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Let f be a holomorphic function in the unit disk omitting a setA of values of the
complex plane. IfA has positive logarithmic capacity, R. Nevanlinna proved that
f has a radial limit at almost every point of the unit circle. IfA is any infinite set,
we show thatf has a radial limit at every point of a set of Hausdorff dimension
1. A localization technique reduces this result to the following theorem on inner
functions. If I is an inner function omitting a set of valuesB in the unit disk,
then for any accumulation pointb of B in the disk, there exists a set of Hausdorff
dimension 1 of points in the circle whereI has radial limitb.
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0 Introduction and description of results

We are interested in describing the radial boundary values of holomorphic map-
pings f from the unit diskD into a given domainΩ of the complex planeC.

Let us denote byF (f ) the setF (f ) = {θ ∈ [0, 2π] : lim r →1 f (rei θ) exists,
(possibly∞)}. This is the so calledFatou setof f . If Ω is bounded, then a
classical theorem of Fatou asserts the existence of radial boundary valuesa.e.,
or, with the notation above that|F (f )| = 2π. (If A ⊂ [0, 2π] then |A| denotes its
Lebesgue measure.) More generally, if the logarithmic capacity of the comple-
ment ofΩ is not zero, thenf belongs to the Nevanlinna class and in this case
we also have|F (f )| = 2π.

On the other hand, if the complement ofΩ is just a finite set then any
holomorphic covering map fromD onto Ω has a countable Fatou set.
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Mobility Programme of the European Union. The second author is also supported by a grant of
CIRIT, Generalitat de Catalunya.
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The classical results that we have just recalled tell us what the size of the
Fatou set off is in terms of the size of the complement of the range off , Ω,
in two extreme cases: the complement is very large (i.e. of positive capacity) or
very small (i.e. just countable). In this context, it remains to understand what
happens in the intermediate situation when the complement is an infinite set but
of zero logarithmic capacity. It turns out, and this is the main result of this paper,
that there is no scale of possibilities: the Fatou set in this intermediate situation
is always of Hausdorff dimension 1.

Theorem 1. Let Ω be a hyperbolic domain inC, let f be a holomorphic function
from D into Ω. Then

(a) If cap(C \ Ω) > 0, then|F (f )| = 2π.
(b) If cap(C \ Ω) = 0 and ](C \ Ω) = +∞ thendim(F (f )) = 1.
(c) If ](C \ Ω) < +∞, then F(f ) is at least countable.

Here and hereafter, “cap” means logarithmic capacity, “dim” means Haus-
dorff dimension, and “#” means number of points. Also, a planar domainΩ is
termedhyperbolic if its complement inC contains at least 2 points, or in other
terms if it is holomorphically and regularly covered by the unit disk.

As we mentioned above (a) is classical (due to Nevanlinna, see [10, p. 180]),
(c) requires a little argument which we shall give later on, and, finally, (b) is
the main result of this paper. Also, in the remaining cases whereΩ is the whole
complex plane or the complement ofΩ is a single point, it may happenF (f ) = ∅
(see [3, p. 44]).

We should remark that since the holomorphic functions we are dealing with
omit at least two points inC, they are normal (in the Lehto-Virtanen sense) and,
consequently, if a radial limit exists at a pointei θ then the angular limit also
exists atei θ.

The conditions onΩ, although given in terms of the complement ofΩ in C,
have intrinsic meaning; recall that cap(C \ Ω) > 0 means thatΩ has Green’s
function, or, equivalently that Brownian motion onΩ is transient, while](C \
Ω) < +∞ means thatΩ has finite Poincaŕe area.

The result above is sharp, in the following sense: given any infinite closed
set E of zero capacity, there is a holomorphic functiong from D onto C \ E
(namely, a holomorphic covering map) such that|F (g)| = 0 (see [10, p. 211])
and, of course, dim(F (g)) = 1, while, similarly, the covering maps fromD onto
the plane with finitely many points removed have radial boundary values for,
exactly, a countable set ofθ’s. The corresponding results for covering maps, in
the general framework of Riemann surfaces, are proved in [5].

0.1

Let f be a holomorphic function fromD into Ω and let g be a holomorphic
covering map fromD onto Ω. Then we can factorizef = g ◦ b where b is a
holomorphic mapping fromD into D. Recall that a holomorphic mappingb from
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D into D is calledinner if almost all of its radial boundary values have modulus
one. If the functionb above is not inner then, no matter whatΩ is, one has that
|F (f )| > 0. Thus in the context of this paper only the caseb inner is interesting.

One possible approach to the proof of Theorem 1 consists simply in pulling
back the known boundary behaviour ofg throughb to f . We shall discuss this
approach in Sect. 1.1.

0.2

But inner functions could enter into the picture in another way, namely, through
localization.

Let a ∈ ∂Ω, and ε > 0, and consider a connected componentG of {z ∈
D : |f (z) − a| < ε}. G is simply connected. Letϕ be a Riemann mapping from
D onto G, then the mappingh = (1/ε){f ◦ ϕ(z) − a} allows us to study the
behaviour off neara, and in the case of interesth is an inner function.

By means of this simple and well known idea the proof of Theorem 1 can be
reduced to related results on the geometry of inner functions. We shall discuss
this approach in Sect. 1.2.

0.3 The geometry of inner functions

Let f be an inner function and denote byO (f ) the omitted set off , i.e., O (f ) =
D\f (D). Frostman showed that always cap(O (f )) = 0, while if E is any relatively
closed subset ofD of zero capacity, any holomorphic covering map fromD onto
D \ E is an inner function, (see,e.g., [3 p. 37]).

Let E (f ) denote the exceptional set off , i.e., the set ofei θ ’s such thatf
does not have radial limit of modulus 1 atei θ. Of course,|E (f )| = 0. The sizes
of the setsE (f ) and O (f ) are closely related. This fact was first pointed out
by Noshiro and Seidel (see,e.g., [15, p. 328]) by showing that ifO (f ) contains
two points then cap(E (f )) > 0. The following known theorem describes that
connection in sharp terms. We denote byd the Poincaŕe distance inD.

Theorem A. If O (f ) has at least two points then

dim(E (f )) > 1/2.

In fact, if d(f ) denotes

d(f ) = inf{d(a, b), a, b ∈ O (f ), a /= b}
then

dim(E (f )) ≥ α(d(f ))

whereα is an (absolute) decreasing function defined in[0,∞), satisfying lim
t→+∞ α(t)

= 1/2, α(0) = 1.
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The functionα is only implicitly defined, but the result is sharp, (see [4] and
[6]). Observe that ifO (f ) contains two points then dim(E (f )) > 1

2, and also that

if f = exp
(
− 1+z

1−z

)
, thenO (f ) = {0} while E (f ) = {1}.

Here we complement Theorem A in a substantial way. We have

Theorem 2. Let f be inner and let b∈ D be an accumulation point ofO (f ) then

dim{θ ∈ [0, 2π] : lim
r →1

f (rei θ) = b} = 1 .

This is a corollary of the following quantitative version of Theorem A.

Theorem 3. Let f be inner and let b∈ O (f ). Let

df (b) = inf{d(z, b) : z ∈ O (f ) \ {b}} .

Then

dim

{
θ ∈ [0, 2π] : lim sup

r →1
d(f (rei θ), b) < df (b)K

}
≥ 1 − M

log log 1
df (b)

if df (b) ≤ m. The quantities M, K and m are absolute constants.

0.4

It will be convenient to express some of our results in terms of a more general
notion of inner function which we now describe.

Definition. Given a planar domainΩ we say that a holomorphic function f from
D into Ω is inner intoΩ if

{ei θ ∈ ∂D : lim
r →1

f (rei θ) exists and belongs toΩ}

has measure zero.

The functions which are inner intoD are the usual inner functions. IfF is
a holomorphic covering map fromD onto a domainΩ then F is inner intoΩ,
and, as a matter of fact, iff is any holomorphic function fromD into Ω which
factorizes asf = F ◦ b, thenf is inner intoΩ if and only if b is inner intoD.

The proof of Theorem 1, case (b), contains the following more precise ver-
sion.

Theorem 4. Let Ω be a planar domain and let f be inner intoΩ and a ∈ ∂Ω.
Then if a is not isolated in∂Ω, but for someε > 0, cap(D(a, ε) ∩ ∂Ω) = 0 then

dim({θ ∈ [0, 2π] : lim
r →1

f (rei θ) = a}) = 1 .

Of course, an isolated point of∂Ω may “attract” just countably manyei θ ’s, while
if cap (D(a, ε) ∩ ∂D) > 0 for all ε > 0 then it could happen thata attracts just
oneθ, (consider,e.g., a Riemann mapping onto a Jordan domain).
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0.5

Holomorphic mappings between hyperbolic planar domains are Lipschitz (with
constant 1) with respect to the respective Poincaré metrics. The holomorphic
functions from D into C which are Lipschitz whenD is endowed with the
Poincaŕe metric andC with its euclidean metric are the Bloch functions. For
those functions there are related results due to Makarov and Rohde, see [8] and
[12]. For instance, Rohde has shown that iff is inner and belongs to the “lit-
tle” Bloch space,B0, i.e., lim|z|→1 |f ′(z)|(1 − |z|2) = 0, then for everya ∈ D,
dim{θ ∈ [0, 2π] : lim r →1 f (rei θ) = a} = 1. There are also closely related results
concerning the “bounded”, as opposed to “divergent”, boundary behaviour. For
those we refer the reader to [6] and the references therein.

There are several results where, from geometric assumptions on the range of
a holomorphic function, one deduces information about its boundary behaviour.
We would like to recall here a classical result of Beurling, which we shall use
later on, namely: iff is a function holomorphic in the disk whose Riemann
surface has finite area thenf has radial limits except at most in a set of capacity
zero.

0.6

The plan of the paper is as follows. Theorems 1 and 4 are proved in Sect. 1, and
Theorem 3 is proved in Sect. 3. Section 2 develops some machinery on hyperbolic
derivatives which is needed in the proof of Theorem 3. Finally, Sect. 4 discusses
some complements and some questions.

1 Proof of Theorem 1

We shall be giving two proofs of Theorem 1. The first one, which we only sketch,
is based on its geometric counterpart, Theorem B, which is proved in [5], and
a subordination argument, from [6]. The second proof shows, by means of the
localization technique which we have described in Sect. 0.2, that Theorem 1 is
a corollary of Theorem 2. This second proof depends only on the results of this
paper. Inner functions enter into both arguments, albeit in different ways.

1.1 First proof

Let Ω be a hyperbolic planar domain, and letF be a holomorphic covering map
from D onto Ω. Assume that the complement ofΩ is an infinite set of zero
capacity. Then

Theorem B, [5]. With the notations above, givenε > 0 there exists a closed
subset E of∂D, with Hausdorff dimension≥ 1− ε, and such that if ei θ ∈ E then
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lim
r →1

dΩ(F (rei θ), F (0)) = +∞ ,

uniformly in r, or, equivalently,

lim
r →1

dist(F (rei θ), ∂Ω) = 0 ,

uniformly in r.

Here and hereafter dΩ denotes hyperbolic distance inΩ, anddist means spherical
distance.

Let f be a holomorphic mapping fromD into Ω. We may factorizef as
f = F ◦ b whereb is a holomorphic mapping fromD into D.

Now, if b is not inner, then on a subsetA of positive measure of∂D we have
that lim

r →1
b(rei θ) exists and belongs toD. Consequently,|F (f )| > 0, and we are

done.
If b is inner, then we may use the argument of (6, proof of Theorem 2), to

transfer the above result on the uniform boundary behaviour ofF to the following
result on the boundary behaviour off :

dim{θ ∈ [0, 2π] : lim
r →1

dist(f (rei θ), ∂Ω) = 0} = 1 .

Since cap (∂Ω) = 0,∂Ω is a totally disconnected set, and so if lim
r →1

dist(f (rei θ), ∂Ω)

= 0 it must be the case that lim
r →1

f (rei θ) exists, allowing∞ as a limiting value.

1.2 Second proof

Let a be an accumulation point of∂Ω, with no loss of generality we assume
that a = 0. Since cap (∂Ω) = 0 we may findε > 0, such that{w ∈ C : |w| = ε}
separates∂Ω; of course, cap (D(0, ε) \ Ω) = 0. We shall assume, thatε = 1. Let
z0 be a point ofD with |f (z0)| < 1. (If no suchz0 exists then 1/f is a bounded
holomorphic function, and Fatou’s theorem finishes the argument). LetG be the
component of{z ∈ D : |f (z)| < 1} which containsz0. The domainG is simply
connected, since 0/∈ f (D). Also, ∂G ∩ ∂D /= ∅ since otherwisef would assume
every value in{w ∈ C : |w| < 1}. Let ϕ be a conformal map fromD into G
with ϕ(0) = z0, and consider the functiong = f ◦ ϕ, holomorphic fromD into D.

If g were not inner, there would exist a subsetE of ∂D of positive length
such that for everyei θ ∈ E, lim

r →1
g(rei θ) exists and belongs toD, andϕ(ei θ) =

lim
r →1

ϕ(rei θ) exists. Now, forei θ ∈ E, one hasϕ(ei θ) ∈ ∂G∩∂D, since, otherwise,

lim
r →1

|g(rei θ)| = 1. Let us denote byϕ(E) the setϕ(E) = {ϕ(ei θ) : ei θ ∈ E}. By

Löwner’s lemma,|ϕ(E)| > 0. Now, if ei φ = ϕ(ei θ) then, lim
r →1

f (ϕ(rei θ)) exists,

and by the Lehto-Virtanen extension of Lindelöf’s theorem to normal functions
(f is normal since the complement ofΩ contains at least two points), we deduce
that the radial limit off at ei φ also exists. Consequently,f has radial limits in
the set ofϕ(E) of positive length, and we would be done.
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It remains to consider the case wheng is inner. We now apply Theorem 2 to
g to conclude that there exists a subsetE of ∂D of Hausdorff dimension 1, such
that if ei θ ∈ E then

0 = lim
r →1

g(rei θ) = lim
r →1

f (ϕ(rei θ)) ;

we may also assume that ifei θ ∈ E, lim
r →1

ϕ(rei θ) = ϕ(ei θ) exists (since by Beurl-

ing’s theorem (see Sect. 0.5) this fails to occur at most in a set of capacity zero,
and hence of zero dimension). Now, ifei θ ∈ E, thenϕ(ei θ) ∈ ∂D, since other-
wise f would vanish atϕ(ei θ). We may apply the Hamilton-Makarov extension
of Löwner’s lemma [7], [9], to deduce thatϕ(E) = {ϕ(ei θ) : ei θ ∈ E} has di-
mension 1. And we may argue as in the previous case (g not inner) to conclude
that f has radial limit zero in a set,ϕ(E), of Hausdorff dimension 1.

1.3

To complete the proof of Theorem 1 we have to consider the case whenΩ =
C\{0, 1} is just a finite set, (with at least 3 points, including∞ as a possibility).

We follow the lines of the first proof above. Consider a tesselation ofD by
hyperbolic triangles,T ’s, with vertices at∞ = ∂D; each triangle projects under
the covering mapF onto a half plane and at the vertices of these trianglesF has
a radial limit: 0, 1, or∞. Factorize the givenf asF ◦b, whereb is inner (if b is
not inner, we are done). We simply have to observe that each of the connected
components of eachb−1(T ) is a trilateral.

Lemma 1.1. Let {Tj }n
j =1 be disjoint trilaterals inD with labeled vertices a1(j ),

a2(j ), a3(j ) ∈ ∂D and such that if1 ≤ j , j ′ ≤ n, j /= j ′, and if 1 ≤ i , i ′ ≤ 3,
i /= i ′ then ai (j ) /= ai ′ (j ′). Then

]




n⋃
j =1

3⋃
i =1

{ai (j )}

 ≥ n + 2 .

We do not assume the trilaterals to be Jordan domains but we assume the vertices
to be accesible. To be precise:

Definition. A trilateral is a simply conected domain with three accesible bound-
ary points, distinct and labeled. These boundary points are its vertices.

1.4 Proof of Theorem 4

As a matter of fact, this is what is actually proved above in the so called second
proof of Theorem 1.
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2 Bounds on hyperbolic derivatives

2.1 Nonvanishing bounded holomorphic functions

If Ω is a hyperbolic planar domain, we shall denote byλΩ(w), w ∈ Ω, the density
of the Poincaŕe metric ofΩ. That is to say, ifF : D → Ω is a holomorphic
covering map ontoΩ then

λΩ(F (z))|F ′(z)| =
2

1 − |z|2 , for eachz ∈ D .

For arbitrary holomorphic mappingsf between hyperbolic domainsΩ1 andΩ2,
Schwarz’s lemma gives

λΩ2(f (z))|f ′(z)| ≤ λΩ1(z) .

The particular caseΩ1 = D, Ω2 = D \ {0} yields the following useful fact:

Lemma 2.1. If f is a holomorphic function inD with 0 < |f (z)| < 1, for every
z ∈ D then

(2.1)
|f ′(z)|
|f (z)| ≤ 2

1 − |z|2 log
1

|f (z)| for each z∈ D .

For a functionf , holomorphic inD with f (D) ⊂ D \ {0}, we may write

log
1

|f (z)| = P(µf )(z) =
∫ 2π

0

1 − |z|2
|ei θ − z|2 dµf (ei θ)

for some positive meassureµf on ∂D. It is clear that (2.1) is equivalent to the
trivial estimate ∣∣∣∣∣∣

2π∫
0

ei θdµf (θ)

∣∣∣∣∣∣ ≤ ‖µf ‖ = log
1

|f (0)| .

Of course whenµf is a positive multiple of a point mass,i.e., when f is a

covering map ofD\{0}, we have equality. On the other hand, if
∣∣∣∫ 2π

0 ei θdµf (θ)
∣∣∣

differs much from‖µf ‖ thenf should be far from being a covering map,i.e., µf

should be far from being a point mass. To quantify this, the following elementary
lemma shall be useful.

Lemma 2.2. Let α, β be related by0 < α ≤ cosπβ, 0 < β ≤ 1/2. Let µ be a
positive measure in∂D, with total mass‖µ‖ = 1 and∣∣∣∣∣∣

2π∫
0

ei θdµ(θ)

∣∣∣∣∣∣ ≤ α .

For every interval I with|I |
2π ≤ β one has

µ(I ) ≤ σ = σ(α, β) =
1 + α

1 + cosπβ
< 1 .
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Proof. We may assume that the intervalI is centered at−1. Then

−α ≤
2π∫

0

cosθ dµ(θ) =
∫
I

cosθ dµ(θ) +
∫

∂D\I

cosθ dµ(θ)

≤ −(cosπβ)µ(I ) + µ(∂D \ I )

= −(1 + cosπβ)µ(I ) + 1 .

In terms of holomorphic functions, and with the same notation, the lemma
above reads.

Lemma 2.3. Let f : D → D \ {0} be a holomorphic function, suppose that

|f ′(0)|
|f (0)| log 1

|f (0)|
≤ 2α ,

where,0 ≤ α ≤ 1. Then for every interval I⊂ ∂D, andβ, 0 ≤ β ≤ 1
2,

|I |
2π

< β =⇒ µf (I )
‖µf ‖ < σ(α, β) .

Proof. Let g be the function defined byg(z) =

2π∫
0

ei θ + z
ei θ − z

dµf (θ), so that<g =

Pµf . We have

(2.2) <g(0) = ‖µf ‖ = log
1

|f (0)|
and

(2.3) − f ′(0)
f (0)

= g′(0) = 2

2π∫
0

e−i θdµf (θ).

Therefore, ∣∣∣∣∣∣
2π∫

0

e−i θdµf (θ)

∣∣∣∣∣∣ ≤ α‖µf ‖

and we apply Lemma 2.2.

For the invariant formulation of Lemma 2.3 we need the following definition;
we are fixing the parametersα, β of the preceding discussion to beα = 1/4,
β = 1/4. Let J = {ei θ : |θ| < 3

4π}. For a ∈ D, let ϕa ∈ Möb(D) be defined by

ϕa(z) =
a
|a|

(
z + |a|
1 + z|a|

)
.

Observe that
ϕa(0) = a , ϕa(1) =

a
|a| , ϕa(−1) = − a

|a| .

DefineJa = ϕa(J ). Observe that|Ja| � 1 − |a|.
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Lemma 2.4. Let f : D → D \ {0} be holomorphic. Assume that

|f ′(z)|
|f (z)| log 1

|f (z)|
(1 − |z|2) ≤ 1

2
, for some z∈ D ,

then
µf (Jz)
|Jz| > B log

1
|f (z)| ,

where B is an absolute constant.

Proof. Let f̃ = f ◦ ϕz. Then

|f̃ ′(0)|
|f̃ (0)| log 1

|f̃ (0)|
=

|f ′(z)|(1 − |z|2)

|f (z)| log 1
|f (z)|

≤ 2α .

Also, ‖µf̃ ‖ = log 1
|f (z)| .

Moreover fromPµf̃
= Pµf ◦ ϕz, we deduce that for a Borel set,A, A ⊂ ∂D,

µf̃ (A) =
∫

ϕz(A)
|(ϕ−1

z )′(ei θ)| dµf .

In particular, if A = J then

µf̃ (J ) =
∫

Jz

|(ϕ−1
z )′(ei θ)| dµf

but onJz, |(ϕ−1
z )′| ≤ C 1

1−|z| , where consequently

µf̃ (J ) ≤ C
µf (Jz)
1 − |z| .

But, by Lemma 2.3 withα = 1/4, β = 1/4,

µf̃ (J )

‖µf̃ ‖
≥ 1 − σ0

whereσ0 is theσ corresponding toα, β above and therefore

µf (Jz)
1 − |z| ≥ C(1 − σ0)‖µf̃ ‖

= C(1 − σ0) log
1

|f (z)|
= B log

1
|f (z)|

with B = C(1 − σ0).
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2.2 Bounds for the Riesz mass of positive superharmonic functions

Although Lemma 2.4 is what we shall need and use in the following, now that
we are at it, it is worthwhile to complete the above analysis.

Let u be a positive superharmonic function in the unit diskD. By Riesz’
theorem we may expressu as:

u(z) =
∫∫

D

G(z, w) dα(w) +
∫
∂D

P(z, ei θ) dβ(ei θ)

whereG(z, w) is the Green’s function of the unit disk,G(z, w) = − log
∣∣∣ z−w

1−zw̄

∣∣∣,
P(z, ei θ) is the Poisson kernelP(z, ei θ) = 1−|z|2

|z−ei θ|2 , and α and β are positive
measures inD and in∂D, respectively. Now

∂u(0) =
1
2

∫∫
D

1 − |a|2
a

dα(a) +
∫
∂D

e−i θ dβ(ei θ)

and

u(0) =
∫∫

D

log
1
|a| dα(a) +

∫
∂D

dβ(ei θ) .

If we write dα̃ = 1
2(1 − |a|2)dα then

∂u(0) =
∫∫

D∪∂D

1
z

d(α̃ + β) .

Observe that ifα(= ∆u) ≡ 0 in D(0, ε) then

|∂u(0)| ≤ 1
ε

u(0) .

Assume that‖α̃ + β‖ = 1, and that ˜α ≡ 0 in D(0, ε). Let J and I be the
arcsJ = {ei θ : |θ| ≤ π

6 }, I = ∂D \ J , and let J̃ , respectivelyĨ , be the region
in D bounded byJ and the geodesic arc connectingei π

6 and e−i π
6 . Now, if

|∂u(0)| ≤ ε
4u(0), then, in a manner completely analogous to the argument in 2.1,

one deduces that

|∂u(0)| ≥
∫∫

Ĩ

<1
z̄

d(α̃ + β) +
∫∫

J̃

<1
z̄

d(α̃ + β)

≥ 1
2

(α̃ + β)(Ĩ ) − 1
ε

(
1 − (α̃ + β)(Ĩ )

)

=

(
1
2

+
1
ε

)
(α̃ + β)(Ĩ ) − 1

ε
.

Now, for |z| ≥ ε one has that
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1
2

(
1 − |z|2) ≤ log

1
|z| ≤ 1

2ε

(
1 − |z|2) ,

so that

‖α̃ + β‖ ≤ u(0) ≤ 1
ε
‖α̃ + β‖ ,

and, consequently,

(α̃ + β)(Ĩ ) ≤ 4 + ε

4 + 2ε
.

We conclude finally that ifα ≡ 0 on D(0, ε) and |∂u(0)| ≤ ε
4u(0) then

(α̃ + β)(J̃ ) >
ε

4 + 2ε
≥ ε2

6
u(0) .

2.3 Bounds on hyperbolic derivative for bounded holomorphic functions

Let f be a function holomorphic in the unit diskD and f (D) ⊂ D. The Riesz
decomposition of the positive superharmonic functionu = − log |f |:

u(z) =
∫∫

D

G(z, a) dα(a) +
∫
T

P(z, ei θ) dβ(ei θ)

is given by

α =
∑

z∈Z(f )

δz ; β =
1

2π
log

1
|f (ei θ)| + σ

whereZ(f ) denotes the set of zeros off , the radial boundary value off at ei θ

is denoted byf (ei θ), (which exists fora.e. ei θ) andσ is some positive singular
measure on∂D.

Let α̃ = 1
2

∑
z∈Z(f )

(1 − |z|2)δz, and denote byµf the measureµf = α̃ + β (see

[1]). Also let us denotẽJz = ϕz(J̃ ) and Ĩz = ϕz(Ĩ ) (see 2.1 and 2.2).
If we apply the results of Sect. 2.2 to the case at hand and express the result

in a Möbius invariant form as in Sect. 2.1 we obtain:

Lemma 2.5. With the notations above, if for each a∈ D, we let ε(a) =

inf
z∈Z(f )

∣∣∣ z−a
1−zā

∣∣∣, then for every a∈ D we have

(2.4)
|f ′(a)|

|f (a)| log 1
|f (a)|

≤ 1
ε(a)

2
1 − |a|2

and

(2.5) if
|f ′(a)|

|f (a)| log 1
|f (a)|

≤ ε(a)
1 − |a|2 thenµf (J̃a) ≥ Bε(a)2 log

1
|f (a)| (1 − |a|2)

where B is an absolute constant.
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2.4 Sharp form of Lemma 2.5, Equation (2.5)

Let f be holomorphic inD with f (D) ⊂ D, and leta ∈ D then

(2.6) (1− |a|2)|f ′(a)| ≤ 2|f (a)|

 ∑

b∈Z(f )

ω

(
log

∣∣∣∣1 − ab̄
a − b

∣∣∣∣
)

+ log
1

|f (a)|




whereω is the positive functionω(x) = senhx − x, x ≥ 0.
To see this we may assume thata = 0, andf (0) /= 0 and writef as the product

f = B · g whereB is a Blaschke product formed with the zeros off , andg is
a zero-free holomorphic function intoD. The inequality follows from observing
that f ′(0)

f (0) = B′(0)
B(0) + g′(0)

g(0) , calculating the first summand explicitly, estimating the
second summand by means of Lemma 2.1 and applying the triangle inequality.
The inequality (2.6) is sharp.

Observe that ifx ≤ log 1
ε then ω(x) ≤ (

1
ε − 1

)
x, and also that|f (0)| ≤∏

b∈Z(f ) |b|; then deduce (2.4) as a corollary of (2.6).
Consider, forα ∈ (0, 1), ε ∈ (0, 1), the classFα,ε of functions holomorphic

in D with f (D) ⊂ D, f (0) = α and with no zeros inD(0, ε).
Let m be the non negative integer such thatεm+1 < α ≤ εm then taking into

account the elementary Lemma 2.6 below one readily sees that

sup
f ∈Fα,ε

|f ′(0)|
|f (0)| ≤ 2mω(log

1
ε

) + 2ω(log
1
δ

) + 2 log
1

|f (0)|

where δ is such thatεmδ = α = |f (0)|. The bound is actually attained by the
function f (z) =

(
z+δ
1+zδ

) (
z+ε
1+zε

)m
. And therefore

sup
f ∈Fα,ε

|f ′(0)|
|f (0)| = m

(
1
ε

− ε

)
+

(
εm

α
− α

εm

)

This is a result of Royden, [13]. The original proof of Royden is also elementary,
but based on a certain recursive scheme.

Lemma 2.6. Let ω be a positive increasing convex function defined in[0,∞),
with ω(0) = 0. Then given A≥ 0, and B≥ 0 one has

sup{
N∑

j =1

ω(xj ) : 0 ≤ xj ≤ A ,
N∑

j =1

xj ≤ B , N ∈ N}

=

⌊
B
A

⌋
ω(A) + ω

(
B − A

⌊
B
A

⌋)
.
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3 Proof of Theorem 3

3.1

The proof of Theorem 3 is based on the following observation. Assume that
f omits the origin and another pointb ∈ D. Wheneverf (z) is close tob, the
hyperbolic derivative off at z must be small and by Lemma 2.4, it follows
that µf (Jz) > B log 1

|b| |Jz|. Consider subarcsJn of Jz such thatµf (Jn)
|Jn| is big. An

elementary estimate, see Sect. 2.1, shows that|f (zJn )| is small, that is, close to
the origin, wherezJn is the point in the unit disc satisfying

JzJn
= Jn

Now one can repeat the argument interchanging the roles of 0 andb. So, by in-
duction one gets a Cantor type set and evaluates its dimension using the following
result (see [11, p. 226]) due to Hungerford and Makarov. This we describe now.

Lemma C. Let 0 < ε < C < 1 be fixed constants. Let Ek =
⋃

n J (k)
n , where

{J (k)
n : n = 1, 2, . . .} are pairwise disjoint arcs of the unit circle with the following

properties:
Ek+1 ⊂ Ek , k = 1, 2, . . .(3.1)

|J (k+1)
n | < ε|J (k)

m | if J (k+1)
n ⊂ J (k)

m(3.2) ∑
J (k+1)

n ⊂J (k)
m

|J (k+1)
n | ≥ C |J (k)

m |(3.3)

Then

dim(
⋂

k

Ek) ≥ 1 − logC
logε

.(3.4)

We shall also need the following direct generalization of the lemma above.

Lemma D. Let I be an interval. Assume that we are given two sequences of
positive real numbers{Mj }j and {δj }j satisfying Mj ∈ (0, 1) and lim j →0 δj = 0,
and also a fixed constant c,0 < c < 1.

Then there exists a sequence of positive integers{tj }j , with lim j →∞ tj = +∞,
which depends only on the sequences{Mj }, {δj } and the constant c, such that
any set E constructed as belowhas dimension1:

dim(E) = 1 .

We now describe the rules for theconstruction of the sets E. We need first a
notation to denote a certain procedure to associate to an intervalH (and param-
etersδ and t) a collection of disjoint subintervals. It resemblest steps of the
construction of a regular Cantor set, but it is much more flexible.

Consider an intervalH , a positive integert and a positive real numberδ.
The starting generation, 0th generation, consists only of the intervalH . Thenth
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generation consists of subintervals of each of the intervalsJ of the previous
generation, the (n − 1)th generation. The subintervals{Jl }l of J must satisfy
only the following two conditions:

∑
l

|Jl | ≥ c|J |

|Jl | ≤ δ|J |, for eachl

We stop at the generationt : the collection of the subintervals ofH of that
generation is denoted byG (H , δ, t).

The construction of the admissible subsetsE of I proceeds also in a sequence
of steps.

– (1) First, one chooses any finite collection of disjoint subintervalsJ 1
j of I

satisfying ∑
j

|J 1
j | ≥ M1|I | .

Then, to eachJ 1
j one assigns a collection of subintervalsG (J 1

j , δ1, t1).
This concludes the first step. The union of those intervals obtained in this
way is denoted byE1.

– (2) Once the intervals inEn have been obtained the intervals of the next step
are obtained as follows. First, for any of the intervalsI ′ in En one chooses a
collection of subintervalsJ ′

j satisfying

∑
j

|J ′
j | ≥ Mn+1|I ′| .

Then, to each of theseJ ′
j one assigns a collection of subintervalsG (J ′

j , δn+1,
tn+1).

This gives the intervals of then + 1 step, whose union we denote byEn+1.
Clearly, En+1 ⊂ En. The setE is

E = ∩nEn

It should be remarked that a naive extension of Lemma C without thetj ’s
does not hold. It is easy to provide examples.

3.2

Let J be an arc of the unit circle. Forn = 1, 2, . . ., consider the collectionDn

of the 2n disjoint subarcs ofJ of length 2−n|J |. A dyadic subarcof J is an
arc belonging toDn for somen. We will use the following elementary covering
lemma.
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Lemma 3.1Let J be an arc of the unit circle. Let{Jk} be pairwise disjoint dyadic
subarcs of J . Assume ∑

k

|Jk | ≥ C |J |

Then there exists a subfamily{Wk} of {Jk} satisfying

∑
k

|Wk | ≥ C
2

|J |

and ∑
Jk⊂L

|Jk | ≥ C
2

|L|

if L is a dyadic subarc of J containing some Wk.

Proof.Let A be the set of maximal dyadic subarcsL of J satisfying the following
properties:

1. L contains someJk .

2.
∑

Jk⊂L |Jk | < C
2 |L|.

ConsiderB = {Jk : Jk ⊂ L for some L∈ A} and {Wk} = {Jk : Jk 6∈ B }.
Then ∑

Jk∈B

|Jk | ≤ C
2

∑
L∈A

|L| ≤ C
2

|J | .

Hence, ∑
|Wk | ≥ C

2
|J | .

If L is a dyadic subarc ofJ containing someWk , thenL 6∈ A. So,

∑
Jk⊂L

|Jk | ≥ C
2

|L| .

3.3

The main auxiliary result in the proof of Theorem 3 is the following

Lemma 3.2. Let f be an inner function omitting the values0 and b, where0 <
|b| < 1/100. There exist two positive constants c1, c2, 0 < c1 < 1, independent
of f and b, such that whenever

|f (z) − b| <
1
2
|b|

there exists a collection{Jn} of disjoint subarcs of Jz such that

c1|Jz| <
∑

n

|Jn|(3.5)
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|Jn| <
1

| log |b||c2
|Jz|, n = 1, 2, . . .(3.6)

|f (zJn ) − b| <
|b|

| log |b||c2
, n = 1, 2, . . .(3.7)

Proof.In this proofC denotes several positive absolute constants. We may assume
that 0< b < 1.

Since f omits 0 andb, f = exp(−F ) whereF is an inner function into the
right half plane omitting the values logb−1+2nπi , n ∈ Z. Let T be the conformal
mapping from the right half planeH onto the unit discD given by

T(w) =
w − logb−1

w + logb−1

ThenG = T ◦ F is an inner function omitting the values

bn = T(logb−1 + 2nπi ) =
nπi

log |b|−1 + nπi
, n ∈ Z .

Let

Gn =
G − bn

1 − b̄nG
, µn = µGn .

SinceT preserves the hyperbolic metric, one has

tanh dD(G(z), 0) = tanh dH(F (z), logb−1)

≤ |F (z) − logb−1|
| log |b||(3.8)

≤ C
| log |b|| .

(Recall that dΩ denotes the Poincaré distance of the domainΩ.) Fix m =⌊(
log |b|−1

)1/2
⌋

and observe that

1
2

(log |b|−1)−1/2 ≤ |bm| ≤ (log |b|−1)−1/2 .

Using Lemma 2.1 and (3.8) one deduces

(1 − |z|2)|G′
m(z)| ≤ 2(1− |z|2)|G′(z)|

≤ 4|G(z)| log
1

|G(z)|
<

1
2
|Gm(z)| log

1
|Gm(z)| .

Hence by Lemma 2.4
µm(Jz)
|Jz| > B log log

1
|b| .

Now, let {Jn} be the maximal dyadic subarcs ofJz satisfying
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µm(Jn)
|Jn| > 16 log

1
|bm|

(
> 8 log log

1
|b|

)
.

It follows from the maximality that

µm(Jn)
|Jn| < 32 log

1
|bm|

and thus ∑
|Jn| >

1
32

(
1

| log |bm||
)

µm(Jz) > C |Jz| ,

which is (3.5). Also, let ˜z = zJn , then

log
1

|Gm(z̃)| =
∫ 2π

0

1 − |z̃|2
|ei θ − z̃|2 dµm(ei θ)

≥ C
µm(Jn)
|Jn| > C log log

1
|b|

and a calculation, similar to (3.8), gives (3.7).

Let G = exp(−H ), whereH is an inner function into the right half plane
omitting the set of valuesL = {logb−1

n + 2kπi : n, k ∈ Z}.

A calculation shows that

sup
n>0

∣∣∣∣log
1

|bn| − log
1

|bn+1|
∣∣∣∣

is bounded by an absolute constant independent ofb. Let

Ω =

{
w ∈ C : 0 < <(w) <

1
2

log
1
|b|

}
\ L .

A simple estimate of the density of the Poincaré metric ofΩ gives that ifp, q ∈ Ω
then

dΩ(p, q) ≥ C |<(p) − <(q)|

Since

log

(
1
2

log
1
|b|

)
< <H (z)

∣∣∣∣<H (z̃) − log
1

|bm|
∣∣∣∣ < C

(
log

1
|b|

)−C

,

one deduces that

C log log
1
|b| ≤ |<H (z) − <H (z̃)| ≤ dD(z, z̃)

and (3.6) follows.
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3.4 Proof of Theorem 3

We shall distinguish two cases. Recall that

df (0) = inf{d(z, 0) : z ∈ O (f ) \ {0}} .

3.4.1. First we assume thatdf (0) > 0. Let b, 0 < |b| < 1/100, another value

omitted by f (thus we are takingm, such that log1+m
1−m = 1

100). Considerz ∈ D
such that

(3.9) |f (z) − b| <
1
2
|b|

and J (1) = Jz. Apply Lemma 3.2 to get subarcsJn satisfying (3.5), (3.6), (3.7)
and consider the subcollection{J (2)

n } given by Lemma 3.1 which still satisfies
the conditions above (withc1 replaced byc1/2) and also

(3.10)
∑

J (2)
n ⊂L

|J (2)
n | ≥ 2−1c1|L|

for any dyadic arcL of J (1) containing someJ (2)
n . Now using (3.7) instead of (3.9)

one can repeat the process in eachJ (2)
n . So by induction, one getsE =

⋂
k Ek ,

Ek =
⋃

n J (k)
n satisfying (3.1), (3.2), (3.3) of Lemma C with the constants

C = 2−1c1, ε = (log |b|−1)−c2

So, dimE ≥ 1 − M
log log 1

|b|
, whereM is an absolute constant.

Let ξ ∈ E andL be a dyadic subarc ofJz which containsξ. Choosem such
that

J (m)
k(m) ⊂ L ⊂ J (m−1)

k(m−1)

for somek(m), andk(m − 1), and one has
∑

n,J m
n ⊂L

|Jn| ≥ 2−1c1|L|

and
|f (zJn ) − b| < |b|(log |b|−1)−c2 .

So, a harmonic measure estimate in the domainD\∪nD
(
zJn ,

1
2(1 − |zJn |)

)
shows

that

log
1

|f (zL)| ≥ K log
1
|b| ,

whereK is an absolute constant. Hence

lim sup
r →1

|f (r ξ)| < |b|K .
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3.4.2.Assume nowdf (0) = 0. In other words,f omits a sequence of pointsbn

tending to the origin. One can assume thatbn tends to 0 as fast as necessary.
We shall use Lemma D with the following specifications for the parameters

Mj =
B
16

log |bj −1|−1

log |bj |−1
j = 2, . . . ,

also
δj = (log |bj |−1)

−c2

and
c = c1

wherec1, c2 are as in Lemma 3.2. With these data Lemma D provides us with a
sequence of positive integerstj .

Let f = exp(−F ),

fk =
f − b̄k

1 − bkf
, k = 1, 2, . . .

andµk = µfk be the measure corresponding tofk .
Considerz ∈ D such that

(3.11) |f1(z)| ≤ |b1|(log |b1|−1)−c2

andJ (1) = Jz. As in the proof of Lemma 3.2 one has

(1 − |z|2)|f ′
2(z)| <

1
2
|f2(z)| log

1
|f2(z)|

and Lemma 2.4 gives
µ2(J (1))
|J (1)| > B log

1
|b1|

Now chooseJk the maximal dyadic subarcs ofJ (1) satisfying

µ2(Jk)
|Jk | > 8 log|b2|−1 .

As in the proof of Lemma 3.2, the maximality implies

µ2(Jk)
|Jk | < 16 log|b2|−1

and ∑
k

|Jk | >
B
16

log |b1|−1

log |b2|−1
|J (1)|

Moreover, forw = zJk , one has that

log
1

|f2(w)| > 2 log
1

|b2|



Boundary behaviour of inner functions and holomorphic mappings 443

and |f (w) − b2| < 1
2|b2|. Now, apply in eachJk Lemma 3.2t2 times to get arcs

{Jn} satisfying
∑

|Jn| ≥ ct2
1

∑
|Jk | ≥ B

16
ct2

1 log |b1|−1

log |b2|−1
|J (1)|(3.12)

|Jn| < (log |b2|−1)−c2t2|J (1)|, n = 1, 2, . . .(3.13)

|f2(zJn )| < |b2|(log |b2|−1)−c2, n = 1, 2, . . .(3.14)

Applying Lemma 3.1 one gets a subcollection{J (2)
n } satisfying (3.12) with a

half of the constant and such that∑
Jn⊂L

|Jn| >
B
32

ct2
1 log |b1|−1

log |b2|−1
|J (1)|,

whereL is any dyadic subarc ofJ (1) which contains someJ (2)
n . So, using (3.14),

a harmonic measure argument gives

log
1

|f2(zL)| ≥ C log
1

|b2|
whereC is an absolute constant. So,|f (zL)| is small.

Now, one can repeat the process using (3.14) instead of (3.11) as starting
point. By induction, one getsEk =

⋃
n J (k)

n satisfying the conditions of Lemma
D.

So, dim(
⋂

k Ek) = 1.

Moreover

log
1

|fk(zL)| ≥ C log
1

|bk | ,
whereC is an absolute constant andL is a dyadic subarc of someJ (k)

n which
contains some arc fromEk+1. Hence, ifξ ∈ ⋂

k Ek , one has

lim
r →1

f (r ξ) = 0,

4 Complements and remarks

4.1

Our results admit local versions. For instance,

Theorem 2′. Let f be an inner function. Let b∈ D be an accumulation point of
O (f ) and let I be an arc withS (f ) ∩ I /= ∅ then

dim{θ ∈ I : lim
r →1

f (rei θ) = b} = 1 .

HereS (f ) denotes the singular set:θ belongs toS (f ) if f can not be extended
to be analytic in a neighborhood ofei θ.

Observe that ifei θ ∈ S (f ), then there exists a sequencezn ∈ D such that
zn → ei θ while f (zn) → b; we just have to start the argument of the proof of
Theorem 2 with an appropiatezn.
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4.2

One could expect that if instead of a sequence of omitted values we have a
sequence of values which are not taken “too much” then similar results hold,
see e.g. [14]. The following result points in that direction. For a non constant
holomorphic functionf in the unit disk we denote byµf ,b the measure inD
given byµf ,b =

∑
{z:f (z)=b}(1 − |z|2) δz. The Carleson norm of a measureµ in

D is denoted by‖µ‖Carleson.

Theorem 5.Let f be an inner function which omits0. Assume that for a sequence
bn ∈ D with limn→∞ bn = 0 we have

sup
n

‖µf ,bn‖Carleson< +∞ .

Then
dim{θ ∈ [0, 2π] : lim

r →1
f (rei θ) = 0} = 1 .

4.3

There exists a well known parallelism between “small derivative” and “omitted
values”. Compare, e.g., Theorem 2 with the result of Rohde mentioned in 0.5. A
result combining features of both type of hypothesis is the following.

Theorem 6. Let f be an inner function which omits0. Define

λ = lim sup
|z|→1

(1 − |z|2)|f ′(z)|
|f (z)| log 1

|f (z)|

Then
dim{θ ∈ [0, 2π] : lim

r →1
f (rei θ) = 0} = 1 − O(λ)

The proofs of Theorems 5 and 6 are obtained by an elaboration of the previous
proofs and are not presented here.

4.4

There is a beautiful refinement of Fatou’s theorem due to Bourgain, [Bo]: iff is
a bounded holomorphic function inD, then

dim{θ ∈ [0, 2π] : Vf (θ) < +∞} = 1 ,

whereVf (θ) is the variation off in the radius ending atei θ, i.e.,



Boundary behaviour of inner functions and holomorphic mappings 445

Vf (θ) =
∫ 1

0
|f ′(rei θ)|dr .

Walter Hayman has asked if there are refinements of Theorem 1 and 2 along
the lines of Bourgain’s result. In particular, iff , andb are as in Theorem 2, is
it true that

dim{θ ∈ [0, 2π] : Vf (θ) < +∞ and lim
r →1

f (rei θ) = b} = 1 ?

4.5

Our results concern the dimension of the Fatou set, and they are sharp in that
respect. But more precise results are possible. Consider, for instance, the situation
of Theorem 2. Ifb is approximated at a certain given rateby the other points of
O (f ), then some appropiateh-measure of the set{θ ∈ [0, 2π] : lim r →1 f (rei θ) =
b} should be positive.
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6. Ferńandez J.L., Pestana, D.: Radial Behaviour of Holomorphic Mappings, Proc. Amer. Math.

Soc.124 (1996), 429–435.
7. Hamilton, D.: Conformal distortion of boundary sets, Trans. Amer. Math. Soc.308(1988), 69–81
8. Makarov, N.G.: Probability methods in the theory of conformal mappings, Leningrad Math. J.

1 (1990), 1–56.
9. Makarov, N.G.: Smooth measures and the law of the iterated logarithm, Math. USSR Izv.34

(1990), 455–463.
10. Nevanlinna, R.: Analytic Functions, Springer Verlag, New York, Berlin 1970.
11. Pommerenke, Ch.: Boundary Behaviour of Conformal Mappings, Springer Verlag Berlin, Hei-

delberg, New York 1991.
12. Rohde, S.: On functions in little Bloch space and inner functions, Trans. Amer. Math. Soc.348

(1996), no. 7, 2519–2531.
13. Royden, H.: The zeros of bounded holomorphic functions, Complex Variables9 (1987), 283–286
14. Stephenson, K.: Constructions of an inner function in the little Bloch space, Trans. Amer. Math.

Soc.308 (1988), no. 2, 713–720.
15. Tsuji, M.: Potential Theory in Modern Function Theory, Chelsea, New York 1959.


