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Letf be a holomorphic function in the unit disk omitting a gedf values of the
complex plane. IfA has positive logarithmic capacity, R. Nevanlinna proved that
f has a radial limit at almost every point of the unit circleAlfs any infinite set,

we show thaf has a radial limit at every point of a set of Hausdorff dimension
1. A localization technigue reduces this result to the following theorem on inner
functions. Ifl is an inner function omitting a set of valu&in the unit disk,
then for any accumulation poibtof B in the disk, there exists a set of Hausdorff
dimension 1 of points in the circle whetehas radial limitb.
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0 Introduction and description of results

We are interested in describing the radial boundary values of holomorphic map-
pingsf from the unit diskD into a given domain? of the complex plane.

Let us denote byF(f) the setF(f) = {# € [0,27] : lim,_,,f(re'?) exists,
(possiblyoo)}. This is the so calledratou setof f. If {2 is bounded, then a
classical theorem of Fatou asserts the existence of radial boundary eadyes
or, with the notation above tha (f)| = 2z. (If A C [0, 2x] then |A] denotes its
Lebesgue measure.) More generally, if the logarithmic capacity of the comple-
ment of {2 is not zero, therd belongs to the Nevanlinna class and in this case
we also havdF(f)| = 2.

On the other hand, if the complement 6 is just a finite set then any
holomorphic covering map fror® onto {2 has a countable Fatou set.
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The classical results that we have just recalled tell us what the size of the
Fatou set off is in terms of the size of the complement of the rangd ,of?,
in two extreme cases: the complement is very laige ¢f positive capacity) or
very small {.e. just countable). In this context, it remains to understand what
happens in the intermediate situation when the complement is an infinite set but
of zero logarithmic capacity. It turns out, and this is the main result of this paper,
that there is no scale of possibilities: the Fatou set in this intermediate situation
is always of Hausdorff dimension 1.

Theorem 1. Let 2 be a hyperbolic domain i€, let f be a holomorphic function
from D into (2. Then

(@) If cap(C\ 2) > 0, then|F(f)| = 27.
(b) If cap(C\ £2) = 0 and#(C \ £2) = +co thendim(F (f)) = 1.
(c) If 8(C\ £2) < +o0, then Kf) is at least countable.

Here and hereafter, “cap” means logarithmic capacity, “dim” means Haus-
dorff dimension, and “#” means number of points. Also, a planar domais
termedhyperbolicif its complement inC contains at least 2 points, or in other
terms if it is holomorphically and regularly covered by the unit disk.

As we mentioned above (a) is classical (due to Nevanlinna, see [10, p. 180]),
(c) requires a little argument which we shall give later on, and, finally, (b) is
the main result of this paper. Also, in the remaining cases wheiethe whole
complex plane or the complement &fis a single point, it may happen(f) = 0
(see [3, p. 44)).

We should remark that since the holomorphic functions we are dealing with
omit at least two points i€, they are normal (in the Lehto-Virtanen sense) and,
consequently, if a radial limit exists at a poigt’ then the angular limit also
exists ate'?.

The conditions orf2, although given in terms of the complement(@fin C,
have intrinsic meaning; recall that c&p{ {2) > 0 means that? has Green’s
function, or, equivalently that Brownian motion d® is transient, whilef(C \

2) < +oo means that? has finite Poincé area.

The result above is sharp, in the following sense: given any infinite closed
setE of zero capacity, there is a holomorphic functigrfrom D onto C \ E
(namely, a holomorphic covering map) such tiatg)| = 0 (see [10, p. 211])
and, of course, din{(g)) = 1, while, similarly, the covering maps frol onto
the plane with finitely many points removed have radial boundary values for,
exactly, a countable set éfs. The corresponding results for covering maps, in
the general framework of Riemann surfaces, are proved in [5].

0.1
Let f be a holomorphic function fronD into {2 and letg be a holomorphic

covering map fromD onto {2. Then we can factorizé = g o b whereb is a
holomorphic mapping fronD into D. Recall that a holomorphic mappirgfrom
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D into D is calledinner if almost all of its radial boundary values have modulus
one. If the functiorb above is not inner then, no matter wiatis, one has that
|[F(f)| > 0. Thus in the context of this paper only the casaner is interesting.

One possible approach to the proof of Theorem 1 consists simply in pulling
back the known boundary behaviour g@fthroughb to f. We shall discuss this
approach in Sect. 1.1.

0.2

But inner functions could enter into the picture in another way, namely, through
localization

Leta € 012, ande > 0, and consider a connected componénbf {z €
D: |f(z) — a|] < ¢}. G is simply connected. Lep be a Riemann mapping from
D onto G, then the mappind = (1/¢){f o p(z) — a} allows us to study the
behaviour off neara, and in the case of interektis an inner function.

By means of this simple and well known idea the proof of Theorem 1 can be
reduced to related results on the geometry of inner functions. We shall discuss
this approach in Sect. 1.2.

0.3 The geometry of inner functions

Letf be an inner function and denote By(f) the omitted set of , i.e., @(f) =
D\ f (D). Frostman showed that always ca{f)) = 0, while if E is any relatively
closed subset db of zero capacity, any holomorphic covering map frénonto
D\ E is an inner function, (see.g, [3 p. 37]).

Let ¢ (f) denote the exceptional set of i.e., the set ofe'?’s such thatf
does not have radial limit of modulus 1 @f. Of course,|& (f)| = 0. The sizes
of the sets# (f) and @ (f) are closely related. This fact was first pointed out
by Noshiro and Seidel (see,g, [15, p. 328]) by showing that if'(f) contains
two points then cap{(f)) > 0. The following known theorem describes that
connection in sharp terms. We denotedyhe Poincaé distance irD.

Theorem A. If @ (f) has at least two points then
dim(#(f)) > 1/2.
In fact, if d(f) denotes
d(f) =inf{d(a,b),a,b € @(f),a # b}

then

dim(Z(f)) = a(d(f))
wherex is an (absolute) decreasing function defineflino), satisfyinqﬂrp a(t)
=1/2,a(0) =1
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The functiona is only implicitly defined, but the result is sharp, (see [4] and
[6]). Observe that iv? (f) contains two points then dirf((f)) > % and also that

if f = exp(*%> thenc(f) = {0} while & (f) = {1}.

z )

Here we complement Theorem A in a substantial way. We have
Theorem 2. Letf be inner and let ke D be an accumulation point @ (f) then
dim{6 € [0, 2] : Lmlf(rei@) =b}=1.

This is a corollary of the following quantitative version of Theorem A.
Theorem 3. Let f be inner and let ke @ (f). Let
di (b) =inf{d(z,b) : z € &(f) \ {b}}.
Then

dim {0 € [0, 27] : limsupd(f (re'?), b) < d (b)K} >1-——
r—1 |Og Iogm

if df (b) < m. The quantities MK and m are absolute constants.

0.4

It will be convenient to express some of our results in terms of a more general
notion of inner function which we now describe.

Definition. Given a planar domai? we say that a holomorphic function f from
D into {2 is inner into {2 if

{e' € 0D : Iimlf(re“g) exists and belongs t®}
r—
has measure zero.

The functions which are inner intd are the usual inner functions. K is
a holomorphic covering map from onto a domain? thenF is inner into {2,
and, as a matter of fact, ff is any holomorphic function fronD into {2 which
factorizes ag = F o b, thenf is inner into? if and only if b is inner intoD.

The proof of Theorem 1, case (b), contains the following more precise ver-
sion.

Theorem 4. Let {2 be a planar domain and let f be inner int@ and a € 912.
Then if a is not isolated {2, but for some: > 0, cap(D(a, <) N 0f2) = O then

dim{0 € [0,2x] : lim f(re'’) =a}) = 1.
r—1
Of course, an isolated point 6f2 may “attract” just countably mang ?’s, while

if cap D(a,e) N dD) > 0 for all ¢ > 0 then it could happen that attracts just
oned, (considere.g, a Riemann mapping onto a Jordan domain).
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0.5

Holomorphic mappings between hyperbolic planar domains are Lipschitz (with
constant 1) with respect to the respective Poiacaretrics. The holomorphic
functions fromD into C which are Lipschitz wherD is endowed with the
Poincaé metric andC with its euclidean metric are the Bloch functions. For
those functions there are related results due to Makarov and Rohde, see [8] and
[12]. For instance, Rohde has shown thaf ifs inner and belongs to the “lit-
tle” Bloch space, %, i.e., lim, 1 [f'(2)|(1 - 1z|?) = 0, then for everya € D,
dim{# € [0,2x] : lim, 1 f(re'’) =a} = 1. There are also closely related results
concerning the “bounded”, as opposed to “divergent”, boundary behaviour. For
those we refer the reader to [6] and the references therein.

There are several results where, from geometric assumptions on the range of
a holomorphic function, one deduces information about its boundary behaviour.
We would like to recall here a classical result of Beurling, which we shall use
later on, namely: iff is a function holomorphic in the disk whose Riemann
surface has finite area thérhas radial limits except at most in a set of capacity
zero.

0.6

The plan of the paper is as follows. Theorems 1 and 4 are proved in Sect. 1, and
Theorem 3 is proved in Sect. 3. Section 2 develops some machinery on hyperbolic
derivatives which is needed in the proof of Theorem 3. Finally, Sect. 4 discusses
some complements and some questions.

1 Proof of Theorem 1

We shall be giving two proofs of Theorem 1. The first one, which we only sketch,

is based on its geometric counterpart, Theorem B, which is proved in [5], and
a subordination argument, from [6]. The second proof shows, by means of the
localization technique which we have described in Sect. 0.2, that Theorem 1 is
a corollary of Theorem 2. This second proof depends only on the results of this
paper. Inner functions enter into both arguments, albeit in different ways.

1.1 First proof

Let 2 be a hyperbolic planar domain, and ketbe a holomorphic covering map
from D onto (2. Assume that the complement 6f is an infinite set of zero
capacity. Then

Theorem B, [5]. With the notations above, given > 0 there exists a closed
subset E 0BD, with Hausdorff dimensioir 1 — ¢, and such that if & € E then
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lim dgo(F(re'?), F(0)) = +o00,
r—1
uniformly in r, or, equivalently,
lim dist(F (re'?), 002) = 0,
r—1
uniformly in r.

Here and hereafter;ddenotes hyperbolic distance §a, anddist means spherical
distance.

Let f be a holomorphic mapping fror® into 2. We may factorizef as
f =F o b whereb is a holomorphic mapping fror® into D.

Now, if b is not inner, then on a subsatof positive measure adD we have
that r"ﬂ] b(re'?) exists and belongs tB. Consequently|F (f)| > 0, and we are

done.

If b is inner, then we may use the argument of (6, proof of Theorem 2), to
transfer the above result on the uniform boundary behavioErtofthe following
result on the boundary behaviour fof

dim{6 € [0, 2x] : !imldist(f (re'?),00) = 0} =1.

Since capd{?) = 0,02 is a totally disconnected set, and so ifllijia;t(f (re'?), 092)
r—
= 0 it must be the case that 1iﬁ(re‘9) exists, allowingoo as a limiting value.
r—

1.2 Second proof

Let a be an accumulation point a¥{2, with no loss of generality we assume
thata = 0. Since capd(?) = 0 we may finde > 0, such tha{w € C: |w| = ¢}
separate®(?; of course, cap(0, ) \ §2) = 0. We shall assume, that= 1. Let
Zy be a point ofD with |f (z)| < 1. (If no suchz, exists then 1f is a bounded
holomorphic function, and Fatou’s theorem finishes the argument)GLst the
component of{z € D : |f (z)| < 1} which containsz,. The domainG is simply
connected, since @ f (D). Also, 9G N dD # () since otherwisé would assume
every value in{fw € C : |w| < 1}. Let ¢ be a conformal map frond into G
with ¢(0) =z, and consider the functiog = f o ¢, holomorphic fromD into D.
If ¢ werenot inner, there would exist a subsgtof 9D of positive length
such that for everg'? € E, ng(reie) exists and belongs tB, and p(e'?) =

Iim1 o(re'?) exists. Now, fore'? € E, one hasp(e'’) € 9GNAD, since, otherwise,

r—

Iiml|g(re‘9)\ = 1. Let us denote by(E) the setp(E) = {p(e'?) : €'’ € E}. By

r—

Lowner's lemma]p(E)| > 0. Now, if €¢ = ((e'?) then, Iirrff(go(re“’)) exists,
r—

and by the Lehto-Virtanen extension of Lind&s theorem to normal functions
(f is normal since the complement &f contains at least two points), we deduce
that the radial limit off at e'? also exists. Consequentlfy,has radial limits in
the set ofp(E) of positive length, and we would be done.
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It remains to consider the case wheis inner. We now apply Theorem 2 to
g to conclude that there exists a subgetf 9D of Hausdorff dimension 1, such
that if €? € E then

0 = lim g(re'?) = lim f (o(re'?));
r—1 r—1

we may also assume thatdf’ ¢ E, lim o(re'?) = p(e'?) exists (since by Beurl-
ing’s theorem (see Sect. 0.5) this fails to occur at most in a set of capacity zero,
and hence of zero dimension). Now,df ¢ E, theny(e'?) € 9D, since other-
wise f would vanish atp(e'?). We may apply the Hamilton-Makarov extension

of Léwner's lemma [7], [9], to deduce that(E) = {¢(e'?) : €? € E} has di-
mension 1. And we may argue as in the previous cagef inner) to conclude
thatf has radial limit zero in a set(E), of Hausdorff dimension 1.

13

To complete the proof of Theorem 1 we have to consider the case when
C\ {0, 1} is just a finite set, (with at least 3 points, includisgas a possibility).
We follow the lines of the first proof above. Consider a tesselatioD bfy
hyperbolic trianglesZ’s, with vertices abo = 9D; each triangle projects under
the covering maj- onto a half plane and at the vertices of these triangléms
a radial limit: 0, 1, orco. Factorize the givef asF ob, whereb is inner (ifb is
not inner, we are done). We simply have to observe that each of the connected
components of each—1(.7") is a trilateral.

Lemma 1.1. Let {Tj }/L; be disjoint trilaterals inD with labeled vertices &j),
a(j), as(j) € OD and such thatifl < j,j’ <n,j#j’,andifl <i,i’ <3,
i #i"thena() # a(j’). Then

n 3
U WUHal)) p =n+2.
j=1li=1

We do not assume the trilaterals to be Jordan domains but we assume the vertices
to be accesible. To be precise:

Definition. A trilateral is a simply conected domain with three accesible bound-
ary points, distinct and labeled. These boundary points are its vertices.

1.4 Proof of Theorem 4

As a matter of fact, this is what is actually proved above in the so called second
proof of Theorem 1.
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2 Bounds on hyperbolic derivatives
2.1 Nonvanishing bounded holomorphic functions

If £2is a hyperbolic planar domain, we shall denote\pyw), w € (2, the density
of the Poincag metric of (2. That is to say, ifF : D — (2 is a holomorphic
covering map ontd? then

2
Ae(F(2)|F'(2)| = T2 for eachz € D.

For arbitrary holomorphic mappindgsbetween hyperbolic domain@; and (2,,
Schwarz’s lemma gives

Ao,(F@)IF' @) < Ay () -
The particular casé?;, =D, 2, = D\ {0} yields the following useful fact:

Lemma 2.1. If f is a holomorphic function irD with 0 < |f (z)| < 1, for every
z € D then

@2 o1
@ =122 @)

For a functionf, holomorphic inD with f (D) c D \ {0}, we may write

27 1_ |Z|2
€6 — 22

(2.1) for each ze D.

1 )
log—— =P 7) = / dys (e’
9 = PUN@= | p(e)

for some positive meassugg on dD. It is clear that (2.1) is equivalent to the

trivial estimate
2

[ &durce
0

Of course wherny; is a positive multiple of a point masse., whenf is a
covering map oD\ {0}, we have equality. On the other hand“}f’r €'y (0)‘
differs much from||u || thenf should be far from being a covering mag., y

should be far from being a point mass. To quantify this, the following elementary
lemma shall be useful.

1

< ||ut ]| = log o)

Lemma 2.2. Let o, 5 be related by0 < a < cosn3, 0 < 3 < 1/2. Letu be a
positive measure iBD, with total masg|u| = 1 and

27

[ &au®

0

<a.

For every interval | With% < B one has

1l+a

M(l)SUZU(%ﬁ):m<1-
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Proof. We may assume that the intendais centered at-1. Then
27
—a < / cosf du(0) / cosfdu(9) + / cosf du(9)
0 I D\
—(cosmB)u(l) + (@D \ 1)
—(@ +cosrB)u(l)+1.

1A

In terms of holomorphic functions, and with the same notation, the lemma
above reads.

Lemma 2.3. Letf: D — D\ {0} be a holomorphic function, suppose that
f'(0)

f(0)log 5

where,0 < a < 1. Then for every interval k- 9D, and3, 0 < 3 < 3,

I pmy m0)
I

<o(a,p) .

27
|0
Proof. Let g be the function defined by(z) = / s dpf (0), so thatkg =
0

27

Pus. We have
2.2 Rg(0) = lo
(2.2) 9(0) = || || = 9|f(0)‘
and
/ 0 2T
23) 8 (()) 4@ =2 [ e du (o)
0
Therefore,
2m
/ &0 (6)| < |
0

and we apply Lemma 2.2.

For the invariant formulation of Lemma 2.3 we need the following definition;
we are fixing the parameters, 3 of the preceding discussion to ke= 1/4,
=1/4. Letd = {€'? : |§| < 2r}. Fora € D, let p, € .#200(D) be defined by

_a (z+fal
()= g <1+z|a|>'

va(0) =a, wa(l) = ﬁv@a( 1) =

DefineJ, = va(J). Observe thatd,| < 1 — |a|.

Observe that a

al”
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Lemma 2.4. Letf: D — D\ {0} be holomorphic. Assume that

|f(z;f|l<(;g)|l(1 1z|?) < %, for some ze D,
@)

then

Og TR
|32 If ()]
where B is an absolute constant.

Proof. Letf =f o ¢,. Then

ol _F@ia-izP)
fO)llog gy If@l0g gy~

AlsO, ||| = 109 1y
Moreover fromP,. =P, o ¢,, we deduce that for a Borel s&, A C dD,

pi (A) = (oY) () dt -
»z(A)

In particular, ifA=J then
@)= [ ey @l

but onJ,, |(¢; )] < Cl%‘zl, where consequently

s (Jz)
1—|z|°

pd)<C

But, by Lemma 2.3 withv = 1/4, 8 = 1/4,

pi () S

—FF>1-0p
[l

whereoy is the o corresponding tay, 3 above and therefore

J;
f:( |Z)| > C(1- o)l
= C(1-o09) |09|f(1z)
_ 1
= Blog Q@

with B = C(1 — og).
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2.2 Bounds for the Riesz mass of positive superharmonic functions

Although Lemma 2.4 is what we shall need and use in the following, now that
we are at it, it is worthwhile to complete the above analysis.

Let u be a positive superharmonic function in the unit di3k By Riesz’
theorem we may expressas:

u(z) =//G(Lw)da(w)+/P(z,ei9)dﬁ(e”’)
D

D
whereG(z, w) is the Green’s function of the unit disks(z, w) = — log | {54,
P(z,€'?) is the Poisson kerneP(z,e'?) = 21:59'2‘2, and o and 3 are positive

measures iD and indD, respectively. Now

8u(0)=;//1_|a2da(a)+/ei"dﬁ(e”’)
D

a
oD

u(0)=//|og|%|da(a)+/ daE"?).
D oD

If we write d& = 3(1 — |a]?)da then

Bu(O):// %d(&+ﬁ).

DuoD

Observe that itv(= Au) = 0 in D(0, €) then

and

1
|u(0)] < Zu(0).
Assume that|a + 8| = 1, and thata™= 0 in D(0,¢). Let J and| be the
arcsJ = {e' : [9] < Z},1 = 0D\ J, and letJ, respectivelyl, be the region
in D bounded byJ and the geodesic arc connectisf ande'%. Now, if

|ou(0)] < Zu(0), then, in a manner completely analogous to the argument in 2.1,
one deduces that

|ou@)] > //?R%_d(d+ﬁ)+ //?R%_d(d+ﬁ)
i °3
2aram-ta-@ran)

(;Jrl) @+p)M -2
g €

Now, for |z| > ¢ one has that

Y
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(1-12) < log i < 5 (1= 7).

NI =

so that 1
&+ 8] < u©) < Zlla+ 5.

and, consequently,

G+ < e

We conclude finally that itx = 0 on D(0, €) and [0u(0)| < Zu(0) then

@+5Q) > *U(O)

425_

2.3 Bounds on hyperbolic derivative for bounded holomorphic functions

Let f be a function holomorphic in the unit didk andf (D) C D. The Riesz
decomposition of the positive superharmonic function — log|f|:

u(z)://G(z,a)da(a)+/P(z,ei9)dﬂ(ei9)
D T

is given by

_ 1
P DI = T

7€ Z(f)

where Z(f) denotes the set of zeros bf the radial boundary value df at e/
is denoted byf (€'?), (which exists fora.e. é°) ando is some positive singular
measure ordD.

Leta=1 > (1-z/%)d,, and denote by;; the measurgy = &+ 3 (see

2eZ(f)

[1]). Also let us denotel, = ¢,(J) andi, = o, () (see 2.1 and 2.2).

If we apply the results of Sect. 2.2 to the case at hand and express the result
in a Mobius invariant form as in Sect. 2.1 we obtain:

Lemma 2.5. With the notations above, if for each & D, we lete(a) =

igf(f) - Za‘, then for every a€ D we have
ze
f'(a)] 1 2
(2.4) =
If ()| Ioglf(—l‘,ﬂ)| c@1-1al]?

and

; @)l (@) 3 2 1 2
(25) fif < then s (Ja) > Be(a)log Q- a9

f@llog 1L, = 1—jap "ot @l

where B is an absolute constant.



Boundary behaviour of inner functions and holomorphic mappings 435

2.4 Sharp form of Lemma 2.5, Equation (2.5)

Let f be holomorphic inD with f(D) C D, and leta € D then

1—aBD+IO 1
a—b @)

wherew is the positive functionu(x) = senhx — x, x > 0.

To see this we may assume tlaat 0, andf (0) # 0 and writef as the product
f =B - ¢ whereB is a Blaschke product formed with the zerosfofandg is
a zero-free holomorphic function infd. The inequality follows from observing
that % = % + %, calculating the first summand explicitly, estimating the
second summand by means of Lemma 2.1 and applying the triangle inequality.
The inequality (2.6) is sharp.

Observe that ifx < log? thenw(x) < (1 —1)x, and also thatf (0)| <
[Ibe z¢) Ibl; then deduce (2.4) as a corollary of (2.6).

Consider, fora € (0,1), € € (0, 1), the class7, . of functions holomorphic
in D with f(D) c D, f(0) =« and with no zeros iD(0, ).

Let m be the non negative integer such th&t! < o < ™ then taking into
account the elementary Lemma 2.6 below one readily sees that

(26) (1—[aP)f'(@)| < 2If ()| ( Z w (Iog

beZ(f)

£/(0)
Su
o [FO)]

1
f(0)

< 2muw(log %) + 2w(log %) +2log

where§ is such that™é = o = |f(0)|. The bound is actually attained by the

functionf (z) = (£2) (Z=)™. And therefore

oup MO (1) (22 2)
te.. [F(O) £ a  em

This is a result of Royden, [13]. The original proof of Royden is also elementary,
but based on a certain recursive scheme.

Lemma 2.6. Let w be a positive increasing convex function definedOino),
with w(0) = 0. Then given A> 0, and B> 0 one has

N N
sup > w(x): 0<x <A, ) x <B,NeN}

j=1 j=1

(3]s (-4 [5])
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3 Proof of Theorem 3
3.1

The proof of Theorem 3 is based on the following observation. Assume that
f omits the origin and another poiit € D. Wheneverf (z) is close tob, the
hyperbolic derivative off at z must be small and by Lemma 2.4, it follows
that us (J;) > B Iogl—tl,l|Jz|. Consider subarcg, of J, such that“lfJ(nJl”) is big. An
elementary estimate, see Sect. 2.1, shows|fi{a},)| is small, that is, close to
the origin, wherez;, is the point in the unit disc satisfying

In

Now one can repeat the argument interchanging the roles of ®.a8d, by in-
duction one gets a Cantor type set and evaluates its dimension using the following
result (see [11, p. 226]) due to Hungerford and Makarov. This we describe now.

Lemma C. Let0 < ¢ < C < 1 be fixed constants. Let.E= |, J{, where
{3®: n=12,...} are pairwise disjoint arcs of the unit circle with the following
properties:

(3.1) Exvi1 CE, k=1,2,...

(3.2) 138D < 2300 if g* D < g

(3.3) > P = cpd
RIC

Then . logC

(3.4) ohm((k] E)>1-— ogs

We shall also need the following direct generalization of the lemma above.

Lemma D. Let | be an interval. Assume that we are given two sequences of
positive real numbergM; };and {4; }; satisfying M € (0, 1) andlimj_,od; = 0,
and also a fixed constant 6,< ¢ < 1.

Then there exists a sequence of positive intedgils, with lim;_, . tj = +oo,
which depends only on the sequené® }, {; } and the constant c, such that
anyset E constructed as beldwas dimensior.:

dimE) = 1.

We now describe the rules for tt@nstruction of the sets .BWe need first a
notation to denote a certain procedure to associate to an intér¢ahd param-
etersd andt) a collection of disjoint subintervals. It resemblesteps of the
construction of a regular Cantor set, but it is much more flexible.

Consider an intervaH, a positive integet and a positive real numbe.
The starting generation,“?)generation, consists only of the intentdl The nth
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generation consists of subintervals of each of the interdatsf the previous
generation, then(— 1)th generation. The subintervalg) }; of J must satisfy
only the following two conditions:

PN N

|
|9 < ]3|, for each

We stop at the generatian the collection of the subintervals ¢f of that
generation is denoted by (H, 4, 1).

The construction of the admissible subgetef | proceeds also in a sequence
of steps.

— (1) First, one chooses any finite collection of disjoint subinter\ﬂﬁlwf I

satisfying
D I = Ml
j

Then, to eachJjl one assigns a collection of subintervaf‘xé(le, 01, t1).
This concludes the first step. The union of those intervals obtained in this
way is denoted by;.

— (2) Once the intervals ik, have been obtained the intervals of the next step
are obtained as follows. First, for any of the intervilsn E, one chooses a
collection of subintervals; satisfying

D> 1= Maall].
j
Then, to each of thes¥ one assigns a collection of subinterva#(J;’, dn+1,

tn+1)-

This gives the intervals of the + 1 step, whose union we denote By;;.
Clearly,En+1 C En. The setE is

E =MhEn

It should be remarked that a naive extension of Lemma C without; the
does not hold. It is easy to provide examples.

3.2

Let J be an arc of the unit circle. Far = 1,2, .. ., consider the collectiorZ,
of the 2" disjoint subarcs ofl of length 27"|J|. A dyadic subarcof J is an
arc belonging taz, for somen. We will use the following elementary covering
lemma.
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Lemma 3.1LetJ be an arc of the unit circle. L§t, } be pairwise disjoint dyadic
subarcs of J. Assume
> 1% =cl
k

Then there exists a subfamify\} of {J} satisfying

C
Z|Wk\ > §|‘J|
k

and

C
Z | > E|L|

JcCL
if L is a dyadic subarc of J containing somg W

Proof.Let. 2 be the set of maximal dyadic subatcsf J satisfying the following
properties:

1. L contains someé.

2. % 13 < SIL.
Consider.”? = {J : J C L forsome Le .4} and{Wk} = {J : Kk & .#}.

Then c c
dDkl< S D ISl
2 2
ke Le. ¢
Hence, c
> I = 3]
If L is a dyadic subarc aJ containing somé\, thenL ¢ .-4. So,
C
> 1= SIL.
JcCL
3.3

The main auxiliary result in the proof of Theorem 3 is the following
Lemma 3.2.Let f be an inner function omitting the valu@sand b, whered <

|b| < 1/100. There exist two positive constants &, 0 < ¢; < 1, independent
of f and b, such that whenever

1
f(z) —b| < =lb
f(2)— bl < 5b]
there exists a collectiofJ, } of disjoint subarcs of Jsuch that

(3.5) Cald| < D 13l
n
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1
(36) |\]n|<W |‘]Z|7 n=1,2,...
[b|

n=12...

Proof.In this proofC denotes several positive absolute constants. We may assume
that 0< b < 1.

Sincef omits 0 andb, f = exp(—F) whereF is an inner function into the
right half plane omitting the values Idg *+2n7i, n € Z. Let T be the conformal
mapping from the right half planel onto the unit disd given by

_w—logbh™?
T(w)= w +logh—1

ThenG =T o F is an inner function omitting the values

nmi

— -1 Y —
b, =T(logh™ +2n7i) = —Iog|b\—1 paperl neZz.
Let G-—b
G, = =2 n = .
n 1_ bnG7 Mn MGH

SinceT preserves the hyperbolic metric, one has

tanh &(G(2), 0) tanh ¢ (F (z),logb~?)

F(@)— logb~1|
3.8 - =
(3:8) [Tog b
C
< =
[Tog ]

(Recall thatd,, denotes the Poincardistance of the domair2.) Fix m =
{(Iog |b\*1)1/2J and observe that

300g]b|)7/% < |y < (g o] 2.
Using Lemma 2.1 and (3.8) one deduces

1-1zP)Gh@)| < 21— [zP)IG' @)

1
< 4G(2)|lo
< 4G(2) 96
1 1
< =|Gm(2)|log —— .
Hence by Lemma 2.4
pim(Jz) 1
> Bloglog—.
N bl

Now, let {J,} be the maximal dyadic subarcs &f satisfying
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Hm(In)
9|

1 1
> 16logm (> 8Iog|ogb> .

It follows from the maximality that

m(In)
[Jn|

1
|bm

< 32log

and thus
1 1

Z‘Jn‘>§2 [10g [oml| sm(Jz) > ClJ|,

which is (3.5). Also, lez™=z; , then
1 1 |z)? .
| [ i el N i0
@ g
1

#m(Jn)
C
- 9] |b]

> C loglog

and a calculation, similar to (3.8), gives (3.7).

Let G = exp(~H), whereH is an inner function into the right half plane
omitting the set of values” = {logb; !+ 2k=i : n,k € Z}.

A calculation shows that

—log

1
log

sup |bn|

n>0

‘bn+1‘
is bounded by an absolute constant independebt aft

Q={wec:0<%(w)<glog|é|} \ L.

A simple estimate of the density of the Poineanetric of(? gives thatifp,q € {2
then

de(p,q) > CIR(p) — R(a)|

Since
1 1
log (2 log b|> < RH (2)

1 1\ ¢
RH((Z) —log—| < C (Iog ) ,
‘ |bm| |b]
one deduces that
C log Iog“[l,| < IRH (@) — RH@)| < do(z,2)

and (3.6) follows.
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3.4 Proof of Theorem 3

We shall distinguish two cases. Recall that

d: (0) = inf{d(z,0):z € @(f) \ {O}}.
3.4.1.First we assume that (0) > 0. Letb, 0 < |b|] < 1/100, another value
omitted byf (thus we are takingn, such that log*" = ;5;). Considerz € D
such that

(39) @) bl < 5ol

andJ®W = J,. Apply Lemma 3.2 to get subarch satisfying (3.5), (3.6), (3.7)
and consider the subcollectidd(?} given by Lemma 3.1 which still satisfies
the conditions above (with; replaced byc;/2) and also

(3.10) > 138 > 27 L
JPcL
for any dyadic art. of J® containing somé,?. Now using (3.7) instead of (3.9)

one can repeat the process in ed¢h. So by induction, one get& = Mk Ex,
Ex = U, J¥ satisfying (3.1), (3.2), (3.3) of Lemma C with the constants

C =21, e = (log|b| 1)~

So, dimE > 1 — ﬁ whereM is an absolute constant.
|b]

Let ¢ € E andL be a dyadic subarc af, which contains{. Choosem such
that
I cLc I
for somek(m), andk(m — 1), and one has

D> [l =27l

n,JmcL
and
If(z5,) — b| < [b|(log[b|~4)~%.

So, a harmonic measure estimate in the donBain, D (z;,, 3(1 — |z,[)) shows
that

1 1
log—— > Klog— ,
9@y =" 9]

whereK is an absolute constant. Hence

lim sup|f (ré&)| < |b[* .
r—1
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3.4.2. Assume nowd; (0) = 0. In other wordsf omits a sequence of points,
tending to the origin. One can assume thatends to O as fast as necessary.
We shall use Lemma D with the following specifications for the parameters

~_ Blog|b 4" i = o
T

also .
8 = (log by |71

and
cC=C

wherecy, ¢, are as in Lemma 3.2. With these data Lemma D provides us with a
sequence of positive integetis

Letf = expF),
by
T 1-byf’

and ux = g, be the measure correspondingfto
Considerz € D such that

fi k=12,...

(3.11) [f1(2)] < |ba|(log|by| )~

andJ® =J,. As in the proof of Lemma 3.2 one has

/ 1 !
(1— |z|2)|f2(2)| < E|f2(2)‘ Iogm

and Lemma 2.4 gives
p2(d )
3]

Now chooseJ, the maximal dyadic subarcs f? satisfying

12(Jk)
k|

> 8log|by|~t.

As in the proof of Lemma 3.2, the maximality implies

p2(J)

< 16log|by|~*
O] g|bz|

and

B log|by ™'
;UH > 16 fogby| 9%

Moreover, forw =z, , one has that
1

log—— >2 Iogi
[f2(w))| |ba|
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and |f (w) — bp| < %\bz\. Now, apply in eachly Lemma 3.2t; times to get arcs
{J} satisfying

B cZlog|by|t
. > ¢l > 2 B 5@
(3.12) anl = Cf Z|‘]k| =16 Iog|b2|*1 9+
(3.13) 9n| < (log[bp| 1)~ 3@, n=12...
(3.14) If2(z3,)| < |b2|(log |bo|~1) =%, n=12...

Applying Lemma 3.1 one gets a subcollectifif®} satisfying (3.12) with a
half of the constant and such that

B c?log|by|*
> > A= 30
| n| > 32 |Og‘b2‘_l ‘ |7
JnCL

wherelL is any dyadic subarc af'¥ which contains somé(®. So, using (3.14),
a harmonic measure argument gives

1 1
log——— > Clog—
@) =~ 9y

whereC is an absolute constant. Sb(z )| is small.

Now, one can repeat the process using (3.14) instead of (3.11) as starting
point. By induction, one get& = |, J& satisfying the conditions of Lemma
D.

So, dim(, Ex) = 1.

Moreover

1 1
log————~ > Clog—,
@) =~ 9]

whereC is an absolute constant ahdis a dyadic subarc of som&X) which
contains some arc frorB.1. Hence, if¢ € N, Ex, one has

lim f(r§) =0,

4 Complements and remarks
4.1

Our results admit local versions. For instance,

Theorem 2. Let f be an inner function. Let B D be an accumulation point of
'(f) and let | be an arc with”'(f) N1 # () then

dim{f 1 : limf(re'’)=b} =1.
r—1

Here.” (f) denotes the singular sét:belongs to¥”(f) if f can not be extended
to be analytic in a neighborhood ef?.

Observe that ie'? € .7(f), then there exists a sequergee D such that
z, — €% while f(z,) — b; we just have to start the argument of the proof of
Theorem 2 with an appropiat®.
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4.2

One could expect that if instead of a sequence of omitted values we have a
sequence of values which are not taken “too much” then similar results hold,

see e.g. [14]. The following result points in that direction. For a non constant

holomorphic functionf in the unit disk we denote by , the measure irD

given by i p = 321, (=py (1 — |2|?) 5,. The Carleson norm of a measysein

D is denoted b}ﬂuﬁCaﬂeson

Theorem 5.Let f be an inner function which omifs Assume that for a sequence
b, € D with lim,_,, b, = 0 we have

srt]lplluf,bn Icarleson< +o©-

Then
dim{6 € [0, 2x] : lim f(re'%) = 0} = 1.
r—1

4.3

There exists a well known parallelism between “small derivative” and “omitted
values”. Compare, e.g., Theorem 2 with the result of Rohde mentioned in 0.5. A
result combining features of both type of hypothesis is the following.

Theorem 6.Let f be an inner function which omi€ Define

_ ANE 2
)= IimSUID(l |z[)f EZ)\
-1 [F(@)]1og iy
Then
dim{6 € [0,2x] : Iimlf(reie) =0} =1-0(\)
r—

The proofs of Theorems 5 and 6 are obtained by an elaboration of the previous
proofs and are not presented here.

4.4

There is a beautiful refinement of Fatou’s theorem due to Bourgain, [Bb]isif
a bounded holomorphic function i, then

dim{# € [0,27] : V;(0) < +o0} =1,

whereV; (6) is the variation off in the radius ending a'?, i.e.,
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1
Vi () :/O |f’(re'?)|dr .

Walter Hayman has asked if there are refinements of Theorem 1 and 2 along
the lines of Bourgain’s result. In particular, fif andb are as in Theorem 2, is
it true that

dim{¢ € [0, 27] : V;(f) < +oo and Iininf(re”’) =p}=1?
r—

4.5

Our results concern the dimension of the Fatou set, and they are sharp in that
respect. But more precise results are possible. Consider, for instance, the situation
of Theorem 2. Ifb is approximated at a certain given rdig the other points of

©'(f), then some appropiatemeasure of the sgty < [0, 2] : lim,_,1 f (re'?) =

b} should be positive.

Acknowledgementlt is our pleasure to thank Mavi Mélh for many very useful discussions con-
cerning this paper and for her permanent enthusiasm and constant encouragement.

References

1. Bishop, Ch.: Bounded functions in the little Bloch space, Pac. J. M4th(1990), 209-225.
2. Bourgain, J.: On the radial variation of bounded analytic functions, Duke Ma&® 993),
671-682.
3. Collingwood, E.F., Lohwater, A.F.: The Theory of Cluster Sets, Cambridge University Press,
Cambridge 1966.
4. Ferrandez, J.L.: Singularities of Inner Functions, Math.183 (1986), 393—-396.
5. Ferrandez J.L., Mefn, M.V.: Escaping Geodesics of Riemannian Surfaces, submitted for pub-
lication.
6. Ferrandez J.L., Pestana, D.: Radial Behaviour of Holomorphic Mappings, Proc. Amer. Math.
So0c.124(1996), 429-435.
7. Hamilton, D.: Conformal distortion of boundary sets, Trans. Amer. Math. 38(1988), 69-81
8. Makarov, N.G.: Probability methods in the theory of conformal mappings, Leningrad Math. J.
1 (1990), 1-56.
9. Makarov, N.G.: Smooth measures and the law of the iterated logarithm, Math. USS84Izv.
(1990), 455-463.
10. Nevanlinna, R.: Analytic Functions, Springer Verlag, New York, Berlin 1970.
11. Pommerenke, Ch.: Boundary Behaviour of Conformal Mappings, Springer Verlag Berlin, Hei-
delberg, New York 1991.
12. Rohde, S.: On functions in little Bloch space and inner functions, Trans. Amer. Math34c.
(1996), no. 7, 2519-2531.
13. Royden, H.: The zeros of bounded holomorphic functions, Complex Varialfl&87), 283—286
14. Stephenson, K.: Constructions of an inner function in the little Bloch space, Trans. Amer. Math.
Soc.308(1988), no. 2, 713-720.
15. Tsuji, M.: Potential Theory in Modern Function Theory, Chelsea, New York 1959.



