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Abstract

We characterize the connected components of the subset CN∗ of H∞ formed by the products bh, where
b is Carleson–Newman Blaschke product and h ∈ H∞ is an invertible function. We use this result to show
that, except for finite Blaschke products, no inner function in the little Bloch space is in the closure of one
of these components. Our main result says that every inner function can be connected with an element of
CN∗ within the set of products uh, where u is inner and h is invertible. We also study some of these issues
in the context of Douglas algebras.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Let H∞ be the Banach algebra of bounded analytic functions in the unit disk D with the norm
‖f ‖∞ = supz∈D |f (z)|. A function in H∞ is called inner if it has radial limits of modulus one at
almost every point of the unit circle ∂D. A Blaschke product is an inner function of the form

b(z) = λzm
∞∏

n=1

zn

|zn|
zn − z

1 − znz
,
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where m is a nonnegative integer, λ ∈ ∂D and {zn} is a sequence of points in D \ {0} satisfy-
ing the Blaschke condition

∑
n(1 − |zn|) < ∞. If λ = 1, we say that b is normalized. Given

a Blaschke product b, we denote by Z(b) = {zn} the sequence of its zeros repeated according
to their multiplicity. A classical result by O. Frostman tells us that for any inner function u,
there exists an exceptional set E = E(u) ⊂ D of logarithmic capacity zero such that the Mo-
bius shift (u − α)/(1 − αu) is a Blaschke product for any α ∈ D \ E (see [4] or [5, p. 79]).
Hence, any inner function can be uniformly approximated by Blaschke products. The set of
invertible functions in H∞ will be denoted by (H∞)−1 and it consists of those functions
h ∈ H∞ satisfying inf |h(z)| > 0, where the infimum is taken over all points z ∈ D. Let I∗
be the open set in H∞ of functions of the form f = uh, where u is an inner function and
h ∈ (H∞)−1. Equivalently, I∗ consists of those functions in H∞ whose non-tangential limits on
the unit circle are bounded away from zero. A result by Laroco asserts that I∗ is dense in H∞
(see [15]).

A sequence of points {zn} of the unit disk is called an interpolating sequence if for any
bounded sequence of complex values {wn}, there exists a function f ∈ H∞ with f (zn) = wn,
n = 1,2, . . . . A celebrated result by Carleson ([2] or [5, p. 287]) asserts that {zn} is an interpo-
lating sequence if and only if

inf
n

(
1 − |zn|2

)∣∣b′(zn)
∣∣ > 0,

where b is the Blaschke product with zeros {zn}. Although interpolating Blaschke products com-
prise a small subset of all inner functions, they play a central role in the theory of the algebra H∞.
See for instance the last three chapters of [5]. Marshall proved that finite linear combinations of
Blaschke products are dense in H∞ (see [16]). Later, this result was sharpened in [6] by show-
ing that one can use interpolating Blaschke products. However, the following problem remains
open.

Problem 1.1. For any inner function u and ε > 0, does there exist an interpolating Blaschke
product b such that ‖u − b‖∞ < ε?

This question was posed in [14] and [5, p. 420], and it is one of the most important open
problems in the area. The following weaker version of Problem 1.1 is also open.

Problem 1.2. For any inner function u and ε > 0, does there exist an interpolating Blaschke
product b and an invertible function h ∈ H∞ such that ‖u − bh‖∞ < ε?

This is really a question of approximation in BMO. Recall that a function f ∈ L1(∂D) is in
the space BMO if

‖f ‖∗ = sup
1

|I |
∫
I

|f − fI | < ∞,

where the supremum is taken over all arcs I ⊂ ∂D of the unit circle and fI = |I |−1
∫
I
f

is the mean of f over the arc I . A classical result by Fefferman and Stein says that a
function f ∈ L1(∂D) is in BMO if and only if f can be written as f = r + s̃, where
r, s ∈ L∞(∂D). Here s̃ means the harmonic conjugate of s. Moreover, ‖f ‖∗ is comparable to
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‖f ‖BMO = inf{‖r‖∞ + ‖s‖∞}, where the infimum is taken over all possible decompositions
f = r + s̃ + c, where c is a constant. It is easy to see that Problem 1.2 has a positive answer if
and only if for any inner function u and any ε > 0, there exists an interpolating Blaschke prod-
uct b such that a suitable branch Arg(u/b) of the argument of the function u(ξ)/b(ξ), ξ ∈ ∂D,
satisfies

∥∥Arg(u/b)
∥∥

BMO � ε.

Since Problem 1.1 amounts to find b such that the above estimate holds with sup-norm, we see
that Problem 1.2 is the BMO-version of Problem 1.1.

In connection with the theory of Toeplitz operators on Hardy spaces and the existence of
unconditional basis of reproducing kernels in model spaces, Nikolskii proposed the following
weak version of Problem 1.2, which is also still open [24, p. 210] (see also [25, pp. 91–93]).

Problem 1.3. For any inner function u, is there an interpolating Blaschke product b such that

dist
(
ub,H∞)

< 1 and dist
(
bu,H∞)

< 1?

An equivalent formulation is to ask whether there is an interpolating Blaschke product b and
h ∈ (H∞)−1 such that ‖u − bh‖∞ < 1 (see [24, p. 220]).

A Blaschke product b is called a Carleson–Newman Blaschke product if it can be decomposed
as a finite product of interpolating Blaschke products, or equivalently, if

μb =
∑

b(z)=0

(
1 − |z|)δz

is a Carleson measure. Here δz denotes the Dirac measure at the point z. Recall that a complex-
valued measure μ in the unit disk is called a Carleson measure if there exists a constant C > 0
such that ∫

D

∣∣f (z)
∣∣d|μ|(z) � C‖f ‖1

for any function f in the Hardy space H 1. The infimum of such constants C is denoted by
‖μ‖c. It is well known that any Carleson–Newman Blaschke product can be approximated uni-
formly by interpolating Blaschke products (see [17]). Thus, one can interchange interpolating
and Carleson–Newman Blaschke products in the questions above, as well as in the rest of the
paper. Let CN∗ be the open set in H∞ of functions of the form f = bh where b is a Carleson–
Newman Blaschke product and h ∈ (H∞)−1. Equivalently, CN∗ consists of those functions
f ∈ H∞ for which there exist numbers 0 < r < 1 and c > 0, such that for any z ∈ D one has
sup{|f (w)|: |w − z| < r(1 − |z|)} > c. The equivalence follows from HoffmanŠs theory on the
Gleason parts of H∞ (see [12] or [5, X]).

The main purpose of this paper is to study the connected components of I∗ and CN∗. This
shall lead us to answer natural analogues of Problems 1.2 and 1.3, as well as to consider a number
of related questions. The components of the set of inner functions has been considered by Herrero
in [10] and by Nestoridis in [20] and [21].
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A continuous version of Problem 1.2 can be stated as follows: given an inner function u, does
there exist a path in CN∗ (except for the final point) which ends at u? Or more basically, is any
inner function in the closure of a connected component of CN∗? We prove that the answer to
both questions is negative. Recall that an analytic function f on the unit disk is in the little Bloch
space if

lim|z|→1

(
1 − |z|2)∣∣f ′(z)

∣∣ = 0.

Blaschke products with finitely many zeros are in the little Bloch space but it also contains many
other inner functions. We prove in Theorem 2.10 that any inner function in the little Bloch space
which is not a finite Blaschke product does not belong to the closure of a single component of
CN∗. The proof uses a description of the connected components of CN∗ given in Theorem 2.7.
Roughly speaking, the component of a function f ∈ CN∗ is described in terms of the zeros of f

and the Fefferman–Stein decomposition of the Cauchy integral of a path measure associated to
those zeros.

In contrast to the situation described above for functions in the little Bloch space, any compo-
nent of I∗ contains an element of CN∗. This is stated in the main result of the paper, Theorem 3.7.
It can be understood as a positive answer to a weaker version of Problem 1.3. Actually, if
‖u − bh‖∞ < 1, the segment γ (t) = u + t (bh − u), where t ∈ [0,1], is contained in I∗ and
joins γ (0) = u with γ (1) = bh. Our proof shows that there exists a universal constant N such
that for any inner function u there is a polygonal path γ : [0,1] → I∗ formed by at most N seg-
ments so that γ (0) = u and γ (1) ∈ CN∗. The proof is constructive and it is the deepest part of
the paper. It uses a Carleson contour decomposition and a discretization of harmonic measures
in its interior. This provides a path in L∞(∂D) which can be lifted to I∗.

We will abbreviate Carleson–Newman Blaschke product by CNBP. The paper is organized
as follows. Section 2 contains the description of the components of CN∗ and the result on inner
functions in the little Bloch space. Section 3 is devoted to the main result of the paper. Finally, in
Section 4 we relate the previous results to Douglas algebras, present an example that illustrates
the fact that two arbitrary functions in I∗ or CN∗ can be multiplied by a CNBP into a single
component, and mention some open problems.

2. The connected components of CN∗

Let μ be a finite complex measure in the complex plane. Let Cε(μ) be its truncated Cauchy
integral defined in the unit circle as

Cε(μ)
(
eiθ

) =
∫

|z−eiθ |>ε

dμ(z)

eiθ − z
.

It was shown by Mattila and Melnikov that the Cauchy integral defined as C(μ)(eiθ ) =
limε→0 Cε(μ)(eiθ ) exists at almost every point eiθ ∈ ∂D (see [18]). This was a consequence
of the following weak-L1 estimate: there is a universal constant C such that for any λ > 0,
|{eiθ ∈ ∂D: C∗(μ)(eiθ ) > λ}| < Cλ−1‖μ‖. Here C∗(μ) denotes the maximal Cauchy transform
defined as

C∗(μ)
(
eiθ

) = sup
ε>0

∣∣∣∣
∫
iθ

dμ(z)

eiθ − z

∣∣∣∣.

|z−e |>ε
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We start with a well-known result on Cauchy integrals of Carleson measures which will be used
later. For 0 < p < ∞ let Hp be the Hardy space of analytic functions f in the unit disk for
which

‖f ‖p
p = sup

r<1

2π∫
0

∣∣f (
reiθ

)∣∣p dθ < ∞

and H
p

0 be the subspace of those f ∈ Hp with f (0) = 0.

Lemma 2.1. Let μ be a complex-valued Carleson measure on D and for 0 < r < 1, let μr be its
restriction to the disk rD. Then

(1) C(μr) converges in L2-norm to C(μ) as r → 1,
(2) C(μ) ∈ H 2

0 and ‖C(μ)‖2 � ‖μ‖1/2
c |μ|(D)1/2,

(3) C(μ) ∈ BMO and ‖C(μ)‖BMO � C‖μ‖c, where C is an absolute constant.

Proof. Given two functions f,g ∈ L2(∂D), let 〈f,g〉 denote their scalar product in L2(∂D). It is
obvious that hr(e

iθ ) = eiθC(μr)(eiθ ) can be extended to a function in H∞, and for f ∈ H 2 we
have

〈f,hr 〉 =
2π∫

0

f
(
eiθ

)∫
D

1

1 − ze−iθ
dμr(z)

dθ

2π
=

∫
D

f (z) dμr(z).

By the Cauchy–Schwarz inequality

∣∣〈f,hr 〉
∣∣ �

(∫
D

∣∣f (z)
∣∣2

d|μr |(z)
)1/2

|μr |(D)1/2 � ‖μr‖1/2
c ‖f ‖2|μr |(D)1/2.

Since ‖μr‖c � ‖μ‖c, we get ‖hr‖2 � ‖μ‖1/2
c |μr |(D)1/2. Similarly,

‖hr − hs‖2 � ‖μ‖1/2
c |μr − μs |(D)1/2,

from which hr converges in L2(∂D) to a function h when r → 1, with ‖h‖2 � ‖μ‖1/2
c |μ|(D)1/2.

Observe that |C1−r (μ)(eiθ ) − C(μr)(e
iθ )| � C∗(μ − μr)(e

iθ ). Then the weak-L1 estimate tells
us that C(μr) converges in measure to C(μ) as r tends to 1. Thus h(eiθ ) = eiθC(μ)(eiθ ) at almost
every point eiθ ∈ ∂D and (1) and (2) follow.

Let f ∈ H∞ and write f (eiθ ) − f (0) = eiθg(eiθ ), with g ∈ H∞. Then

∣∣〈f,C(μ)
〉∣∣ = ∣∣〈f − f (0),C(μ)

〉∣∣ =
∣∣∣∣∣
∫ 2π∫

g(eiθ )

1 − ze−iθ

dθ

2π
dμ(z)

∣∣∣∣∣ =
∣∣∣∣
∫

g(z) dμ(z)

∣∣∣∣,

D 0 D



3754 A. Nicolau, D. Suárez / Journal of Functional Analysis 262 (2012) 3749–3774
which is bounded by ‖μ‖c‖f − f (0)‖1 � 2‖μ‖c‖f ‖1. Since H∞ is dense in H 1, C(μ) induces
a bounded linear functional on H 1 with norm bounded by 2‖μ‖c. This means that C(μ) ∈ BMO
with ‖C(μ)‖BMO � C‖μ‖c. �
Remark 2.2. It is clear that the truncated measure μr in Lemma 2.1 can be replaced by χEs μ,
where Es , with 0 < s < 1, is any continuum of increasing compact sets in D such that for any
0 < r < 1 there is s with rD ⊂ Es .

Let ϕz(w) = (z − w)/(1 − wz) be the involution on D that interchanges 0 and z. The
pseudohyperbolic and hyperbolic distance between z and w in D are respectively defined by
ρ(z,w) = |ϕz(w)| and

β(z,w) = log
1 + ρ(z,w)

1 − ρ(z,w)
.

Let b, b∗ be two CNBP and let {zk}, {z∗
k} be their zero sequences. Assume that there exists a

constant M > 0 such that β(zk, z
∗
k) � M for all k � 1. Let σk be a path measure from zk to z∗

k

whose underlying path has bounded hyperbolic diameter. Consider the measures SN = ∑N
k=1 σk

and σ = ∑∞
k=1 σk . It is clear that the Carleson norm of both measures is bounded by a constant

depending only on M and ‖∑∞
k=1(1 − |zk|)δzk

‖c. Thus, the previous lemma and remark say that
C(SN) → C(σ ) in L2-norm. The next result tells us that on the unit circle the function 2 ImC(σ )

is an argument of the quotient b/b∗.

Lemma 2.3. Let b (respectively b∗) be a normalized CNBP with zero sequence {zk} (respectively
{z∗

k}) such that supk β(zk, z
∗
k) < ∞. Then

exp
[
i2 ImC(σ )

(
eiθ

)] = eiγ b
(
eiθ

)
b∗(eiθ

)

at almost every point eiθ ∈ ∂D, where eiγ = ∏
k�1

zk

z∗
k

|z∗
k |

|zk | , and we are interpreting here that

z/|z| = |z|/z = −1 when z = 0.

Proof. We can assume that zk �= 0 �= z∗
k for all k � 1. Let αz(w) = (z/|z|)(z − w)/(1 − zw).

A straightforward calculation shows that

αzk
(eiθ )

αz∗
k
(eiθ )

= z∗
k

zk

∣∣∣∣zk

z∗
k

∣∣∣∣
(

1 − zke
−iθ

1 − z∗
ke

−iθ

)2∣∣∣∣1 − z∗
ke

−iθ

1 − zke−iθ

∣∣∣∣
2

. (2.1)

Observe that

z∗
k∫

2

eiθ − z
dz = 2

[
Log

(
1 − zke

−iθ
) − Log

(
1 − z∗

ke
−iθ

)]
,

zk
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where the imaginary part of Log(1 − w) varies between −π/2 and π/2 for w ∈D. Hence,

2 ImC(SN)
(
eiθ

) = Im
N∑

k=1

z∗
k∫

zk

2

eiθ − z
dz = 2

N∑
k=1

[
Arg

(
1 − zke

−iθ
) − Arg

(
1 − z∗

ke
−iθ

)]
,

where Arg(1 − w) denotes the principal branch of the argument, which for w ∈ D takes values
between −π/2 and π/2. According to (2.1) one deduces

exp
[
i2 ImC(SN)

(
eiθ

)] =
(

N∏
k=1

zk

z∗
k

∣∣∣∣z∗
k

zk

∣∣∣∣
)

bN

(
eiθ

)
b∗
N

(
eiθ

)
. (2.2)

Here bN (respectively b∗
N ) denotes the Blaschke product formed with the first N zeros of b

(respectively b∗). Since ‖C(SN) − C(σ )‖2 → 0, there is a subsequence Nj such that the con-
vergence holds pointwise almost everywhere on ∂D, and since the same holds for the partial
Blaschke products bN and b∗

N , we can assume that the subsequence Nj achieves the three con-

vergences at once. Furthermore, since
∑ |z∗

k − zk| < ∞, we have that
∏N

k=1
zk

z∗
k
| z∗

k

zk
| converges

to a certain point eiγ of the unit circle. Therefore, the corollary follows by taking limits in both
members of (2.2). �

Given a Carleson–Newman Blaschke product we denote by μb the Carleson measure given
by μb = ∑

(1 − |z|)δz where the sum is taken over all zeros z ∈ D of b counting multiplicities.
Given a function v ∈ L1(∂D), let ṽ be its harmonic conjugate normalized so that ṽ(0) = 0.

Corollary 2.4. Let b be a CNBP with zeros {zk} and ε > 0. Then there is α = α(ε,‖μb‖c) > 0
such that for any sequence {z∗

k} with supk β(zk, z
∗
k) � α and its corresponding Blaschke prod-

uct b∗, there is h ∈ (H∞)−1 such that

∥∥b − b∗h
∥∥∞ < ε and 2 ImC(σ ) − l̃og |h| ∈ L∞(∂D).

Proof. We can assume that b and b∗ are normalized. Write σ = ∑
σk , where σk is the

path measure in the segment from zk to z∗
k . Then ‖σ‖c � C(α)‖μb‖c, with C(α) → 0 as

α → 0. Therefore, given η > 0, we can choose α = α(η) small enough so that ‖σ‖c < η. By
Lemma 2.1 one has that ‖C(σ)‖BMO � Cη, and the Fefferman–Stein decomposition of BMO
gives 2 ImC(σ) = u + ṽ, where ‖u‖∞ + ‖v‖∞ � C′η. Here C′ > 0 is a fixed constant. Pick
h = e−iγ+v+iṽ , where γ is the constant appearing in Lemma 2.3. By Lemma 2.3, at almost every
point of the unit circle one has

bb∗h−1 = ei2 ImC(σ )e−v−iṽ = e−v+iu,

and consequently

∥∥b − b∗h
∥∥∞ � ‖h‖∞

∥∥bb∗h−1 − 1
∥∥∞ � e‖v‖∞∥∥e−v+iu − 1

∥∥∞ → 0

as η → 0. �
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It is worth mentioning that two interpolating Blaschke products could be uniformly close but
still have zero sets which are hyperbolically far away one from the other. For instance consider
the singular inner function s(z) = exp((z + 1)/(z − 1)), z ∈ D. For α ∈ D let sα be its Mobius
shift given by sα = (α − s)/(1 − αs). It is easy to see that for any α ∈ D \ {0}, the function sα
is an interpolating Blaschke product. It is clear that sα and sβ are uniformly close if |α| + |β|
is small, but in this case, the hyperbolic distance between its zero sets is bounded below by
log(log |α|/ log |β|) when |α| < |β|. Taking α = β2 we see that the distance between their re-
spective zeros is bounded below by log 2.

Lemma 2.5. For 0 � t � 1, let ut be an inner function and ht ∈ (H∞)−1. Assume that |utht |
varies continuously with t in L∞(D). Then both |ut | and |ht | vary continuously in L∞(D).

Proof. Since |ht (e
iθ )| = |ht (e

iθ )ut (e
iθ )| varies continuously in L∞(∂D) and

|ht (z)| = exp

( 2π∫
0

1 − |z|2
|1 − zeiθ |2 log

∣∣ht

(
eiθ

)∣∣ dθ

2π

)
,

then |ht (z)| varies continuously on L∞(D). Thus, |ut (z)| = |ht (z)|−1|ht (z)ut (z)| varies contin-
uously in L∞(D). �

We remark that the above lemma is false without taking modulus, that is, the continuity of
t �→ utht in H∞ does not imply the continuity of t �→ ut . An example will be given in Section 4
as a consequence of Proposition 4.5.

Lemma 2.6. For 0 � t � 1, let bt be a CNBP and ht ∈ (H∞)−1. Assume that |btht | varies contin-
uously in L∞(D). Then there is a reordering {z1

k} of the zeros of b1 such that supk β(z0
k, z

1
k) < ∞,

where {z0
k} are the zeros of b0.

Proof. Let {zk(t): k = 1,2, . . .} be the zeros of bt . By compactness it is enough to prove that
given 0 < ε < 1, for any t0 ∈ [0,1] there is an open neighborhood V of t0 in [0,1] depend-
ing on t0, such that whenever t ′, t ′′ ∈ V , there is a reordering of the zeros of bt ′′ such that
β(zk(t

′), zk(t
′′)) � ε, for any k � 1.

Fix t0 ∈ [0,1], since bt0 is a CNBP, its zero sequence Z(bt0) can be split into n(t0) sequences
Z(bt0) = S1 ∪ · · · ∪ Sn(t0) such that β(z,w) � 1 for z,w ∈ Sk with z �= w. Consider the family
of open hyperbolic disks �j = {z ∈ D: β(z, zj ) < ε

4n(t0)
} for zj ∈ Z(bt0). We claim that any

connected component of
⋃

�j contains no more than n(t0) points of Z(bt0). In fact, suppose
that O = �j1 ∪ · · · ∪ �jm is a maximal connected set such that zj1 , . . . , zjm belong to different
sequences Sk (not necessarily a component of

⋃
�j ). Then

diamβ O � m
2ε

4n(t0)
� n(t0)

2ε

4n(t0)
= ε

2
� 1

2
. (2.3)

Now, if zi ∈ Z(bt0) belongs to the same sequence Sk as some of the points zjl
, say zj1 , then

for every z ∈ O,

β(zi, z) � β(zi, zj1) − β(zj1 , z) � 1 − 1
.

2



A. Nicolau, D. Suárez / Journal of Functional Analysis 262 (2012) 3749–3774 3757
So, β(zi,O) � 1/2 and consequently β(�i,O) � 1
2 − ε

4n(t0)
� 1

4 . Thus, �i cannot meet O,
which implies that O is indeed one of the connected components of

⋃
�j , and that the hyperbolic

distance between two of these components is � 1/4.
Since bt0 is a CNBP, there is some η > 0 such that |bt0 | � η in D \ ⋃

�j . Let Vt0 ⊂ [0,1] be
a relatively open neighborhood of t0 such that ||bt (z)| − |bt0(z)|| <

η
2 for all z ∈ D and t ∈ Vt0 .

Then

{|bt | < η/2
} ⊂ {|bt0 | < η

} ⊂
⋃

�j for all t ∈ Vt0 .

Together with (2.3), this implies that every (simply) connected component Ω of the set {|bt0 | < η}
has hyperbolic diameter bounded by ε/2.

The lemma will follow if we show that bt0 and bt have the same number of zeros in Ω for
t ∈ Vt0 . By a conformal mapping between Ω and D and the first paragraph of the proof, it is
enough to show that if Bt are finite Blaschke products such that |Bt | varies continuously for
0 � t � 1, then they have the same degree. By compactness, the degrees are bounded and there
is some 0 < r < 1 such that Z(Bt ) ⊂ rD for all t . Furthermore, composing at the right side
by some automorphism of D we can also assume that Bt(0) �= 0 for all t . If we write αj , with
1 � j � n(t), for the zeros of Bt counting multiplicities, Jensen’s formula gives

rn(t) = ∣∣Bt(0)
∣∣ n(t)∏
j=1

r

|αj | = exp

{
1

2π

π∫
−π

log
∣∣Bt

(
reiθ

)∣∣dθ

}
.

Since the right member of the equality is a continuous function of t , so is rn(t), which means that
n(t) is constant. �

We are ready now to prove our characterization of the components of CN∗.

Theorem 2.7. Let b, b∗ be CNBP and h ∈ (H∞)−1. Then b and b∗h can be joined by a path
contained in CN∗ if and only if the following two conditions hold.

(1) There is a reordering {z∗
k} of the zeros of b∗ such that supk β(zk, z

∗
k) < ∞, where {zk} are

the zeros of b.
(2) If σ = ∑

σk , where σk is the path measure on the segment from zk to z∗
k , then

2 ImC(σ ) − l̃og |h| ∈ L∞(∂D).

Proof. Let us first discuss the sufficiency of the conditions (1) and (2). Suppose that {zk} and
{z∗

k} satisfy (1). Write M = supk β(zk, z
∗
k) and zk(t) = zk + t (z∗

k − zk) for 0 � t � 1. If bt is the
Blaschke product with zeros {zk(t): k = 1,2, . . .} then ‖μbt ‖c � C1 = C1(‖μb‖c,M) for all t .
Hence, there is a constant ε > 0 independent of t such that

∣∣bt (z)
∣∣ � ε if β

(
z,Z(bt )

)
� 1. (2.4)

Let α = α(ε/2,C1) < 1 be the quantifier of Corollary 2.4 and choose points 0 = t0 < · · · < tn = 1
in the interval [0,1] such that β(zk(t), zk(t

′)) < α for all k � 1, whenever t and t ′ belong to
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the same interval [tj , tj+1], j = 0,1, . . . , n − 1. By Corollary 2.4, for each 0 � j < n there is
gj+1 ∈ (H∞)−1 such that

∥∥btj − btj+1gj+1
∥∥ < ε/2 and 2 ImC(σtj ,tj+1) − ˜log |gj+1| ∈ L∞(∂D). (2.5)

Here σtj ,tj+1 is the sum of the path measures from zk(tj ) to zk(tj+1). Since |btj (z)| � ε when
β(z,Z(btj )) � 1, for any 0 � s � 1, the zeros of the function btj + s(btj+1gj+1 − btj ) are con-
tained in Ωj = {z ∈ D: β(z,Z(btj )) � 1}. Moreover, by Rouche’s theorem on each connected
component of Ωj it has as many zeros as btj . Hence,

{
btj + s(btj+1gj+1 − btj ): 0 � s � 1

}
is a segment contained in CN∗ which joins btj and btj+1gj+1. Thus, b and btng1 . . . gn can be
joined by a polygonal path contained in CN∗. Write g = ∏n

1 gj ∈ (H∞)−1 and observe that

2 ImC(σt0,tn ) − l̃og |g| =
n−1∑
j=0

(
2 ImC(σtj ,tj+1) − ˜log |gj+1|

) ∈ L∞(∂D),

and that C(σ ) = C(σt0,tn ) on the unit circle. So far we have proved that if b and b∗ satisfy (1)
there is g ∈ (H∞)−1 that satisfies (2) and such that b and b∗g can be joined by a path contained
in CN∗. If h ∈ (H∞)−1 is any function that satisfies (2) then

˜
log

|h|
|g| = l̃og |h| − l̃og |g| ∈ L∞(∂D),

which implies that h = gef for f ∈ H∞. This means that h and g are in the same connected
component in (H∞)−1. This proves the sufficiency.

The necessity of (1) follows from Lemma 2.6. Let us now prove that (2) is also necessary.
Let γ : [0,1] → CN∗ be a path joining γ (0) = b and γ (1) = b∗h. Thus γ (t) = btht , where bt

is a CNBP and ht ∈ (H∞)−1. By compactness, there exists a constant K � 1 such that K−1 �
|ht (z)| � K for any z ∈ D and any 0 � t � 1. Let 0 < ε < K−2 be a number satisfying (2.4) and
choose points 0 = t0 < t1 < · · · < tn = 1 that simultaneously satisfy (2.5) and

‖btht − bshs‖∞ <
ε

2K

for any t, s ∈ [tj−1, tj ] and j = 1,2, . . . , n. The existence of such points follows from Corol-
lary 2.4 and the first paragraph in the proof of Lemma 2.6. Hence, on ∂D we have

‖btj btj+1 − gj+1‖∞ < ε/2 and
∥∥btj btj+1 − h−1

tj
htj+1

∥∥∞ < ε/2,

which leads to

∥∥gj+1ht h−1
t − 1

∥∥ � K2
∥∥gj+1 − h−1

t ht

∥∥ < K2ε < 1.

j j+1 ∞ j j+1 ∞
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Consequently, gj+1htj h
−1
tj+1

= ef with f ∈ H∞, which means that

˜log |gj+1| −
(

˜log |htj+1 | − ˜log |htj |
) ∈ L∞(∂D).

Summing from j = 0 to n − 1 we get

l̃og |g| − l̃og |h| =
n−1∑
j=0

˜log |gj+1| −
(
˜log |htn | − ˜log |ht0 |

) ∈ L∞(∂D).

Since g satisfies (2), so does h. �
It is important to notice that the invertible function h of the above theorem is associated to

the particular reordering of the zeros of b∗. Indeed, there could exist two different reorderings
of {z∗

k} satisfying condition (1) of the theorem that lead to respective functions h1, h2 ∈ (H∞)−1

with

˜log |h1| − ˜log |h2| /∈ L∞(∂D).

An example of this phenomenon is given in Section 4, where in addition b = b∗. We also remark
that instead of taking segments in the above proof, we can use an equicontinuous family (with
respect to the hyperbolic metric) of curves joining zk with z∗

k with bounded hyperbolic length. In
the proof of the theorem we have also showed the following

Corollary 2.8. Let b and b∗ be two CNBP. Then there exists a function h ∈ (H∞)−1 such that b

and b∗h can be joined by a continuous path contained in CN∗ if and only if there is a reordering
{z∗

k} of the zeros of b∗ such that supk β(zk, z
∗
k) < ∞, where {zk} are the zeros of b.

We end this section applying Theorem 2.7 to the little Bloch space. The following lemma
is well known. It follows immediately from a couple of results given by Guillory, Izuchi and
Sarason: Theorem 1 of [8] and the first theorem in Section 3 of [9].

Lemma 2.9. Let u be an inner function and let b be a CNBP with zeros Z(b). The following two
conditions are equivalent:

(1) lim|w|→1 sup{|u(w)|: β(w,Z(b)) < α} = 0 for any α > 0,
(2) lim|w|→1 |u(w)|(1 − |b(w)|) = 0.

In particular, if these conditions hold, sup{||u(z)| − |b(z)||: z ∈ D} = 1.

Theorem 2.10. Let u be an inner function in the little Bloch space that is not a finite Blaschke
product and let Ω be a connected component of CN∗. Then |u| cannot be approximated uni-
formly in D by functions |f |, with f ∈ Ω . In particular, u does not belong to the closure of any
component of CN∗.

Proof. We argue by contradiction. Assume there exists a sequence bn of CNBP and a sequence
of functions hn ∈ (H∞)−1 such that bnhn ∈ Ω and sup{||u(z)| − |bn(z)hn(z)||: z ∈ D} → 0.
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Then |hn| tend to 1 uniformly on ∂D, and since hn are invertible, it follows that |hn| → 1 uni-
formly on D. Hence,

sup
{∣∣∣∣u(z)

∣∣ − ∣∣bn(z)
∣∣∣∣: z ∈D

} → 0.

Therefore, there is n0 such that ||u(z)| − |bn0(z)|| < 1/2 for all z ∈D. Consequently, Lemma 2.9
says that there are constants m > 0, η > 0 and a subsequence {zk} of zeros of bn0 such that
sup{|u(z)|: β(z, zk) � m} > η for all k � 1. Since u is in the little Bloch space, |u(zk)| � η/2 for
all k sufficiently large. Now fix n such that ||u(z)| − |bn(z)|| < η/4 for all z ∈ D. In particular,
|u(w)| < η/4 for any zero w of bn. Since u is in the little Bloch space,

β
(
zk,Z(bn)

)
� β

({
z:

∣∣u(z)
∣∣ � η/2 and |z| � |zk|

}
,

{
z:

∣∣u(z)
∣∣ � η/4

}) → ∞
when k → ∞. This holds because a function in the little Bloch space is Lipschitz with respect
to the hyperbolic metric, where the Lipschitz constant can be taken asymptotically tending to 0
when approaching the boundary. By Theorem 2.7 there is no h ∈ (H∞)−1 such that bnh and bn0

connect in CN∗, which is a contradiction. �
3. On the components of I∗

We say that a Blaschke product b is floating if there is a sequence 0 < rn < 1, tending to 1,
such that infθ |b(rne

iθ )| → 1 as n → ∞.

Lemma 3.1. Every Blaschke product b can be factorized as b = b1b2, where b1 and b2 are
floating Blaschke products.

Proof. Let Z(b) be the zeros of b counting multiplicities. Given any 0 < r < 1 and β < 1, there
are constants r0, r1, with r < r0 < r1 < 1, such that if B0 is the Blaschke product whose zeros
are the zeros of b that lie in {|z| � r} ∪ {|z| � r1}, then infθ |B0(r0e

iθ )| > β . Thus, if 0 < βk < 1
is a sequence tending to 1 and 0 < r1 < 1 is given, we can inductively construct a sequence
rk < rk+1 → 1, such that if Bk is the Blaschke product whose zeros are those of b that lie in
{|z| � rk−1} ∪ {|z| � rk+1}, then infθ |Bk(rke

iθ )| > βk for all k > 1. Define b1 and b2 as the
Blaschke products whose zeros are respectively

Z(b1) = {
z ∈ Z(b): |z| � r1 or r4k+3 � |z| � r4k+5, for k � 0

}
,

Z(b2) = {
z ∈ Z(b): r4k+1 < |z| < r4k+3, for k � 0

}
.

Then |b1(z)| > β4k+2 if |z| = r4k+2 and |b2(z)| > β4k if |z| = r4k for all k � 1. It is also clear
that b = b1b2. �

We say that an open set G ⊂ D is non-tangentially dense if for almost every eiθ ∈ ∂D, G con-
tains truncated cones

Λr
α

(
eiθ

) = {
z ∈ D:

∣∣z − eiθ
∣∣ < α

(
1 − |z|), |z| > r

}
, r < 1 < α

of arbitrarily large opening α. Since an inner function u has non-tangential limits of modulus 1 at
almost every point of ∂D, the set {z ∈ D: |u(z)| > δ} is non-tangentially dense for any 0 < δ < 1.
Next we state several technical results that will be used in the proof of our main theorem.
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Proposition 3.2. Let u0 be a floating Blaschke product and u1 be an inner function. Assume that
there exist a function h ∈ (H∞)−1 with ‖h‖∞ � 1, an open set Ω ⊂ D and a constant 0 < δ < 1
such that:

(1) For i = 0,1, one has Ω ⊂ {|ui | < δ}.
(2) Arclength λ∂Ω on ∂Ω is a Carleson measure.
(3) There exists an analytic branch of the logarithm of u1h/u0 in an open set of the unit disk

containing D \ Ω , which we denote by log(u1h/u0), whose non-tangential limits

lim
z∈D\Ω,z→eiθ

log(u1h/u0)(z)

exist at almost every point eiθ ∈ ∂D and define a function in L∞(∂D).
(4) 10δ‖λ∂Ω‖c � inf∂D |h|.

Then u0 and u1h can be joined by a path contained in I∗.

Proof. First observe that for any t ∈ [0,1], the function gt = u0 exp(t log(u1h/u0)) is a bounded
analytic function on a neighborhood of D \ Ω . Moreover,

∣∣u0e
t log(

u1h

u0
)∣∣ = |u0|1−t |u1|t |h|t .

Observe that |h| � |gt | � 1 on the unit circle and |gt | � δ on ∂Ω . Fix 0 � t � 1. By duality (see
[5, IV, Theorem 1.3]), one has

distL∞(∂D)

(
gt ,H

∞) = sup
F∈H 1

0 ,‖F‖1�1

∣∣∣∣∣
2π∫

0

gt

(
eiθ

)
F

(
eiθ

) dθ

2π

∣∣∣∣∣
= sup

F∈H 1,‖F‖1�1

∣∣∣∣
∫
∂D

gt (z)F (z)
dz

2π

∣∣∣∣.

Fix F ∈ H 1. Cauchy Theorem and a limit argument shows that

∫
∂D

gt (z)F (z)
dz

2π
=

∫
∂Ω

gt (z)F (z)
dz

2π
. (3.6)

Indeed, since u0 is a floating Blaschke product, there are rj → 1 such that inf|z|=rj |u0(z)| → 1.
By condition (1) the circles |z| = rj do not meet Ω if j is sufficiently large. Let Ωk , k � 1, be
the connected components of Ω . By Cauchy Theorem,

∫
∂(r D)

gF
dz

2π
=

∑
Ωk⊂rjD

∫
∂Ω

gF
dz

2π
.

j k
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By condition (2),

lim
j→∞

∫
∂(rjD)

gF
dz

2π
=

∫
∂Ω

gF
dz

2π
.

Now, ∫
∂(rjD)

g(z)F (z)
dz

2π
=

∫
∂D

g(rjw)F (rjw)rj
dw

2π
→

∫
∂D

g(w)F (w)
dw

2π

by the dominated convergence theorem, observing that |g(rjw)F (rjw)| is bounded by the non-
tangential maximal function of F at w. This proves (3.6). Hence,∣∣∣∣

∫
∂D

gt (z)F (z)
dz

2π

∣∣∣∣ � δ‖λ∂Ω‖c‖F‖1.

Consequently, (4) says to distL∞(∂D)(gt ,H
∞) < inf∂D |h|/10. Therefore, there is ft ∈ H∞ such

that

‖gt − ft‖L∞(∂D) � 1

5
inf
∂D

|h|, (3.7)

implying that at almost every point of ∂D one has

|ft | � |h|t − |h|
5

� |h| − |h|
5

= 4

5
|h|. (3.8)

In particular, ft ∈ I∗ for every t ∈ [0,1].
Since log(u1h/u0) ∈ L∞(∂D), the mapping from [0,1] to L∞(∂D) given by t �→ et log(u1h/u0)

is continuous, and consequently there is a finite partition of [0,1], 0 = t0 < t1 < · · · < tn = 1,
such that

∥∥u0e
tj log(

u1h

u0
) − u0e

tj+1 log(
u1h

u0
)∥∥

L∞(∂D)
<

1

5
inf
∂D

|h|,

which together with (3.7) implies that the three quantities

‖u0 − ft0‖L∞(∂D), ‖ftj − ftj+1‖L∞(∂D), ‖u1h − ftn‖L∞(∂D)

are bounded above by 3
5 inf∂D |h| for 0 � j < n. So, for any function in the segment joining ftj

with ftj+1 , that is for any 0 � s � 1, (3.8) says that

∣∣ftj + s(ftj+1 − ftj )
∣∣ � |ftj | − |ftj+1 − ftj | �

4

5
inf
∂D

|h| − 3

5
inf
∂D

|h| = 1

5
inf
∂D

|h|,

and the same holds for the segments joining u0 with ft0 , and ftn with u1h. Hence, all these
segments are contained in I∗ and their union is a path in I∗ between u0 and u1h. �
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We shall also use the following version of Proposition 3.2.

Proposition 3.3. Let u0 be a floating Blaschke product and u1 be an inner function. Suppose
that Ω ⊂ D is an open set and 0 < δ < 1 is a constant satisfying properties (1) and (2) of
Proposition 3.2. Instead of (3) and (4) assume that:

(3’) There exists an analytic branch of the logarithm of the function u1/u0 in an open set of the
unit disk containing D \ Ω , which we denote by log(u1/u0), whose non-tangential limits

lim
z∈D\Ω,z→eiθ

log(u1/u0)(z)

exist at almost every point eiθ ∈ ∂D and define a function in BMO(∂D).
(4’) 10δ‖λ∂Ω‖c � e−2‖ log(u1/u0)‖BMO .

Then there is h ∈ (H∞)−1 with ‖h‖∞ � 1 such that (3) and (4) of Proposition 3.2 hold.

Proof. Write γ = ‖ log(u1
u0

)‖BMO. By hypothesis, on the unit circle one can decompose

log

(
u1

u0

)
= Im log

(
u1

u0

)
= r + s̃, with ‖r‖∞ + ‖s‖∞ � γ.

Taking h = e−(s+γ+is̃) we have e−2γ � |h| � 1. Thus (4’) implies (4). Define log(u1h/u0) =
log(u1/u0) − (s + γ + is̃). Therefore, at almost every point of the unit circle one has

log

(
u1h

u0

)
= −(s + γ ) + ir

and (3) of Proposition 3.2 holds. Observe also that ‖ log(u1h
u0

)‖L∞(∂D) � 3γ . �
In certain cases, at almost every point of the unit circle the logarithm of the quotient of two

Blaschke products can be written as a Cauchy integral of a Carleson measure.

Lemma 3.4. Let u,b be Blaschke products. Let Ω be an open set of the unit disk containing
all the zeros of u and b such that D \ Ω is non-tangentially dense. Let ν = νu − νb , where νu

(respectively νb) is the sum of the harmonic measures ω(z,−,Ω) on ∂Ω from the zeros z of
u (respectively b). Suppose that the boundary Γj of each connected component Ωj of Ω is a
Jordan rectifiable curve with 0 /∈ Γj satisfying

(1) Both functions u and b have the same finite number of zeros in each Ωj .
(2) Arclength on the union of Γj is a Carleson measure.
(3) There is a constant C0 > 0 such that for any arc γ ⊂ Γj , |ν(γ )| < C0.

For each j � 1 fix a point ξj ∈ Γj . Then, there is a constant C1 such that for any z ∈D \ Ω ,

log
u

b
(z) = C1 −

∑
j

∫
Γ

ν
(
γ (ξj , ξ)

) dξ

ξ − z
−

∑
j

∫
Γ

ν
(
γ (ξj , ξ)

) dξ

(1 − ξz)ξ

j j
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where γ (ξj , ξ) denotes the arc contained in Γj which goes from ξj to ξ in the counterclockwise
direction, defines a logarithm of u/b in D \ Ω . Moreover, there exists a constant C2 such that

log
u

b
(z) = C2 + 2i ImC

[∑
j

ν
(
γ (ξj , ξ)

)
dξ |Γj

]
(z)

for almost every z ∈ ∂D.

Proof. Let ϕξ (z) = (ξ − z)/(1 − ξz). For any z ∈D \ Ω , the function

ϕ′
ξ

ϕξ

(z) = |ξ |2 − 1

(1 − ξz)(ξ − z)
= ξ

(1 − ξz)
+ 1

(z − ξ)

is harmonic with respect to ξ in the interior of Γ = ⋃
Γj . Then

u′(z)
u(z)

=
∑

u(ξn)=0

ϕ′
ξn

(z)

ϕξn(z)
=

∫
Γ

ϕ′
ξ (z)

ϕξ (z)
dνu(ξ),

and the same holds for b. So, for any z ∈ D \ Ω ,

u′(z)
u(z)

− b′(z)
b(z)

=
∫
Γ

1

(z − ξ)
+ ξ

(1 − ξz)
dν(ξ). (3.9)

On the other hand, for j = 1,2, . . . and z ∈D \ Ω ,

d

dz

∫
Γj

[ ∫
γ (ξj ,ξ)

dv

v − z
+

∫
γ (ξj ,ξ)

1

(1 − vz)

dv

v

]
dν(ξ)

=
∫
Γj

[ ∫
γ (ξj ,ξ)

dv

(v − z)2
+

∫
γ (ξj ,ξ)

dv

(1 − vz)2

]
dν(ξ)

=
∫
Γj

[
1

(z − ξ)
+ ξ

(1 − ξz)

]
dν(ξ), (3.10)

because
∫
Γj

dν = 0. From (3.9) and (3.10), we deduce that there exists a constant C1 such that

on D \ Ω the function

log
u

b
(z) = C1 +

∑
j

∫
Γ

[ ∫
γ (ξ ,ξ)

dv

v − z
+

∫
γ (ξ ,ξ)

1

(1 − vz)

dv

v

]
dν(ξ)
j j j
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is a logarithmic branch of u/b. Using Fubini, one gets

log
u

b
(z) = C1 −

∑
j

∫
Γj

ν
(
γ (ξj , v)

) dv

v − z
−

∑
j

∫
Γj

ν
(
γ (ξj , v)

) dv

(1 − vz)v
,

given that χγ (ξj ,v)(v) = χγ (v,ξj )(v) and ν(Γj ) = 0. This gives the first statement. To prove the
second identity, consider the functions

f (z) =
∑
j

∫
Γj

ν
(
γ (ξj , v)

) z dv

1 − zv
,

g(z) = C1 −
∑
j

∫
Γj

ν
(
γ (ξj , v)

) dv

(1 − vz)v
,

which according to Lemma 2.1, f ∈ H 2
0 and g ∈ H 2. Observe that log(u/b) = f + g on ∂D.

Since log |u/b| = 0 = Re(f + g), the real part of the function g + f ∈ H 2 vanishes. Hence,
g = −f + ic, where c ∈R is a constant, meaning that at almost every point of the unit circle,

log
u

b
= f − f + ic = 2i Imf + ic. �

Given a Blaschke product u, we will construct an interpolating Blaschke product b and a
Carleson contour Γ = ∂Ω verifying Lemma 3.4. The system of rectifiable Jordan curves Γj

appearing in Lemma 3.4 is presented in the following result which is part of the proof of [23,
Lemma 3.2]. An explicit proof can be found in [11, Lemma 2]. This is a variation of the classical
corona construction given by Carleson in [3].

Lemma 3.5. Let u ∈ H∞ with ‖u‖∞ = 1. Let 0 < δ < 1 be a fixed constant. Then there exist a
constant ε = ε(δ) > 0 and a system Γ = ⋃

Γj of disjoint rectifiable Jordan curves Γj such that:

(a) |u(z)| � δ when β(z, intΓ ) � 1,
(b) sup{|u(w)|: β(w, z) � 15} > ε when z /∈ intΓ ,
(c) the arclength on Γ is a Carleson measure λΓ with ‖λΓ ‖c � C, where C is a universal

constant independent of u and δ.

Lemma 3.6. Let u be a Blaschke product and Γ be a Jordan curve contained in D. Let intΓ
denote the interior of Γ , and consider the sum of harmonic measures

νΓ =
∑

z∈intΓ,u(z)=0

ω(z,−, intΓ ).

If L ⊂ Γ then

diamρ L �
(

inf
L

|u|
)1/νΓ (L)

,

where diamρ L = sup{ρ(z,w): z,w ∈ L}.
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Proof. By harmonicity

ω(z,L, intΓ ) log(diamρ L)−1 � log
∣∣ϕw(z)

∣∣−1

for z ∈ intΓ and w ∈ L. Summing on z ∈ Z(u) we obtain

νΓ (L) log(diamρ L)−1 � log
(

inf
L

|u|
)−1

. �
We are ready now to prove the main result of the paper.

Theorem 3.7. Let u be an inner function. Then there exists a path γ : [0,1] → I∗ such that
γ (0) = u and γ (1) = bh, where b is a CNBP and h ∈ (H∞)−1.

Proof. Using a Mobius transformation we can assume that u is a Blaschke product. By
Lemma 3.1 we can assume that u is a floating Blaschke product. Let 0 < δ < 1 be a small
constant to be chosen later. Consider the contour Γ given by Lemma 3.5 and decompose u as
u = u1u2 into two Blaschke products u1, u2, where u1 is formed with the zeros z of u that lie
inside the interior of Γ such that β(z,Γ ) > 1. For each zero z of u2, part (b) of Lemma 3.5
provides a point w ∈ D such that β(z,w) � 16 and |u2(w)| � |u(w)| > ε(δ). This implies that
u2 is a Carleson–Newman Blaschke product. For each component Γk of Γ consider the measure

dνu1(ξ) =
∑
k�1

∑
u1(z)=0

ω(z, ξ, IntΓk), ξ ∈ Γ,

where ω(z, ξ,Ω) denotes the harmonic measure from a point z ∈ Ω in the domain Ω ⊂ D.
Hence, the total mass νu1(Γk) is the number of zeros of u1 in the interior of Γk , which is finite by
(a) of Lemma 3.5, given that u is floating. Split each Γk into closed arcs that are pairwise disjoint
except for the extremes {Γk,i : 1 � i � νu1(Γk)}, with νu1(Γk,i) = 1 for all i, and locate a point
wk,i in Γk,i . Let b1 be the Blaschke product with zeros {wk,i : 1 � i � νu1(Γk), k � 1}. Part (c)
of Lemma 3.5 and Lemma 3.6 show that b1 is a CNBP.

The theorem will follow if we show that the functions u and b1u2 satisfy the four conditions
of Proposition 3.3 when δ is sufficiently small. Applying Lemma 3.4 to u1 and b1, we see that at
almost every point of ∂D,

log(u1/b1) = C2 + 2i ImC
(∑

j

ν
(
γ (ξj , ξ)

)
dξ |Γj

)
,

where ν = νu1 − νb1 . By (c) of Lemma 3.5 and Lemma 2.1, log(u1/b1) belongs to BMO(∂D),
where ‖ log(u1/b1)‖BMO is bounded by an absolute constant (independent of u and δ). Since
u/u2b1 = u1/b1, only (1) of Proposition 3.2 remains to be proved. This will follow if we show
that there is a constant c(δ) such that

sup |u2b1| � c(δ) → 0 when δ → 0. (3.11)

Γ
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Fix z ∈D with β(z, IntΓ ) � 1 and observe that

log
1

|u1(z)| =
∫
Γ

log
1

|ϕw(z)| dνu1(w). (3.12)

Split the integral over Γ as integrals over Γk,i and consider the families of short and long arcs
defined by

S = {
Γk,i : diamβ(Γk,i) � 1/4

}
and L = {

Γk,i : diamβ(Γk,i) > 1/4
}
.

Fix Γk,i ∈ S . Since β(z, IntΓ ) � 1, for w,wk,i ∈ Γk,i ,

log
1

|ϕw(z)| < C1
(
1 − ∣∣ϕw(z)

∣∣2)
< C2

(
1 − ∣∣ϕwk,i

(z)
∣∣2)

< 2C2 log
1

|ϕwk,i
(z)| , (3.13)

where C1 and C2 are universal constants. Hence

∫
Γk,i

log
1

|ϕw(z)| dνu1(w) < 2C2 log
1

|ϕwk,i
(z)| . (3.14)

Now for each Γk,i ∈ L let αk,i = αk,i(z) ∈ Γk,i such that

log
1

|ϕαk,i
(z)| = sup

{
log

1

|ϕw(z)| : w ∈ Γk,i

}
.

Clearly,

∑
Γk,i∈L

∫
Γk,i

log
1

|ϕw(z)| dνu1(w) �
∑

Γk,i∈L
log

1

|ϕαk,i
(z)| � C1

∫
D

1 − |z|2
|1 − ξz|2 dm(ξ),

where C1 is the universal constant in (3.13) and m = ∑
(1 − |αk,i |2)δαk,i

. Next we will show
that m is a Carleson measure whose Carleson norm is bounded independently of z. Let Q be a
Carleson square. If αk,i ∈ Q, since Γk,i is long, then 1 − |αk,i |2 < C length(Γk,i ∩ 2Q), where
C is a universal constant. Thus m(Q) < C length(Γ ∩ 2Q). Hence m is a Carleson measure
whose Carleson norm is bounded by a fixed multiple of the Carleson norm of the arclength of Γ .
Therefore, by [5, VI, Lemma 3.3],

∑
Γk,i∈L

∫
Γk,i

log
1

|ϕw(z)| dνu1(w) � K, (3.15)

where K is another universal constant. Applying (3.14) and (3.15) in (3.12) we get

log
1

|u1(z)u2(z)| � log
1

|u2(z)| + 2C2

∑
log

1

|ϕwk,i
(z)| + K,
Γk,i∈S



3768 A. Nicolau, D. Suárez / Journal of Functional Analysis 262 (2012) 3749–3774
for β(z, intΓ ) � 1. Since (a) of Lemma 3.5 says that |u(z)| � δ when β(z, intΓ ) = 1, and we
can assume that 2C2 � 1,

log
1

δ
� 2C2

[
log

1

|u2(z)| + log
1

|b1(z)|
]

+ K.

Therefore

∣∣u2(z)b1(z)
∣∣ �

(
eKδ

)1/2C2 = c(δ),

which together with the maximum modulus principle proves (3.11). Summing up, if δ is suffi-
ciently small, we can apply Propositions 3.2 and 3.3 to deduce that there exists h ∈ (H∞)−1 such
that u and u2b1h can be joined by a path contained in I∗. �
Remark 3.8. A careful examination of the proofs of Proposition 3.2 and Theorem 3.7 shows that
there exists a universal constant N such that any inner function can be joined in I∗ to a function
in CN∗ by a polygonal path formed by the union of at most N segments.

4. Applications and examples

4.1. The invertible group of a Douglas algebra

Given an inner function u, the Douglas algebra H∞[u] is the closed subalgebra of L∞(∂D)

generated by H∞ and u. The maximal ideal space of H∞[u] is naturally identified with the
subset of the maximal ideal space M(H∞) of H∞ given by

Mu = {
x ∈ M

(
H∞)

:
∣∣u(x)

∣∣ = 1
}
.

Here we are looking at the functions of H∞ as defined on the whole maximal space M(H∞)

(that is, we are identifying f ∈ H∞ with its Gelfand transform). Given two inner functions u0
and u1, it is well known that H∞[u0] ⊂ H∞[u1] if and only if Mu0 ⊃ Mu1 (see [5, IX]).

Lemma 4.1. For 0 � t � 1 let ut be an inner function such that the mapping t → |ut | is contin-
uous from [0,1] to L∞(D). Then, given ε > 0 there is δ > 0 such that

∣∣u0(z)
∣∣ > 1 − δ ⇒ ∣∣ut (z)

∣∣ > 1 − ε for all 0 � t � 1.

In particular, H∞[u0] = H∞[ut ] for all 0 � t � 1.

Proof. For any t0 ∈ [0,1] we have |ut (z)|−1/8 � |ut0(z)| � |ut (z)|+1/8 for all z ∈ D whenever
|t − t0| is small enough. Therefore, for these values of t one has

{
z ∈ D:

∣∣ut (z)
∣∣ >

1

2

}
⊂

{
z ∈ D:

∣∣ut0(z)
∣∣ >

3

8

}
⊂

{
z ∈D:

∣∣ut (z)
∣∣ >

1

4

}
.

The first inclusion implies that u−1
t0

∈ H∞({|ut | > 1/2}), and since u−1
t0

(eiθ ) = ut0(e
iθ ) for al-

most every θ , [5, IX, Theorem 5.2] says that ut ∈ H∞[ut ]. Analogously, the second inclusion
0
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shows that ut ∈ H∞[ut0]. That is, H∞[ut ] = H∞[ut0]. Furthermore, let δn > 0 be a sequence
that tends to 0 and denote I = [0,1]. The set

{
(t, x) ∈ I × M

(
H∞)

:
∣∣ut (x)

∣∣ > 1 − ε
}

is an open neighborhood of I × Mu0 = ⋂
n{(t, x) ∈ I × M(H∞): |u0(x)| > 1 − δn}. So, by

compactness there is some n such that

{
(t, x):

∣∣u0(x)
∣∣ > 1 − δn

} ⊂ {
(t, x):

∣∣ut (x)
∣∣ > 1 − ε

}
. �

An immediate corollary of Lemma 4.1 is that if ut (0 � t � 1) are inner functions such that
|ut | varies continuously in ‖‖∞ and u0 is a floating Blaschke product, then

inf
θ

∣∣u0
(
rne

iθ
)∣∣ → 1 ⇒ inf

θ

∣∣ut

(
rne

iθ
)∣∣ → 1 uniformly on 0 � t � 1.

In particular, ut is a floating Blaschke product for all t . Observe that this argument shows that in
Propositions 3.2 and 3.3, the inner function u1 is also a floating Blaschke product.

If A is a commutative Banach algebra with unit, and A−1 is the group of invertible elements,
the connected component of the unit in A−1 is expA = {ea: a ∈ A}. Therefore, two elements
a, b ∈ A−1 are in the same component if and only if b ∈ a expA.

Theorem 4.2. Let u0, u1 be two inner functions such that Mu0 = Mu1 and h1 ∈ (H∞)−1. The
following conditions are equivalent:

(1) h1u1 ∈ u0 exp(H∞[u0]).
(2) For some open neighborhood U of Mu0 in M(H∞) with infU |u0u1| > 0, there is a bounded

analytic branch of log(h1u1/u0) on U ∩D.
(3) There exists a CNBPb (or b ≡ 1) with Mb ⊇ Mu0 such that bu0 and bh1u1 can be joined by

a path contained in I∗.

Proof. (1) ⇒ (2). Let f ∈ H∞[u0] such that h1u1 = u0e
f . Since f ∈ H∞[u0], given η > 0

there are g ∈ H∞ and n � 0 integer such that supMu0
|un

0g + f | < η. The set {x ∈ M(H∞):
|u0(x)| > 1/2} is a neighborhood of Mu0 where the function

Λη :=
∣∣∣∣u1h1

u0
exp

(
g

un
0

)
− 1

∣∣∣∣
is continuous. In addition, on Mu0 : Λη = |ef +un

0g − 1| � eη − 1. Thus, by choosing η > 0 small
enough so that supMu0

Λη < 1/4, we get that

U :=
{
x ∈ M

(
H∞)

:
∣∣u0(x)

∣∣ >
1

2
and

∣∣Λη(x)
∣∣ <

1

2

}

is an open neighborhood of Mu0 such that the function (u1h1/u0) exp(g/un
0) has a bounded

analytic logarithm on U ∩D. Clearly, so does u1h1/u0.
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(2) ⇒ (1). Let q ∈ H∞(U ∩ D) such that h1u1/u0 = eq on U ∩ D, where U is an open
neighborhood of Mu0 . Then U ∩ D is non-tangentially dense, and the function q has a non-
tangential limit at almost every point of ∂D that belongs to H∞[u0] (see [5, IX, Theorems 5.1
and 5.2]).

(1) ⇒ (3). Let f ∈ H∞[u0] such that h1u1 = u0e
f . Since the set{

g
a

b
: g ∈ (

H∞)−1
, a, b ∈ CNBP ∩ H∞[u0]−1

}

is dense in H∞[u0]−1 (see [27, Theorem 3.3]), the homotopy etf , 0 � t � 1, in H∞[u0]−1 can
be approximated by a polygonal path p(t) formed by segments joining finitely many functions
of the form

p(0) = 1, g0
a0

b0
, g1

a1

b1
, . . . , gn

an

bn

, ef = p(1),

where gj ∈ (H∞)−1, and aj , bj ∈ CNBP ∩ H∞[u0]−1. Setting b = ∏n
j=0 bj , we have that

bu0p(t), 0 � t � 1, implements a path in I∗ between bu0 and bu0e
f = bh1u1. Since each

bj ∈ H∞[u0]−1, so is b, meaning that Mb ⊃ Mu0 .
(3) ⇒ (1). Let γ : [0,1] → I∗ be a path joining γ (0) = bu0 with γ (1) = bh1u1, where b is

as in (3), and denote by vt the inner part of γ (t). By Lemma 2.5, the map t �→ |vt | is continuous
from [0,1] into L∞(D), and consequently Lemma 4.1 says that γ (t) ∈ (H∞[v0])−1 for all t ∈
[0,1]. Hence, bu0 and bh1u1 are in the same connected component of (H∞[bu0])−1, meaning
that

bh1u1 ∈ bu0 exp
(
H∞[bu0]

) = bu0 exp
(
H∞[u0]

)
,

where the last equality holds because the hypothesis Mb ⊃ Mu0 implies that H∞[bu0] =
H∞[u0]. So, multiplying the above formula by b we obtain (1). �
4.2. Nice Blaschke products

For a Blaschke product b and r > 0 write

αb(r) = inf
{∣∣b(z)

∣∣: β
(
z,Z(b)

)
> r

}
.

This function increases with r , so αb(∞) := supr αb(r) = limr→∞ αb(r) ∈ [0,1]. It is well
known that if b is a CNBP then αb(∞) > 0. For a while it was mistakingly believed that the
converse is also true. However, in [7] the authors exhibit a Blaschke product b constructed
by Treil that satisfies αb(∞) > 0 but it is not a CNBP. Moreover, a quick examination of
the example shows that αb(∞) = 1. Notice that αb(∞) = 1 just means that |b(z)| → 1 when
β(z,Z(b)) → ∞.

The significance of this constant is that if w ∈ D satisfies 0 < |w| < αb(∞) then bw =
(w − b)/(1 − wb) is a CNBP. Indeed, if r > 0 is such that |w| < αb(r) then for every z ∈ Z(bw)

there is some point ξ ∈ Z(b) with β(z, ξ) � r . So, |bw(ξ)| = |w|, implying that bw is a CNBP.
Let ΓH∞ be the set of trivial points in M(H∞), that is, the points of M(H∞) whose Gleason

part is a singleton. It is well known that an inner function is a CNBP if and only if it never
vanishes on ΓH∞ .



A. Nicolau, D. Suárez / Journal of Functional Analysis 262 (2012) 3749–3774 3771
Corollary 4.3. Let b be a CNBP. Then

αb(∞) = inf
{∣∣b(x)

∣∣: x ∈ ΓH∞
}
.

Proof. Let us denote the above infimum by γ . If |w| < αb(∞) then bw = (w − b)/(1 − wb)

is a Carleson–Newman Blaschke product, and consequently never vanishes on ΓH∞ . So,
γ � αb(∞).

If γ > αb(∞) there is a sequence {zn} such that β(zn,Z(b)) → ∞ and b(zn) → λ, with
αb(∞) < |λ| < γ . The last of these inequalities implies that bλ = (λ − b)/(1 − λb) is a CNBP,
and consequently β(zn,Z(bλ)) → 0 when n → ∞. Hence, there is a subsequence of zeros of bλ,
say {wk}, such that β(wk,Z(b)) → ∞. By Theorem 2.7, b and bλ cannot be joined by a contin-
uous path contained in CN∗, which means the path btλ, with 0 � t � 1, cannot consist entirely
of CNBP. In other words, there is t0, 0 � t0 � 1 such that bt0λ vanishes at some point of ΓH∞ ,
a contradiction. �

A description of the CNBPs b that satisfy αb(∞) = 1 in terms of the distribution of their
zeros can be found in [22]. The techniques are based on a previous result by Bishop [1], where
he characterized the Blaschke products in the little Bloch space B0 in terms of their zeros. Not
surprisingly, the distribution of the zeros in both cases are diametrically opposed. Similarly, we
have seen in Theorem 2.10 the bad behaviour of the Blaschke products in B0 with respect to the
components of CN∗, and next we show how nicely behaves a CNBPb with αb(∞) = 1.

Corollary 4.4. Let b be a CNBP and h ∈ (H∞)−1. Then αb(∞) = 1 if and only if CN∗(hb) =
I∗(hb), where CN∗(hb) (respectively I∗(hb)) is the component of hb in CN∗ (respectively I∗).

Proof. First assume that αb(∞) = 1. We prove the nontrivial inclusion. So, suppose that
utht ∈ I∗ is a path, where ut is inner, ht ∈ (H∞)−1 and u0h0 = bh. By Corollary 4.3 and
Lemma 4.1,

ΓH∞ ⊂ {
x ∈ M

(
H∞)

:
∣∣b(x)

∣∣ = 1
} = {

x ∈ M
(
H∞)

:
∣∣ut (x)

∣∣ = 1
}

for all t . In particular, ut never vanishes on ΓH∞ and therefore it is a CNBP. Thus, the path is
actually in CN∗. Now suppose that αb(∞) < 1. Then by Corollary 4.3 there is some w ∈D such
that bw = (w−b)/(1−wb) vanishes at some point of ΓH∞ . Thus, hbw ∈ I∗(hb)\CN∗(hb). �

In [21] Nestoridis proved that if u is an inner function such that for every 0 < ε < 1, the hy-
perbolic diameter of the components of {z ∈ D: |u(z)| < ε} is bounded by a constant depending
on ε, then u and zu cannot be joined by a path of inner functions. Since by [12] such u must be
a CNBP satisfying αu(∞) = 1, Corollaries 4.4 and 2.8 imply that there is no h ∈ (H∞)−1 such
that uh and zuh are in the same component of I∗.

4.3. Oddities

Proposition 4.5. Let f,g ∈ I∗. Then there is a CNBPb such that bf and bg can be joined by
a path contained in I∗. Moreover, if f,g ∈ CN∗, then b can be chosen such that bf and bg are
joined by a path contained in CN∗.
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Proof. As will be explained later, only the second statement needs to be proved. So let f,g ∈
CN∗. It is known that ΓH∞ is totally disconnected (see [26, Theorem 3.4]), and that the set of
functions {

hb1/b2: h ∈ (
H∞)−1 and b1, b2 are CNBP

}
is dense in C(ΓH∞) (see the comments preceding Lemma 4.3 in [26]). Since ΓH∞ is totally
disconnected, C(ΓH∞)−1 is connected (see [19, Theorem III.4]), and consequently there is a path
in C(ΓH∞)−1 joining f with g. We can assume that this path is a polygonal path γ : [0,1] →
C(ΓH∞)−1 joining finitely many functions:

f,h0
a0

b0
, h1

a1

b1
, . . . , hn

an

bn

, g

where hj ∈ (H∞)−1 and aj , bj are CNBP. Consider b = ∏n
j=0 bj , then bγ (t) is a polygonal

path in CN∗ that joins bf with bg. The proof of the first statement is analogous once ΓH∞ is
replaced by the Shilov boundary of H∞. �

Let h ∈ (H∞)−1 which is not in the connected component of the unity. By Proposition 4.5
there exists a CNBPb such that b and bh are in the same component of CN∗. Let btht , 0 � t � 1,
be the path joining b and bh in CN∗. Observe that t �→ bt cannot be continuous because t �→ ht

is not.
In [13] Jones used interpolating Blaschke products to find a constructive method of obtain-

ing the Fefferman–Stein decomposition of a BMO function. Our next result points in the same
direction.

Corollary 4.6. Let u be a real-valued function in L∞(∂D), and let ũ be its harmonic conju-
gate. Then there exists a CNBPb with zeros {zk} and a permutation of these zeros {z∗

k} with
supβ(zk, z

∗
k) < ∞ such that if σ is the measure associated to these zeros by the comments pre-

ceding Lemma 2.3, then

ũ ∈ ImC(σ ) + L∞(∂D).

Proof. Consider the function h = eu+iũ ∈ (H∞)−1 and apply Proposition 4.5 to h and 1. Then
there is a CNBPb such that bh and b can be joined by a path contained in CN∗. Applying
Theorem 2.7 the proof is completed. �
4.4. Open questions

This subsection is devoted to mention several questions that appear naturally in this context.
The first one is to find a description of the connected components of I∗ from which one could

deduce our main result, Theorem 3.7. Let u and b be inner functions and h ∈ (H∞)−1. According
to Lemma 4.1 and Theorem 4.2 if u and bh are in the same component of I∗ then Mu = Mb and
there is a bounded branch of the logarithm of u/bh in a natural open subset of the unit disk.
However, these conditions do not seem to be sufficient.

Let u be an inner function and let I∗(u) be the connected component of I∗ containing u. Does
there exist a function f in CN∗ such that the segment {u + t (f − u): 0 � t � 1} is contained in
I∗(u)? In other words, can we take N = 1 in Remark 3.8?
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Our main result says that any inner function can be joined in I∗ to a function in CN∗. Can
it be also joined in I∗ to a CNBP? Observe that a positive answer to Problem 1.1 would imply
a positive answer to this question. Indeed, if ‖u − b‖∞ < 1, the segment {u + t (b − u): 0 �
t � 1} is contained in I∗. Also, it is not difficult to show that there are plenty of components of
I∗ \ (H∞)−1 which contain no inner function. An easy example is provided by a finite Blaschke
product b and h ∈ (H∞)−1 \ expH∞. It follows immediately from Theorem 2.7 that there is no
inner function in I∗(bh).

Theorem 2.10 tells us that the boundary of a single connected component of CN∗ cannot con-
tain any inner function in the little Bloch space except for finite Blaschke products. It is natural
to ask for a description of the functions which are in the boundary of a connected component
of CN∗.

Given a component U of I∗, describe all the components of CN∗ contained in U . Corollary 4.4
gives an answer in a particular case.
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