þ � log �	1

log 2
:

COROLLARY 6.6. If infk2A �k > 0 and limn!1ðA \ ½1; n�Þ=n > 0, then there
exists � > 0 such that �� H�.
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7. Continuous formulation for measures in R
N

For each cube Q � R
N , denote by fQig2N

i¼1 its natural decomposition into 2N

disjoint cubes of half size. Now, given a locally 8nite positive measure � in R
N ,

de8ne, for 06 t6 1
2,

�ðtÞ ¼ inf
�

1	 �ðQiÞ=�ðQÞ
�

where the in8mum is taken over all cubes in R
N of sidelength rðQÞ> 2t, and

where fQig2N

i¼1 is as above. The function �ðtÞ is non-decreasing and, when � is
restricted to the unit cube Q0, it is easy to check that, with the notation of x 6,

�ð2	kÞ6 �k:

The following elementary proposition allows one to apply the results in x 6.

PROPOSITION 7.1. There is a positive constant c, depending only on N , such
that Xn

k¼1

�k log
1

�k
> c

ð1=2

2	n
�ðtÞ log

1

�ðtÞ
dt

t
:

Corollary 6.3 admits the following integral formulation.

THEOREM 7.2. There exists a positive constant c, depending only on N , such
that if

lim
t!0

Ð 1=2
t �ðsÞ log �	1ðsÞs	1 ds

ðlog log t	1Þðlog log log log t	1Þ ¼ 1;

then �� H�, where

�ðtÞ ¼ exp

�
	 c

ð1=2

t
�ðsÞ log

1

�ðsÞ
ds

s

�
:

8. Examples

8.1. An extremal class of dyadic doubling measures

The construction of extremal measures in Heurteaux’s result given in the
introduction can be easily generalized to higher dimensions. This is very classical.
Fix non-negative #1; . . . ; #2N such that

P2N

i¼1 #i ¼ 1. Suppose that Qk	1 2 F k	1

and that �ðQk	1Þ has been de8ned. If fQi
kg2N

i¼1 is the dyadic decomposition of
Qk	1, de8ne

�ðQi
kÞ ¼ #i�ðQk	1Þ:

Independently of the Lexibility of these assignments for the di/erent scales, it is
clear that this also de8nes a Borel probability measure in Q0. Then

Hn>n
X2N
i¼1

#i log#	1
i
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and this implies, according to results in x 6,

�� H� for any � <


X2N
i¼1

#i log#	1
i

�
ðlog 2Þ	1;

and � is singular with respect to H� for any

� >


X2N
i¼1

#i log#	1
i

�
ðlog 2Þ	1:

8.2. Some particular applications of the results in x 6

When specialized to particular choices of the sequence ð�kÞ in x 6, we can write
down explicitly the measure functions � for which �� H�. We collect some
examples in Table 1.

8.3. On the sharpness of the results in x 6

We can modify the construction given in the introduction to allow di/erent
values of # for di/erent scales. Precisely, we consider a sequence ð#kÞ1k¼1 such that
06#k6

1
2 for each k 2 N, and, given �ðIk	1Þ, de8ne

�ðIþk Þ ¼ #k�ðIk	1Þ; �ðI	k Þ ¼ ð1	 #kÞ�ðIk	1Þ:

Since our 8nal measure can have atoms in this general situation, it is worth
pointing out that all dyadic intervals considered are always half-open (of the form
½ ; Þ). Then, since

Q1
k¼n #k ¼ 0 for any n 2 N, it can be shown that the requisites

to extend � are satis8ed [20], so this procedure also de8nes a Borel probability
measure in ½0; 1�. As in x 8.1, we have now

�ðInÞ ¼
Yn
k¼1

#"kk

Yn
k¼1

ð1	 #kÞ1	"k

where "k ¼ 1 if the predecessor of In of the generation k is at right position and 0
if it is at left position. Observe that if

P1
k¼1 #k <1 then � will have atoms at the

dyadic numbers fm=2n : n 2 N;m ¼ 0; 1; . . . ; 2n 	 1g in fact,

�½m=2n;m=2n þ 1=2kÞ ¼ cðm;nÞ
Yk
j¼n
ð1	 #jÞ

Table 1.

�k �ðtÞ ð�� H�Þ

log log k

k log k

expf	Cðlog log t	1Þðlog log log t	1Þg

k	1 expf	Cðlog log t	1Þ2g

k	� ð0 < � < 1Þ expf	Cðlog t	1Þ1	�ðlog log t	1Þg
1

log k
exp

n
	 Cðlog t	1Þ log log log t	1

log log t	1

o
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if k>n, which shows that � has an atom at fm=2ng. It can be shown that � is
actually concentrated at the dyadic numbers. Observe that a measure with atoms can
never be absolutely continuous with respect to anyH�, for any measure function �.

8.4. Symmetric measures

A positive measure in Q0 is called dyadic-symmetric if

"k ¼ inf

�
�ðQi

kÞ
�ðQk	1ðxÞÞ

: x 2 Q0; i ¼ 1; 2; . . . ; 2N
�
! 1

2N

as k!1. With the notation of x 5.2, this is easily shown to be equivalent to
limk!1 �k ¼ 1	 2	N . Actually, observe that by additivity, 1	 2	N 	 �kðxÞ is
comparable to 2	N 	 "kðxÞ. Hence, dyadic symmetric measures are those dyadic
doubling measures with a nice doubling behaviour for small scales. Examples of
such measures can be given using the construction of x x 8.1 and 8.3. Concretely,
given sequences ð#ikÞ1k¼1 ði ¼ 1; . . . ; 2NÞ where 06#ik, such that

P2N

i¼1 #
i
k ¼ 1 for

each k, de8ne inductively

�ðQi
kÞ ¼ #ik�ðQk	1Þ

for i ¼ 1; . . . ; 2N . If infi #
i
k ! 2	N as k!1, the resulting measure is dyadic

symmetric.
Now, let � be a dyadic symmetric measure, so that

#ikðxÞ ¼
�ðQi

kÞ
�ðQk	1ðxÞÞ

> "k !
1

2N
as k!1; for i ¼ 1; . . . ; 2N:

Without loss of generality, we can assume that 2	ðNþ1Þ
6 "k6 2	N for any

k ¼ 1; 2; . . . . We will use the following elementary lemma which can be proved
by induction.

LEMMA 8.1. Let m 2 N, m> 2 and 0 < "6m	1. Then

min

�Xm
i¼1

#i log
1

#i
: #i> ";

Xm
i¼1

#i ¼ 1

�
¼ ðm	 1Þ" log

1

"
þ ð1	 ðm	 1Þ"Þ log

1

1	 ðm	 1Þ" :

Hence, if � is dyadic symmetric then we have

X2N
i¼1

#ikðxÞ log
1

#ikðxÞ
> ð2N 	 1Þ"k log

1

"k

þ ð1	 ð2N 	 1Þ"kÞ log
1

1	 ð2N 	 1Þ"k
!N log 2 as k!1:

So

Hn>

Xn
k¼1



ð2N 	 1Þ"k log

1

"k
þ ð1	 ð2N 	 1Þ"kÞ log

1

1	 ð2N 	 1Þ"k

�
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and, since "k ! 2	N as k!1, the results in x 6 would imply that �� H� for
any � with 0 < � < N . In fact, our method gives a sharper result. For that, we
need a more careful estimate of �ðQnÞ. We know that

�ðQnÞ ¼ expfSn 	Hng ¼ 2	nN expfSn þNn log 2	Hng

and, by Lemma 8.1,

Pn ¼ Nn log 2	Hn ¼ Nn log 2	
Xn
k¼1

X2N
i¼1

#ik log
1

#ik

6

Xn
k¼1

�
N log 2	



ð2N	1Þ"k log

1

"k
þð1	ð2N	1Þ"kÞ log

1

1	 ð2N 	 1Þ"k

��
:

An elementary computation shows that

06N log 2	


ð2N 	 1Þx log

1

x
þ ð1	 ð2N 	 1ÞxÞ log

1

1	 ð2N 	 1Þx

�
6CNð2	N 	 xÞ2

if 2	ðNþ1Þ
6 x6 2	N , where CN only depends on N . Therefore

Pn ¼ Nn log 2	Hn6CN
Xn
k¼1



1

2N
	 "k

�2

:

At this point we should mention that we can assume that

X1
k¼1



1

2N
	 "k

�2

¼ 1:

Indeed, if this series converges then a well-known result of Carleson [5] implies
that � is absolutely continuous with respect to Lebesgue measure.

Now, since hS in6 2Pn ¼ 2ðNn log 2	HnÞ, we have, for �-almost every x 2 Q0,

either supn jSnðxÞj <1 or SnðxÞ ¼ o
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PnðxÞ log logPnðxÞ
p �

by the results in x 1
and the LIL. Therefore,

�ðQnðxÞÞ6 2	nN exp CðxÞ þ CN
Xn
k¼1



1

2N
	 "k

�2
( )

:

So, we have the following.

THEOREM 8.2. ðaÞ If � is a dyadic symmetric measure and ð"kÞ are as above,
then �� H� where � is any measure function such that

�ð2	nÞ ¼ 2	nN exp c
Xn
k¼1



1

2N
	 "k

�2
( )

for some c ¼ cðNÞ > 0.
ðbÞ Let � be a dyadic symmetric measure which is singular with respect to

Lebesgue measure. Then � is singular with respect to H� where � is any measure

PLMS 1484---13/8/2004---SHARON---104746

REGULARITY PROPERTIES OF MEASURES 519



function such that

�ð2	nÞ ¼ 2	nN exp



c
Xn
k¼1



1

2N
	 "k

�2�
for some c ¼ cðNÞ.

Proof. As in the proof of Corollary 6.2(b) we see that for �-a.e. x 2 Q0, there
exists a sequence nk of natural numbers, nk !1, such that

�ðQnkðxÞÞ
‘ðQnkðxÞÞ

N
> expðCðPnkðxÞ log logPnkðxÞÞ

1=2 þ PnkðxÞÞ:

Applying Lemma 5.7(b), we deduce that

HnðxÞ6
Xn
k¼1



ð1	 �kÞ log

1

1	 �k
þ �k log

2N 	 1

�k

�
and ð1	 xÞ log ð1	 xÞ	1 þ x logðð2N 	 1Þ=xÞ is comparable to ð1	 2	N 	 xÞ2 for x
close to 1	 2	N . So, we deduce that

�ðQnkðxÞÞ
‘ðQnkðxÞÞ

N
> exp



CðnÞ

Xn
k¼1

ð1	 2	N 	 �kÞ2
�

which 8nishes the proof. �

When specializing these results to particular examples we have, for instance,
those shown in Table 2.

9. Application to a certain class of degenerate elliptic equations

Now we are ready to apply the previous results to the two situations described
in the introduction. Suppose that h : R! R is an increasing homeomorphism and
let �h be the Lebesgue--Stieltjes measure associated to h. Then if MðtÞ is as in the
introduction, it follows for instance that if MðtÞ6M, then �k> ðM þ 1Þ	1 for all
k. This observation and Corollary 6.4 prove part (a) in Corollary 9.1. Part (b) is
derived from either Theorem 6.1 or Theorem 7.2.

COROLLARY 9.1. ðaÞ If MðtÞ6M <1, that is, if h is M-quasi-symmetric,
then �h is absolutely continuous with respect to H�M , where

�MðtÞ ¼ t�ðMÞ expfCðlog t	1 log log log t	1Þ1=2g:

Table 2.

"k �ðtÞ ð�� H�Þ

1

2N
	 1ffiffiffi

k
p tN

�
log t	1

�c
1

2N
	 1

k�=2
ð0 < � < 1Þ tN exp

�
c
�

log t	1
�1	��

1

2N
	 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

k log k
p tN exp

�
c
�

log log t	1
�c�
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Here

�ðMÞ ¼ 1

M þ 1
log2ðM þ 1Þ þ M

M þ 1
log2



M þ 1

M

�
and C is some �xed absolute constant.
ðbÞ Assume that

lim
t!0

Ð 1
t

logMðsÞ
MðsÞ

ds
s

ðlog log t	1Þðlog log log log t	1Þ ¼ 1:

Then � is absolutely continuous with respect to H�, where

�ðtÞ ¼ exp

�
	 C

ð1

t

logMðsÞ
MðsÞ

ds

s

�
and C is some �xed absolute constant.

The rest of the section is devoted to describing how these kinds of results inform
us about the size of harmonic measure for certain degenerate elliptic equations.

To start with, consider a positive locally 8nite Borel measure � in R such that
�ð	1;þ1Þ ¼ 1, � has no atoms and �ðIÞ > 0 for any interval I of the real line.
Let h : R! R be the associated homeomorphism, that is hðxÞ ¼ �½0; x� if x> 0
and hðxÞ ¼ 	�½x; 0� for x < 0. Then h : R! R is a continuous, strictly increasing
homeomorphism of the real line. De8ne

uðx; yÞ ¼ 1
2



1

y

ðxþy
x

hðtÞ dtþ 1

y

ðx
x	y

hðtÞ dt
�
;

vðx; yÞ ¼ 1
2



1

y

ðxþy
x

hðtÞ dt	 1

y

ðx
x	y

hðtÞ dt
�
;

for x 2 R, y > 0. Then O : R2
þ ! R

2
þ, given by Oðx; yÞ ¼ ðuðx; yÞ; vðx; yÞÞ, is called

the Beurling--Ahlfors extension of h [3] (or simply, the Beurling--Ahlfors extension
of �).

Computing the derivatives of O, as in [3], it follows that

O 0 ¼ ux uy
vx vy


 �
¼ �þ � � 0 	 � 0

�	 � � 0 þ � 0


 �
where

� ¼ 1
2

hðxþ yÞ 	 hðxÞ
y

; � ¼ 1
2

hðxÞ 	 hðx	 yÞ
y

;

� 0 ¼ 1
2

Ð xþy
x ½hðxþ yÞ 	 hðtÞ� dt

y2
; � 0 ¼ 1

2

Ð x
x	y½hðtÞ 	 hðx	 yÞ� dt

y2
:

Note that all �, �, � 0, � 0 are strictly positive. Then, det O 0 ¼ 2ð�� 0 þ �� 0Þ > 0
and it follows, for elementary topological reasons, that O is a C1 homeomorphism
from the upper half-plane into itself such that Oðx; 0Þ ¼ hðxÞ, for x 2 R.

The connection with elliptic operators is well known [4, 12]. A simple
computation with the chain rule and the change of variables formula shows
that, if u is harmonic in R

2
þ, then v ¼ u & O is a solution of the following equation
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in divergence form [4]:

Lv ¼ divðAðx; yÞrvÞ ¼ 0

where Aðx; yÞ ¼ det O 0ðx; yÞðO 0ðx; yÞÞ	1ððO 0ðx; yÞÞtÞ	1.
An explicit computation of Aðx; yÞ gives

Aðx; yÞ ¼ 1

ð�� 0 þ � 0�Þðx; yÞ
� 02 þ � 02 �� 0 	 �� 0

�� 0 	 �� 0 �2 þ �2

 !
ðx;yÞ

:

Therefore,

ðKðx; yÞÞ	1kðx; yÞk2
6 hAðx; yÞ; ðx; yÞi6Kðx; yÞkðx; yÞk2

where

Kðx; yÞ ¼


�2 þ �2 þ � 02 þ � 02

�� 0 þ � 0�

�
ðx; yÞ> 2:

In a similar way to what we did in x 7, put

�ðyÞ ¼ inf

�
�ðJÞ
�ðIÞ : jIj> y

�
; MðyÞ ¼ ð�ðyÞÞ	1 ð9:1Þ

where J is any of the two half-intervals in which I is divided. Note that, in the
case of the line, �ð � Þ is the same uniform function as that introduced in x 7, up to
a change of scale: y instead of 2y. Then �ðyÞ6 1

2, so MðyÞ> 2. Furthermore, �ðyÞ is
increasing and MðyÞ is decreasing for y > 0. The following lemma is elementary.

LEMMA 9.2. If �, �, � 0, � 0 are as above, then

16
�

� 0
;
�

� 0
6 2MðyÞ; ðMðyÞ 	 1Þ	1

6
�

�
6MðyÞ 	 1:

In particular Kðx; yÞ6 4M 2ðyÞ.

Proof. That � 06� and � 06 � is trivial from the de8nitions. On the other
hand,

�

� 0
¼ y

hðxþ yÞ 	 hðxÞÐ xþy
x ½hðxþ yÞ 	 hðtÞ� dt

6 y
hðxþ yÞ 	 hðxÞÐ xþy=2

x ½hðxþ yÞ 	 hðtÞ� dt

6 2
hðxþ yÞ 	 hðxÞ

hðxþ yÞ 	 hðxþ y=2Þ ¼ 2
�½x; xþ y�

�½xþ y=2; xþ y� 6 2MðyÞ:

Also,

�

�
¼ hðxþ yÞ 	 hðxÞ
hðxÞ 	 hðx	 yÞ ¼

�½x; xþ y�
�½x	 y; x� 6Mð2yÞ 	 16MðyÞ 	 1:

The other inequalities are analogous. Therefore,

Kðx; yÞ ¼ �2 þ �2 þ � 02 þ � 02

�� 0 þ � 0�
6
�

� 0
�

�
þ �

�

�

� 0
þ �

�
þ �

�

6 4MðyÞðMðyÞ 	 1Þ þ 2ðMðyÞ 	 1Þ6 4M 2ðyÞ: ��
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Now, if L is the elliptic operator obtained by pulling back the Laplacian in R
2
þ,

as described above, z0 2 R
2
þ is 8xed, and w0 ¼ Oðz0Þ, then, for E � R,

!LðE; z0Þ ¼ !PðhðEÞ; w0Þ � jhðEÞj ¼ �ðEÞ
where !Lð � ; z0Þ (respectively !Pð � ; w0Þ) denotes harmonic measure in R

2
þ, from z0

(respectively w0) for the operator L (respectively the Laplacian). Here the
notation A � B means that there exists a constant C > 0 which may depend on z0

and h, but not on the set E, such that C	1A6B6CA. We can summarize these
preliminaries in the following proposition.

PROPOSITION 9.3. Let � be a Borel, locally �nite positive, in�nite, measure in
R without atoms and satisfying �ðIÞ > 0 for any interval I � R. Let O be the
Beurling --Ahlfors extension of �, and L ¼ divðAðx; yÞrð � ÞÞ, the pull-back of the
Laplacian by O. Then, the ellipticity of A is related to the doubling behaviour of �
as follows:

ð4M 2ðyÞÞ	1kðx; yÞk2
6 hAðx; yÞ; ðx; yÞi6 4M 2ðyÞkðx; yÞk2

where MðyÞ is de�ned in ð9:1Þ. Furthermore, !Lð � Þ � � where !L is L-harmonic
measure from some �xed point in R

2
þ. In particular, !L � H� if and only if �� H�.

Now we are ready to apply Theorem 7.2 to this situation.

THEOREM 9.4. Let �, L, !L, MðyÞ be as in Proposition 9:2. Suppose that

lim
t!0

Ð 1
t

logMðsÞ
MðsÞ

ds
s

ðlog log t	1Þðlog log log log t	1Þ ¼ 1:

Then, there is some absolute constant C > 0 such that !L � H�, where

�ðtÞ ¼ exp

�
	 C

ð1

t

logMðsÞ
MðsÞ

ds

s

�
:
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